Skip to content
2000
image of A Comprehensive Pan-Cancer Analysis Identified that TRIB3 was Associated with Immune Cell Infiltration and Poor Prognosis

Abstract

Background

Previous studies have demonstrated that TRIB3 plays a carcinogenic role in tumor progression. However, the exploration of TRIB3 at the pan-cancer level has not been reported.

Aims

This study aimed to conduct a comprehensive pan-cancer analysis of TRIB3.

Objective

We explored the expression pattern and functional mechanism of TRIB3 on the basis of multiple databases.

Method

We first explored the expression level of TRIB3 in the TCGA database. Then, the receiver operation characteristic curve (ROC), Kaplan-Meier plotter, and Cox regression were used to estimate the diagnostic and prognostic value of TRIB3, respectively. We also explored the relationship between TRIB3 and the infiltration of tumor immune cells, as well as the expression of immune checkpoint molecules. Gene enrichment and protein interaction network analysis were carried out to identify possible carcinogenic molecular mechanisms and functional pathways. Finally, we compared the non-promoter region methylation of TRIB3 in normal and tumor tissues and explored potential systems with unique functions in TRIB3-mediated tumorigenesis.

Result

The expression level of TRIB3 was elevated in multiple tumor types, and the high expression of TRIB3 was associated with poor prognosis. TRIB3 had a higher frequency of genetic changes in several tumors and showed varying trends in TRIB3 methylation levels. Additionally, high expression of TRIB3 was also associated with infiltration of cancer-related fibroblasts and different types of immune cells and was positively correlated with the expression of immune checkpoint molecules. Furthermore, gene enrichment analysis suggested that TRIB3 may play a role in the malignant progression of cancer by participating in protein post-translational modifications and activating transcription initiation factors.

Conclusion

Our pan-cancer analysis provided the potential carcinogenic role of TRIB3 in tumors and verified a promising target for clinical immune treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010308103240830063504
2024-09-12
2024-11-20
Loading full text...

Full text loading...

