Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Previous studies have demonstrated that TRIB3 plays a carcinogenic role in tumor progression. However, the exploration of TRIB3 at the pan-cancer level has not been reported.

Aims

This study aimed to conduct a comprehensive pan-cancer analysis of TRIB3.

Objectives

We explored the expression pattern and functional mechanism of TRIB3 on the basis of multiple databases.

Methods

We first explored the expression level of TRIB3 in the TCGA database. Then, the receiver operation characteristic curve (ROC), Kaplan-Meier plotter, and Cox regression were used to estimate the diagnostic and prognostic value of TRIB3, respectively. We also explored the relationship between TRIB3 and the infiltration of tumor immune cells, as well as the expression of immune checkpoint molecules. Gene enrichment and protein interaction network analysis were carried out to identify possible carcinogenic molecular mechanisms and functional pathways. Finally, we compared the non-promoter region methylation of TRIB3 in normal and tumor tissues and explored potential systems with unique functions in TRIB3-mediated tumorigenesis.

Results

The expression level of TRIB3 was elevated in multiple tumor types, and the high expression of TRIB3 was associated with poor prognosis. TRIB3 had a higher frequency of genetic changes in several tumors and showed varying trends in TRIB3 methylation levels. Additionally, high expression of TRIB3 was also associated with infiltration of cancer-related fibroblasts and different types of immune cells and was positively correlated with the expression of immune checkpoint molecules. Furthermore, gene enrichment analysis suggested that TRIB3 may play a role in the malignant progression of cancer by participating in protein post-translational modifications and activating transcription initiation factors.

Conclusion

Our pan-cancer analysis provided the potential carcinogenic role of TRIB3 in tumors and verified a promising target for clinical immune treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010308103240830063504
2024-09-12
2025-06-19
Loading full text...

Full text loading...