References

  1. Xu Y. Lai H. Pan S. Pan L. Liu T. Yang Z. Chen T. Zhu X. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation. Biomaterials 2024 305 122452 10.1016/j.biomaterials.2023.122452 38154440
    [Google Scholar]
  2. Bi G. Liang J. Bian Y. Shan G. Huang Y. Lu T. Zhang H. Jin X. Chen Z. Zhao M. Fan H. Wang Q. Gan B. Zhan C. Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer. Nat. Commun. 2024 15 1 2461 10.1038/s41467‑024‑46776‑w 38504107
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Mosquera I. Ilbawi A. Muwonge R. Basu P. Carvalho A.L. Cancer burden and status of cancer control measures in fragile states: a comparative analysis of 31 countries. Lancet Glob. Health 2022 10 10 e1443 e1452 10.1016/S2214‑109X(22)00331‑X 36113529
    [Google Scholar]
  5. Farhangnia P. Khorramdelazad H. Nickho H. Delbandi A.A. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J. Hematol. Oncol. 2024 17 1 40 10.1186/s13045‑024‑01561‑6 38835055
    [Google Scholar]
  6. Zhong Z. Virshup D.M. Recurrent mutations in tumor suppressor FBXW7 bypass Wnt/β-catenin addiction in cancer. Sci. Adv. 2024 10 14 eadk1031 10.1126/sciadv.adk1031 38569029
    [Google Scholar]
  7. Qiang Z Zheng C Lorenzo G Andrew A D Paolo D A Akhil C Saya J Youbin Z Jianhua J Early evaluation of risk stratification and clinical outcomes for patients with advanced breast cancer through combined monitoring of baseline circulating tumor cells and DNA. Clin. Cancer Res. 2024
    [Google Scholar]
  8. Mizuno T. Katsuya Y. Sato J. Koyama T. Shimizu T. Yamamoto N. Emerging PD-1/PD-L1 targeting immunotherapy in non-small cell lung cancer: Current status and future perspective in Japan, US, EU, and China. Front. Oncol. 2022 12 925938 10.3389/fonc.2022.925938 36091105
    [Google Scholar]
  9. Lee Y Fujiwara N Yang J Hoshida Y Risk stratification and early detection biomarkers for precision hepatocellular carcinoma screening. Hepatology 2022
    [Google Scholar]
  10. Liu J. Xie X. Xue M. Wang J. Chen Q. Zhao Z. Sheng X. A pan-cancer analysis of the role of PBRM1 in human tumors. Stem Cells Int. 2022 2022 1 13 10.1155/2022/7676541 36277039
    [Google Scholar]
  11. Mario F Salih D Álvaro DR-Á Juan C-R Laura R Montserrat D-S Margaret C Rudolf M Rita A Piotr C Computational drug prediction in hepatoblastoma by integrating pan-cancer transcriptomics with pharmacological response. Hepatology 2022
    [Google Scholar]
  12. Luo H. Xia X. Huang L.B. An H. Cao M. Kim G.D. Chen H.N. Zhang W.H. Shu Y. Kong X. Ren Z. Li P.H. Liu Y. Tang H. Sun R. Li C. Bai B. Jia W. Liu Y. Zhang W. Yang L. Peng Y. Dai L. Hu H. Jiang Y. Hu Y. Zhu J. Jiang H. Li Z. Caulin C. Park J. Xu H. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 2022 13 1 6619 10.1038/s41467‑022‑34395‑2 36333338
    [Google Scholar]
  13. Zahid S. Basharat S. Fakhar M. Rashid S. Molecular dynamics and structural analysis of the binding of COP1 E3 ubiquitin ligase to β‐catenin and TRIB pseudokinases. Proteins 2022 90 4 993 1004 10.1002/prot.26292 34881468
    [Google Scholar]
  14. Mayoral-Varo V. Jiménez L. Link W. The critical role of TRIB2 in cancer and therapy resistance. Cancers 2021 13 11 2701 10.3390/cancers13112701 34070799
    [Google Scholar]
  15. Stefanovska B. André F. Fromigué O. Tribbles pseudokinase 3 regulation and contribution to cancer. Cancers 2021 13 8 1822 10.3390/cancers13081822 33920424
    [Google Scholar]