References

  1. XuY. LaiH. PanS. PanL. LiuT. YangZ. ChenT. ZhuX. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation.Biomaterials202430512245210.1016/j.biomaterials.2023.12245238154440
    [Google Scholar]
  2. BiG. LiangJ. BianY. ShanG. HuangY. LuT. ZhangH. JinX. ChenZ. ZhaoM. FanH. WangQ. GanB. ZhanC. Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer.Nat. Commun.2024151246110.1038/s41467‑024‑46776‑w38504107
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. MosqueraI. IlbawiA. MuwongeR. BasuP. CarvalhoA.L. Cancer burden and status of cancer control measures in fragile states: a comparative analysis of 31 countries.Lancet Glob. Health20221010e1443e145210.1016/S2214‑109X(22)00331‑X36113529
    [Google Scholar]
  5. FarhangniaP. KhorramdelazadH. NickhoH. DelbandiA.A. Current and future immunotherapeutic approaches in pancreatic cancer treatment.J. Hematol. Oncol.20241714010.1186/s13045‑024‑01561‑638835055
    [Google Scholar]
  6. ZhongZ. VirshupD.M. Recurrent mutations in tumor suppressor FBXW7 bypass Wnt/β-catenin addiction in cancer.Sci. Adv.20241014eadk103110.1126/sciadv.adk103138569029
    [Google Scholar]
  7. QiangZ ZhengC LorenzoG AndrewA D PaoloDA AkhilC SayaJ YoubinZ JianhuaJ Early evaluation of risk stratification and clinical outcomes for patients with advanced breast cancer through combined monitoring of baseline circulating tumor cells and DNA.Clin. Cancer Res.2024
    [Google Scholar]
  8. MizunoT. KatsuyaY. SatoJ. KoyamaT. ShimizuT. YamamotoN. Emerging PD-1/PD-L1 targeting immunotherapy in non-small cell lung cancer: Current status and future perspective in Japan, US, EU, and China.Front. Oncol.20221292593810.3389/fonc.2022.92593836091105
    [Google Scholar]
  9. LeeY FujiwaraN YangJ HoshidaY Risk stratification and early detection biomarkers for precision hepatocellular carcinoma screening.Hepatology2022
    [Google Scholar]
  10. LiuJ. XieX. XueM. WangJ. ChenQ. ZhaoZ. ShengX. A pan-cancer analysis of the role of PBRM1 in human tumors.Stem Cells Int.2022202211310.1155/2022/767654136277039
    [Google Scholar]
  11. MarioF SalihD ÁlvaroDR-Á JuanC-R LauraR MontserratD-S MargaretC RudolfM RitaA PiotrC Computational drug prediction in hepatoblastoma by integrating pan-cancer transcriptomics with pharmacological response.Hepatology2022
    [Google Scholar]
  12. LuoH. XiaX. HuangL.B. AnH. CaoM. KimG.D. ChenH.N. ZhangW.H. ShuY. KongX. RenZ. LiP.H. LiuY. TangH. SunR. LiC. BaiB. JiaW. LiuY. ZhangW. YangL. PengY. DaiL. HuH. JiangY. HuY. ZhuJ. JiangH. LiZ. CaulinC. ParkJ. XuH. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment.Nat. Commun.2022131661910.1038/s41467‑022‑34395‑236333338
    [Google Scholar]
  13. ZahidS. BasharatS. FakharM. RashidS. Molecular dynamics and structural analysis of the binding of COP1 E3 ubiquitin ligase to β‐catenin and TRIB pseudokinases.Proteins2022904993100410.1002/prot.2629234881468
    [Google Scholar]
  14. Mayoral-VaroV. JiménezL. LinkW. The critical role of TRIB2 in cancer and therapy resistance.Cancers20211311270110.3390/cancers1311270134070799
    [Google Scholar]
  15. StefanovskaB. AndréF. FromiguéO. Tribbles pseudokinase 3 regulation and contribution to cancer.Cancers2021138182210.3390/cancers1308182233920424
    [Google Scholar]
  16. AhnS.H. JangS.K. KimM.J. KimG. ParkK.S. HongJ. LeeT.G. KimC.H. ParkI.C. JinH.O. Downregulation of TRIB3 enhances the sensitivity of lung cancer cells to amino acid deprivation by suppressing AKT activation.Am. J. Cancer Res.20241441622163310.62347/GLSY297638726284
    [Google Scholar]
  17. LiuS. NiC. LiY. YinH. XingC. YuanY. GongY. The involvement of TRIB3 and FABP1 and their potential functions in the dynamic process of gastric cancer.Front. Mol. Biosci.20218079043310.3389/fmolb.2021.79043334957220