  16. Ahn S.H. Jang S.K. Kim M.J. Kim G. Park K.S. Hong J. Lee T.G. Kim C.H. Park I.C. Jin H.O. Downregulation of TRIB3 enhances the sensitivity of lung cancer cells to amino acid deprivation by suppressing AKT activation. Am. J. Cancer Res. 2024 14 4 1622 1633 10.62347/GLSY2976 38726284
    [Google Scholar]
  17. Liu S. Ni C. Li Y. Yin H. Xing C. Yuan Y. Gong Y. The involvement of TRIB3 and FABP1 and their potential functions in the dynamic process of gastric cancer. Front. Mol. Biosci. 2021 8 0 790433 10.3389/fmolb.2021.790433 34957220
    [Google Scholar]
  18. Gallo-Oller G. Pons G. Sansa-Girona J. Navarro N. Zarzosa P. García-Gilabert L. Cabré-Fernandez P. Guillén Burrieza G. Valero-Arrese L. Segura M.F. Lizcano J.M. Sánchez de Toledo J. Moreno L. Gallego S. Roma J. TRIB3 silencing promotes the downregulation of Akt pathway and PAX3-FOXO1 in high-risk rhabdomyosarcoma. Exp. Hematol. Oncol. 2024 13 1 38 10.1186/s40164‑024‑00503‑9 38581035
    [Google Scholar]
  19. Li J. Zhang Q. Guan Y. Liao D. Chen H. Xiong H. Sheng Y. Chen X. Pang J. TRIB3 promotes the progression of renal cell carcinoma by upregulating the lipid droplet-associated protein PLIN2. Cell Death Dis. 2024 15 4 240 10.1038/s41419‑024‑06627‑4 38561354
    [Google Scholar]
  20. Shunichiro M. Hidekazu T. Daisuke O. Norikatsu M. Naotsugu H. Taishi H. Chu M. Hirofumi Y. Tsunekazu M. Masaki M. DCLK1 integrates induction of TRIB3, EMT, drug resistance and poor prognosis in colorectal cancer. Carcinogenesis 2019 41 3
    [Google Scholar]
  21. Lin J. Zhang W. Niu L.T. Zhu Y.M. Weng X.Q. Sheng Y. Zhu J. Xu J. TRIB3 stabilizes high TWIST1 expression to promote rapid APL progression and ATRA resistance. Clin. Cancer Res. 2019 25 20 6228 6242 10.1158/1078‑0432.CCR‑19‑0510 31235507
    [Google Scholar]
  22. Hernández-Quiles M. Martinez Campesino L. Morris I. Ilyas Z. Reynolds S. Soon Tan N. Sobrevals Alcaraz P. Stigter E.C.A. Varga Á. Varga J. van Es R. Vos H. Wilson H.L. Kiss-Toth E. Kalkhoven E. The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo. Mol. Metab. 2023 78 0 101829 10.1016/j.molmet.2023.101829 38445671
    [Google Scholar]
  23. Bao X.Y. Sun M. Peng T.T. Han D.M. TRIB3 promotes proliferation, migration, and invasion of retinoblastoma cells by activating the AKT/mTOR signaling pathway. Cancer Biomark. 2021 31 4 307 315 10.3233/CBM‑200050 33896816
    [Google Scholar]
  24. Xing Y. Luo P. Hu R. Wang D. Zhou G. Jiang J. TRIB3 promotes lung adenocarcinoma progression via an enhanced warburg effect. Cancer Manag. Res. 2020 12 13195 13206 10.2147/CMAR.S287956 33380827
    [Google Scholar]
  25. Mao X. Xu J. Wang W. Liang C. Hua J. Liu J. Zhang B. Meng Q. Yu X. Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 2021 20 1 131 10.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  26. Bulle A. Lim K.H. Beyond just a tight fortress: Contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct. Target. Ther. 2020 5 1 249 10.1038/s41392‑020‑00341‑1 33122631
    [Google Scholar]
  27. Qian Z. Ye J. Li J. Che Y. Yu W. Xu P. Lin J. Ye F. Xu X. Su Z. Li D. Xie Z. Wu Y. Shen H. Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation. J. Adv. Res. 2023 50 0 117 133 10.1016/j.jare.2022.10.005 36265762
    [Google Scholar]
  28. Jia X. Xu F. Lu S. Jie H. Guan W. Zhou Y. An unusual signal transducer GIV/Girdin engages in the roles of adipocyte-derived hormone leptin in liver fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 7 166797 10.1016/j.bbadis.2023.166797 37478565