    [Google Scholar]
  18. Gallo-OllerG. PonsG. Sansa-GironaJ. NavarroN. ZarzosaP. García-GilabertL. Cabré-FernandezP. Guillén BurriezaG. Valero-ArreseL. SeguraM.F. LizcanoJ.M. Sánchez de ToledoJ. MorenoL. GallegoS. RomaJ. TRIB3 silencing promotes the downregulation of Akt pathway and PAX3-FOXO1 in high-risk rhabdomyosarcoma.Exp. Hematol. Oncol.20241313810.1186/s40164‑024‑00503‑938581035
    [Google Scholar]
  19. LiJ. ZhangQ. GuanY. LiaoD. ChenH. XiongH. ShengY. ChenX. PangJ. TRIB3 promotes the progression of renal cell carcinoma by upregulating the lipid droplet-associated protein PLIN2.Cell Death Dis.202415424010.1038/s41419‑024‑06627‑438561354
    [Google Scholar]
  20. ShunichiroM. HidekazuT. DaisukeO. NorikatsuM. NaotsuguH. TaishiH. ChuM. HirofumiY. TsunekazuM. MasakiM. DCLK1 integrates induction of TRIB3, EMT, drug resistance and poor prognosis in colorectal cancer.Carcinogenesis2019413
    [Google Scholar]
  21. LinJ. ZhangW. NiuL.T. ZhuY.M. WengX.Q. ShengY. ZhuJ. XuJ. TRIB3 stabilizes high TWIST1 expression to promote rapid APL progression and ATRA resistance.Clin. Cancer Res.201925206228624210.1158/1078‑0432.CCR‑19‑051031235507
    [Google Scholar]
  22. Hernández-QuilesM. Martinez CampesinoL. MorrisI. IlyasZ. ReynoldsS. Soon TanN. Sobrevals AlcarazP. StigterE.C.A. VargaÁ. VargaJ. van EsR. VosH. WilsonH.L. Kiss-TothE. KalkhovenE. The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo.Mol. Metab.202378010182910.1016/j.molmet.2023.10182938445671
    [Google Scholar]
  23. BaoX.Y. SunM. PengT.T. HanD.M. TRIB3 promotes proliferation, migration, and invasion of retinoblastoma cells by activating the AKT/mTOR signaling pathway.Cancer Biomark.202131430731510.3233/CBM‑20005033896816
    [Google Scholar]
  24. XingY. LuoP. HuR. WangD. ZhouG. JiangJ. TRIB3 promotes lung adenocarcinoma progression via an enhanced warburg effect.Cancer Manag. Res.202012131951320610.2147/CMAR.S28795633380827
    [Google Scholar]
  25. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.Mol. Cancer202120113110.1186/s12943‑021‑01428‑134635121
    [Google Scholar]
  26. BulleA. LimK.H. Beyond just a tight fortress: Contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer.Signal Transduct. Target. Ther.20205124910.1038/s41392‑020‑00341‑133122631
    [Google Scholar]
  27. QianZ. YeJ. LiJ. CheY. YuW. XuP. LinJ. YeF. XuX. SuZ. LiD. XieZ. WuY. ShenH. Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation.J. Adv. Res.202350011713310.1016/j.jare.2022.10.00536265762
    [Google Scholar]
  28. JiaX. XuF. LuS. JieH. GuanW. ZhouY. An unusual signal transducer GIV/Girdin engages in the roles of adipocyte-derived hormone leptin in liver fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.20231869716679710.1016/j.bbadis.2023.16679737478565
    [Google Scholar]
  29. Hernández-QuilesM. BaakR. Orea-SoufiA. BorgmanA. den HaanS. Sobrevals AlcarazP. JongejanA. van EsR. VelascoG. VosH. KalkhovenE. TRIB3 modulates PPARγ-mediated growth inhibition by interfering with the MLL complex in breast cancer cells.Int. J. Mol. Sci.202223181053510.3390/ijms23181053536142452
    [Google Scholar]
  30. DobensL.L. NaumanC. FischerZ. YaoX. Control of cell growth and proliferation by the tribbles pseudokinase: Lessons from drosophila.Cancers202113488310.3390/cancers1304088333672471
    [Google Scholar]
  31. DangerR. FesehaY. BrouardS. The pseudokinase TRIB1 in immune cells and associated disorders.Cancers2022144101110.3390/cancers1404101135205759
    [Google Scholar]