    [Google Scholar]
  29. Hernández-Quiles M. Baak R. Orea-Soufi A. Borgman A. den Haan S. Sobrevals Alcaraz P. Jongejan A. van Es R. Velasco G. Vos H. Kalkhoven E. TRIB3 modulates PPARγ-mediated growth inhibition by interfering with the MLL complex in breast cancer cells. Int. J. Mol. Sci. 2022 23 18 10535 10.3390/ijms231810535 36142452
    [Google Scholar]
  30. Dobens L.L. Nauman C. Fischer Z. Yao X. Control of cell growth and proliferation by the tribbles pseudokinase: Lessons from drosophila. Cancers 2021 13 4 883 10.3390/cancers13040883 33672471
    [Google Scholar]
  31. Danger R. Feseha Y. Brouard S. The pseudokinase TRIB1 in immune cells and associated disorders. Cancers 2022 14 4 1011 10.3390/cancers14041011 35205759
    [Google Scholar]
  32. Hernández-Quiles M. Baak R. Borgman A. den Haan S. Sobrevals Alcaraz P. van Es R. Kiss-Toth E. Vos H. Kalkhoven E. Comprehensive profiling of mammalian tribbles interactomes implicates TRIB3 in gene repression. Cancers 2021 13 24 6318 10.3390/cancers13246318 34944947
    [Google Scholar]
  33. Ruiz-Cantos M. Hutchison C.E. Shoulders C.C. Musings from the tribbles research and innovation network. Cancers (Basel) 2021 13 18 4517 10.3390/cancers13184517 34572744
    [Google Scholar]
  34. Shiying L Jiajun S Yifang X Xiaojuan X Xiaofeng H Sheng L Huifang Z Zineng H Haiqin W Xusheng, W Diverse functions of TRIB3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024
    [Google Scholar]
  35. Dan W Xiaonan K Lu Z Yaoyao G Ziyin Z Huihui R Gang Y TRIB2-mediated modulation of AMPK promotes hepatic insulin resistance. Diabetes 2024
    [Google Scholar]
  36. D’Urso S. Hwang L.D. New insights into polygenic score–lifestyle interactions for cardiometabolic risk factors from genome-wide interaction analyses. Nutrients 2023 15 22 4815 10.3390/nu15224815 38004209
    [Google Scholar]
  37. Ho W.Y. Chak L.L. Hor J.H. Liu F. Diaz-Garcia S. Chang J.C. Sanford E. Rodriguez M.J. Alagappan D. Lim S.M. Cho Y.L. Shimizu Y. Sun A.X. Tyan S.H. Koo E. Kim S.H. Ravits J. Ng S.Y. Okamura K. Ling S.C. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023 26 11 108152 10.1016/j.isci.2023.108152 37920668
    [Google Scholar]
  38. Wang K. Liufu S. Yu Z. Xu X. Ai N. Li X. Liu X. Chen B. Zhang Y. Ma H. Yin Y. miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway. Int. J. Mol. Sci. 2023 24 10 8906 10.3390/ijms24108906 37240251
    [Google Scholar]
  39. Singh K. Han C. Fleming J.L. Becker A.P. McElroy J. Cui T. Johnson B. Kumar A. Sebastian E. Showalter C.A. Schrock M.S. Summers M.K. Becker V. Tong Z. Meng X. Manring H.R. Venere M. Bell E.H. Robe P.A. Grosu A.L. Haque S.J. Chakravarti A. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways. Sci. Rep. 2023 13 1 12424 10.1038/s41598‑023‑32983‑w 37528172
    [Google Scholar]
  40. Sun X. Wang S. Miao X. Zeng S. Guo Y. Zhou A. Chen Y. Chen Y. Lv F. Fan Z. Wang Y. Xu Y. Li Z. TRIB1 regulates liver regeneration by antagonizing the NRF2-mediated antioxidant response. Cell Death Dis. 2023 14 6 372 10.1038/s41419‑023‑05896‑9 37355685
    [Google Scholar]
  41. Wang L. Liu X. Ren Y. Zhang J. Chen J. Zhou W. Guo W. Wang X. Chen H. Li M. Yuan X. Zhang X. Yang J. Wu C. Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis. 2017 8 4 e2746 10.1038/cddis.2016.409 28406482
    [Google Scholar]