  32. Hernández-QuilesM. BaakR. BorgmanA. den HaanS. Sobrevals AlcarazP. van EsR. Kiss-TothE. VosH. KalkhovenE. Comprehensive profiling of mammalian tribbles interactomes implicates TRIB3 in gene repression.Cancers20211324631810.3390/cancers1324631834944947
    [Google Scholar]
  33. Ruiz-CantosM. HutchisonC.E. ShouldersC.C. Musings from the tribbles research and innovation network.Cancers20211318451710.3390/cancers1318451734572744
    [Google Scholar]
  34. ShiyingL JiajunS YifangX XiaojuanX XiaofengH ShengL HuifangZ ZinengH HaiqinW XushengW Diverse functions of TRIB3 in cancers and its potential as a therapeutic target.Carcinogenesis2024
    [Google Scholar]
  35. DanW XiaonanK LuZ YaoyaoG ZiyinZ HuihuiR GangY TRIB2-mediated modulation of AMPK promotes hepatic insulin resistance.Diabetes2024
    [Google Scholar]
  36. D’UrsoS. HwangL.D. New insights into polygenic score–lifestyle interactions for cardiometabolic risk factors from genome-wide interaction analyses.Nutrients20231522481510.3390/nu1522481538004209
    [Google Scholar]
  37. HoW.Y. ChakL.L. HorJ.H. LiuF. Diaz-GarciaS. ChangJ.C. SanfordE. RodriguezM.J. AlagappanD. LimS.M. ChoY.L. ShimizuY. SunA.X. TyanS.H. KooE. KimS.H. RavitsJ. NgS.Y. OkamuraK. LingS.C. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons.iScience2023261110815210.1016/j.isci.2023.10815237920668
    [Google Scholar]
  38. WangK. LiufuS. YuZ. XuX. AiN. LiX. LiuX. ChenB. ZhangY. MaH. YinY. miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.Int. J. Mol. Sci.20232410890610.3390/ijms2410890637240251
    [Google Scholar]
  39. SinghK. HanC. FlemingJ.L. BeckerA.P. McElroyJ. CuiT. JohnsonB. KumarA. SebastianE. ShowalterC.A. SchrockM.S. SummersM.K. BeckerV. TongZ. MengX. ManringH.R. VenereM. BellE.H. RobeP.A. GrosuA.L. HaqueS.J. ChakravartiA. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways.Sci. Rep.20231311242410.1038/s41598‑023‑32983‑w37528172
    [Google Scholar]
  40. SunX. WangS. MiaoX. ZengS. GuoY. ZhouA. ChenY. ChenY. LvF. FanZ. WangY. XuY. LiZ. TRIB1 regulates liver regeneration by antagonizing the NRF2-mediated antioxidant response.Cell Death Dis.202314637210.1038/s41419‑023‑05896‑937355685
    [Google Scholar]
  41. WangL. LiuX. RenY. ZhangJ. ChenJ. ZhouW. GuoW. WangX. ChenH. LiM. YuanX. ZhangX. YangJ. WuC. Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity.Cell Death Dis.201784e274610.1038/cddis.2016.40928406482
    [Google Scholar]
  42. GendelmanR. XingH. MirzoevaO.K. SardeP. CurtisC. FeilerH.S. McDonaghP. GrayJ.W. KhalilI. KornW.M. Bayesian network inference modeling identifies TRIB1 as a novel regulator of cell-cycle progression and survival in cancer cells.Cancer Res.20177771575158510.1158/0008‑5472.CAN‑16‑051228087598
    [Google Scholar]
  43. HouZ. GuoK. SunX. HuF. ChenQ. LuoX. WangG. HuJ. SunL. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling.Mol. Cancer201817117210.1186/s12943‑018‑0922‑x30541550
    [Google Scholar]
  44. LiuC. ZhangW. WangJ. SiT. XingW. Tumor‐associated macrophage‐derived transforming growth factor‐β promotes colorectal cancer progression through HIF1‐TRIB3 signaling.Cancer Sci.2021112104198420710.1111/cas.1510134375482
    [Google Scholar]
  45. RimalR. DesaiP. DawareR. HosseinnejadA. PrakashJ. LammersT. SinghS. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting.Adv. Drug Deliv. Rev.202218911450410.1016/j.addr.2022.11450435998825
    [Google Scholar]
  46. ZhangB. LiuM. MaiF. LiX. WangW. HuangQ. DuX. DingW. LiY. BarwickB.G. NiJ.J. OsunkoyaA.O. ChenY. ZhouW. XiaS. DongJ.T. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts.J. Clin. Invest.202413414e17594910.1172/JCI17594938781024
    [Google Scholar]
  47. TheivendranS. XianH. QuJ. SongY. SunB. SongH. YuC. A pioglitazone nanoformulation designed for cancer-associated fibroblast reprogramming and cancer treatment.Nano Lett.202424154354436110.1021/acs.nanolett.3c0470638563599