  42. Gendelman R. Xing H. Mirzoeva O.K. Sarde P. Curtis C. Feiler H.S. McDonagh P. Gray J.W. Khalil I. Korn W.M. Bayesian network inference modeling identifies TRIB1 as a novel regulator of cell-cycle progression and survival in cancer cells. Cancer Res. 2017 77 7 1575 1585 10.1158/0008‑5472.CAN‑16‑0512 28087598
    [Google Scholar]
  43. Hou Z. Guo K. Sun X. Hu F. Chen Q. Luo X. Wang G. Hu J. Sun L. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol. Cancer 2018 17 1 172 10.1186/s12943‑018‑0922‑x 30541550
    [Google Scholar]
  44. Liu C. Zhang W. Wang J. Si T. Xing W. Tumor‐associated macrophage‐derived transforming growth factor‐β promotes colorectal cancer progression through HIF1‐TRIB3 signaling. Cancer Sci. 2021 112 10 4198 4207 10.1111/cas.15101 34375482
    [Google Scholar]
  45. Rimal R. Desai P. Daware R. Hosseinnejad A. Prakash J. Lammers T. Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv. Drug Deliv. Rev. 2022 189 114504 10.1016/j.addr.2022.114504 35998825
    [Google Scholar]
  46. Zhang B. Liu M. Mai F. Li X. Wang W. Huang Q. Du X. Ding W. Li Y. Barwick B.G. Ni J.J. Osunkoya A.O. Chen Y. Zhou W. Xia S. Dong J.T. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J. Clin. Invest. 2024 134 14 e175949 10.1172/JCI175949 38781024
    [Google Scholar]
  47. Theivendran S. Xian H. Qu J. Song Y. Sun B. Song H. Yu C. A pioglitazone nanoformulation designed for cancer-associated fibroblast reprogramming and cancer treatment. Nano Lett. 2024 24 15 4354 4361 10.1021/acs.nanolett.3c04706 38563599
    [Google Scholar]
  48. Broz M.T. Ko E.Y. Ishaya K. Xiao J. De Simone M. Hoi X.P. Piras R. Gala B. Tessaro F.H.G. Karlstaedt A. Orsulic S. Lund A.W. Chan K.S. Guarnerio J. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat. Commun. 2024 15 1 2498 10.1038/s41467‑024‑46504‑4 38509063
    [Google Scholar]
  49. Qiu Z.W. Zhong Y.T. Lu Z.M. Yan N. Kong R.J. Huang J.Q. Li Z.F. Nie J.M. Li R. Cheng H. Breaking physical barrier of fibrotic breast cancer for photodynamic immunotherapy by remodeling tumor extracellular matrix and reprogramming cancer-associated fibroblasts. ACS Nano 2024 18 13 9713 9735 10.1021/acsnano.4c01499 38507590
    [Google Scholar]
  50. Park J Roh P Kang M Cho S Hwangbo S Jung H Kim H Kim J Yoo J Han, J Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC. Hepatology 2024 10.1097/HEP.0000000000000772
    [Google Scholar]
  51. Qiu L. Yue J. Ding L. Yin Z. Zhang K. Zhang H. Cancerassociated fibroblasts: An emerging target against esophageal squamous cell carcinoma. Cancer Lett. 2022 546 215860 10.1016/j.canlet.2022.215860 35948121
    [Google Scholar]
  52. Xu A.M. Haro M. Walts A.E. Hu Y. John J. Karlan B.Y. Merchant A. Orsulic S. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. Sci. Adv. 2024 10 16 eadk8805 10.1126/sciadv.adk8805 38630822
    [Google Scholar]
  53. Freag M.S. Mohammed M.T. Kulkarni A. Emam H.E. Maremanda K.P. Elzoghby A.O. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. Sci. Adv. 2024 10 9 eadk3074 10.1126/sciadv.adk3074 38416824
    [Google Scholar]
  54. Datta J. Dai X. Bianchi A. De Castro Silva I. Mehra S. Garrido V. Lamichhane P. Singh S. Zhou Z. Dosch A. Combined mitogen-activated protein kinase/extracellular signal-regulated kinase and signal transducer and activator of transcription 3 inhibition uncovers stromal plasticity by enriching for cancer-associated fibroblasts with mesenchymal stem cell-like features to overcome immunotherapy resistance in pancreatic cancer. Gastroenterology 2022 10.1053/j.gastro.2022.07.076