    [Google Scholar]
  48. BrozM.T. KoE.Y. IshayaK. XiaoJ. De SimoneM. HoiX.P. PirasR. GalaB. TessaroF.H.G. KarlstaedtA. OrsulicS. LundA.W. ChanK.S. GuarnerioJ. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas.Nat. Commun.2024151249810.1038/s41467‑024‑46504‑438509063
    [Google Scholar]
  49. QiuZ.W. ZhongY.T. LuZ.M. YanN. KongR.J. HuangJ.Q. LiZ.F. NieJ.M. LiR. ChengH. Breaking physical barrier of fibrotic breast cancer for photodynamic immunotherapy by remodeling tumor extracellular matrix and reprogramming cancer-associated fibroblasts.ACS Nano202418139713973510.1021/acsnano.4c0149938507590
    [Google Scholar]
  50. ParkJ RohP KangM ChoS HwangboS JungH KimH KimJ YooJ HanJ Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC.Hepatology202410.1097/HEP.0000000000000772
    [Google Scholar]
  51. QiuL. YueJ. DingL. YinZ. ZhangK. ZhangH. Cancer-associated fibroblasts: An emerging target against esophageal squamous cell carcinoma.Cancer Lett.202254621586010.1016/j.canlet.2022.21586035948121
    [Google Scholar]
  52. XuA.M. HaroM. WaltsA.E. HuY. JohnJ. KarlanB.Y. MerchantA. OrsulicS. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma.Sci. Adv.20241016eadk880510.1126/sciadv.adk880538630822
    [Google Scholar]
  53. FreagM.S. MohammedM.T. KulkarniA. EmamH.E. MaremandaK.P. ElzoghbyA.O. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy.Sci. Adv.2024109eadk307410.1126/sciadv.adk307438416824
    [Google Scholar]
  54. DattaJ. DaiX. BianchiA. De Castro SilvaI. MehraS. GarridoV. LamichhaneP. SinghS. ZhouZ. DoschA. Combined mitogen-activated protein kinase/extracellular signal-regulated kinase and signal transducer and activator of transcription 3 inhibition uncovers stromal plasticity by enriching for cancer-associated fibroblasts with mesenchymal stem cell-like features to overcome immunotherapy resistance in pancreatic cancer.Gastroenterology202210.1053/j.gastro.2022.07.076
    [Google Scholar]
  55. JuQ. LiX. ZhangH. YanS. LiY. ZhaoY. NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in brain lower grade glioma: A pan-cancer analysis.Oxid. Med. Cell. Longev.2020202012610.1155/2020/358071933101586
    [Google Scholar]
  56. ChenJ. ZhangL. ZhuY. ZhaoD. ZhangJ. ZhuY. PangJ. XiaoY. WuQ. WangY. ZhanQ. AKT2S128/CCTαS315/319/323-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs).Signal Transduct. Target. Ther.2024912110.1038/s41392‑023‑01728‑638280862
    [Google Scholar]
  57. TimperiE. GueguenP. MolgoraM. MagagnaI. KiefferY. Lopez-LastraS. SirvenP. BaudrinL.G. BaulandeS. NicolasA. ChampenoisG. MeseureD. Vincent-SalomonA. TardivonA. LaasE. SoumelisV. ColonnaM. Mechta-GrigoriouF. AmigorenaS. RomanoE. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer.Cancer Res.202282183291330610.1158/0008‑5472.CAN‑22‑142735862581
    [Google Scholar]
  58. GalboP.M.Jr MadsenA.T. LiuY. PengM. WeiY. CiesielskiM.J. FenstermakerR.A. GraffS. MontagnaC. SegallJ.E. SidoliS. ZangX. ZhengD. Functional contribution and clinical implication of cancer-associated fibroblasts in glioblastoma.Clin. Cancer Res.202430486587610.1158/1078‑0432.CCR‑23‑049338060213
    [Google Scholar]
  59. LiB. Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors?.Front. Immunol.20221397388110.3389/fimmu.2022.97388136341370
    [Google Scholar]
  60. HeimT.A. SchultzA.C. DelclauxI. CristaldiV. ChurchillM.J. VentreK.S. LundA.W. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes.Sci. Immunol.2024996eadk814110.1126/sciimmunol.adk814138848340
    [Google Scholar]