    [Google Scholar]
  55. Ju Q. Li X. Zhang H. Yan S. Li Y. Zhao Y. NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in brain lower grade glioma: A pan-cancer analysis. Oxid. Med. Cell. Longev. 2020 2020 1 26 10.1155/2020/3580719 33101586
    [Google Scholar]
  56. Chen J. Zhang L. Zhu Y. Zhao D. Zhang J. Zhu Y. Pang J. Xiao Y. Wu Q. Wang Y. Zhan Q. AKT2S128/CCTαS315/319/323-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs). Signal Transduct. Target. Ther. 2024 9 1 21 10.1038/s41392‑023‑01728‑6 38280862
    [Google Scholar]
  57. Timperi E. Gueguen P. Molgora M. Magagna I. Kieffer Y. Lopez-Lastra S. Sirven P. Baudrin L.G. Baulande S. Nicolas A. Champenois G. Meseure D. Vincent-Salomon A. Tardivon A. Laas E. Soumelis V. Colonna M. Mechta-Grigoriou F. Amigorena S. Romano E. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 2022 82 18 3291 3306 10.1158/0008‑5472.CAN‑22‑1427 35862581
    [Google Scholar]
  58. Galbo P.M. Jr Madsen A.T. Liu Y. Peng M. Wei Y. Ciesielski M.J. Fenstermaker R.A. Graff S. Montagna C. Segall J.E. Sidoli S. Zang X. Zheng D. Functional contribution and clinical implication of cancer-associated fibroblasts in glioblastoma. Clin. Cancer Res. 2024 30 4 865 876 10.1158/1078‑0432.CCR‑23‑0493 38060213
    [Google Scholar]
  59. Li B. Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors? Front. Immunol. 2022 13 973881 10.3389/fimmu.2022.973881 36341370
    [Google Scholar]
  60. Heim T.A. Schultz A.C. Delclaux I. Cristaldi V. Churchill M.J. Ventre K.S. Lund A.W. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes. Sci. Immunol. 2024 9 96 eadk8141 10.1126/sciimmunol.adk8141 38848340
    [Google Scholar]
  61. Fiori M.E. Di Franco S. Villanova L. Bianca P. Stassi G. De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol. Cancer 2019 18 1 70 10.1186/s12943‑019‑0994‑2 30927908
    [Google Scholar]
  62. Arthur N.B.J. Christensen K.A. Mannino K. Ruzinova M.B. Kumar A. Gruszczynska A. Day R.B. Erdmann-Gilmore P. Mi Y. Sprung R. York C.R. Townsend R.R. Spencer D.H. Sykes S.M. Ferraro F. Missense mutations in Myc Box I influence nucleocytoplasmic transport to promote leukemogenesis. Clin. Cancer Res. 2024 OF1 OF18 10.1158/1078‑0432.CCR‑24‑0926 38848040
    [Google Scholar]
  63. Matteucci L. Bittoni A. Gallo G. Ridolfi L. Passardi A. Immunocheckpoint inhibitors in microsatellite-stable or proficient mismatch repair metastatic colorectal cancer: Are we entering a new era? Cancers 2023 15 21 5189 10.3390/cancers15215189 37958363
    [Google Scholar]
  64. Smussi D. Mattavelli D. Paderno A. Gurizzan C. Lorini L. Romani C. Bignotti E. Grammatica A. Ravanelli M. Bossi P. Revisiting the concept of neoadjuvant and induction therapy in head and neck cancer with the advent of immunotherapy. Cancer Treat. Rev. 2023 121 102644 10.1016/j.ctrv.2023.102644 37862833
    [Google Scholar]
  65. Merino M. Lozano T. Casares N. Lana H. Troconiz I.F. ten Hagen T.L.M. Kochan G. Berraondo P. Zalba S. Garrido M.J. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. J. Nanobiotechnology 2021 19 1 102 10.1186/s12951‑021‑00846‑z 33849551
    [Google Scholar]
  66. Puliga E. Corso S. Pietrantonio F. Giordano S. Microsatellite instability in Gastric cancer: Between lights and shadows. Cancer Treat. Rev. 2021 95 102175 10.1016/j.ctrv.2021.102175 33721595
    [Google Scholar]
  67. Tang L. Wang J. Lin N. Zhou Y. He W. Liu J. Ma X. Immune checkpoint inhibitor-associated colitis: From mechanism to management. Front. Immunol. 2021 12 800879 10.3389/fimmu.2021.800879 34992611
    [Google Scholar]
  68. Kaufman B. Abramov O. Ievko A. Apple D. Shlapobersky M. Allon I. Greenshpan Y. Bhattachrya B. Cohen O. Charkovsky T. Gayster A. Shaco-Levy R. Rouvinov K. Livoff A. Elkabets M. Porgador A. Functional binding of PD1 ligands predicts response to anti-PD1 treatment in patients with cancer. Sci. Adv. 2023 9 21 eadg2809 10.1126/sciadv.adg2809 37235664
    [Google Scholar]
  69. Shi M.Y. Liu H.G. Chen X.H. Tian Y. Chen Z.N. Wang K. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment. Front. Immunol. 2023 13 1088886 10.3389/fimmu.2022.1088886 36703971
    [Google Scholar]
  70. Liu L.L. Zhang S.W. Chao X. Wang C.H. Yang X. Zhang X.K. Wen Y. Yun J.P. Luo R.Z. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma. Cancer Immunol. Immunother. 2021 70 2 417 429 10.1007/s00262‑020‑02691‑9 32770259
    [Google Scholar]
  71. Fukumura D. Kloepper J. Amoozgar Z. Duda D.G. Jain R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018 15 5 325 340 10.1038/nrclinonc.2018.29 29508855
    [Google Scholar]
  72. Qu T. Zhang W. Yan C. Ren D. Wang Y. Guo Y. Guo Q. Wang J. Liu L. Han L. Li L. Huang Q. Cao L. Ye Z. Zhang B. Zhao Q. Cao W. ISG15 targets glycosylated PD-L1 and promotes its degradation to enhance antitumor immune effects in lung adenocarcinoma. J. Transl. Med. 2023 21 1 341 10.1186/s12967‑023‑04135‑1 37217923
    [Google Scholar]
  73. Zheng A. Du Y. Wang Y. Zheng Y. Ning Z. Wu M. Zhang C. Zhang D. Liu J. Liu X. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade. Mol. Ther. Nucleic Acids 2022 27 998 1009 10.1016/j.omtn.2022.01.010 35228895
    [Google Scholar]
  74. Pandey S.K. Machlof-Cohen R. Santhanam M. Shteinfer-Kuzmine A. Shoshan-Barmatz V. Silencing VDAC1 to treat mesothelioma cancer: Tumor reprograming and altering tumor hallmarks. Biomolecules 2022 12 7 895 10.3390/biom12070895 35883451
    [Google Scholar]
  75. Wei W. Li Y. Wang C. Gao S. Zhao Y. Yang Z. Wang H. Gao Z. Jiang Y. He Y. Zhao L. Gao H. Yao X. Hu Y. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacol. Res. 2022 182 106285 10.1016/j.phrs.2022.106285 35662627
    [Google Scholar]
  76. Yang R Wenwen Z Dan L Xiao L Yaomei M Pengpeng Q TYMP1 inhibits carcinogenesis and cisplatin resistance in ovarian cancer by reducing Smad2/3 phosphorylation via a microRNA-182a-3p/TGF1B axis. Contrast Media Mol. Imaging 2022
    [Google Scholar]
  77. Shim M.S. Nettesheim A. Dixon A. Liton P.B. Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretchinduced autophagy in trabecular meshwork cells. Proc. Natl. Acad. Sci. USA 2021 118 13 e2021942118 10.1073/pnas.2021942118 33753495
    [Google Scholar]
  78. Yang F. Hou R. Liu X. Tian Y. Bai Y. Li J. Zhao P. Yangqing Chenfei formula attenuates silica-induced pulmonary fibrosis by suppressing activation of fibroblast via regulating PI3K/AKT, JAK/STAT, and Wnt signaling pathway. Phytomedicine 2023 110 0 154622 10.1016/j.phymed.2022.154622 36577208
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010308103240830063504
Loading
/content/journals/cpb/10.2174/0113892010308103240830063504
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: pan-cancer ; bioinformatics ; immune infiltration ; TRIB3 ; biomarker ; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test