  61. FioriM.E. Di FrancoS. VillanovaL. BiancaP. StassiG. De MariaR. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance.Mol. Cancer20191817010.1186/s12943‑019‑0994‑230927908
    [Google Scholar]
  62. ArthurN.B.J. ChristensenK.A. ManninoK. RuzinovaM.B. KumarA. GruszczynskaA. DayR.B. Erdmann-GilmoreP. MiY. SprungR. YorkC.R. TownsendR.R. SpencerD.H. SykesS.M. FerraroF. Missense mutations in Myc Box I influence nucleocytoplasmic transport to promote leukemogenesis.Clin. Cancer Res.2024OF1OF1810.1158/1078‑0432.CCR‑24‑092638848040
    [Google Scholar]
  63. MatteucciL. BittoniA. GalloG. RidolfiL. PassardiA. Immunocheckpoint inhibitors in microsatellite-stable or proficient mismatch repair metastatic colorectal cancer: Are we entering a new era?.Cancers20231521518910.3390/cancers1521518937958363
    [Google Scholar]
  64. SmussiD. MattavelliD. PadernoA. GurizzanC. LoriniL. RomaniC. BignottiE. GrammaticaA. RavanelliM. BossiP. Revisiting the concept of neoadjuvant and induction therapy in head and neck cancer with the advent of immunotherapy.Cancer Treat. Rev.202312110264410.1016/j.ctrv.2023.10264437862833
    [Google Scholar]
  65. MerinoM. LozanoT. CasaresN. LanaH. TroconizI.F. ten HagenT.L.M. KochanG. BerraondoP. ZalbaS. GarridoM.J. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model.J. Nanobiotechnology202119110210.1186/s12951‑021‑00846‑z33849551
    [Google Scholar]
  66. PuligaE. CorsoS. PietrantonioF. GiordanoS. Microsatellite instability in Gastric cancer: Between lights and shadows.Cancer Treat. Rev.20219510217510.1016/j.ctrv.2021.10217533721595
    [Google Scholar]
  67. TangL. WangJ. LinN. ZhouY. HeW. LiuJ. MaX. Immune checkpoint inhibitor-associated colitis: From mechanism to management.Front. Immunol.20211280087910.3389/fimmu.2021.80087934992611
    [Google Scholar]
  68. KaufmanB. AbramovO. IevkoA. AppleD. ShlapoberskyM. AllonI. GreenshpanY. BhattachryaB. CohenO. CharkovskyT. GaysterA. Shaco-LevyR. RouvinovK. LivoffA. ElkabetsM. PorgadorA. Functional binding of PD1 ligands predicts response to anti-PD1 treatment in patients with cancer.Sci. Adv.2023921eadg280910.1126/sciadv.adg280937235664
    [Google Scholar]
  69. ShiM.Y. LiuH.G. ChenX.H. TianY. ChenZ.N. WangK. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment.Front. Immunol.202313108888610.3389/fimmu.2022.108888636703971
    [Google Scholar]
  70. LiuL.L. ZhangS.W. ChaoX. WangC.H. YangX. ZhangX.K. WenY. YunJ.P. LuoR.Z. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma.Cancer Immunol. Immunother.202170241742910.1007/s00262‑020‑02691‑932770259
    [Google Scholar]
  71. FukumuraD. KloepperJ. AmoozgarZ. DudaD.G. JainR.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges.Nat. Rev. Clin. Oncol.201815532534010.1038/nrclinonc.2018.2929508855
    [Google Scholar]
  72. QuT. ZhangW. YanC. RenD. WangY. GuoY. GuoQ. WangJ. LiuL. HanL. LiL. HuangQ. CaoL. YeZ. ZhangB. ZhaoQ. CaoW. ISG15 targets glycosylated PD-L1 and promotes its degradation to enhance antitumor immune effects in lung adenocarcinoma.J. Transl. Med.202321134110.1186/s12967‑023‑04135‑137217923
    [Google Scholar]
  73. ZhengA. DuY. WangY. ZhengY. NingZ. WuM. ZhangC. ZhangD. LiuJ. LiuX. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade.Mol. Ther. Nucleic Acids202227998100910.1016/j.omtn.2022.01.01035228895
    [Google Scholar]
  74. PandeyS.K. Machlof-CohenR. SanthanamM. Shteinfer-KuzmineA. Shoshan-BarmatzV. Silencing VDAC1 to treat mesothelioma cancer: Tumor reprograming and altering tumor hallmarks.Biomolecules202212789510.3390/biom1207089535883451
    [Google Scholar]
  75. WeiW. LiY. WangC. GaoS. ZhaoY. YangZ. WangH. GaoZ. JiangY. HeY. ZhaoL. GaoH. YaoX. HuY. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells.Pharmacol. Res.202218210628510.1016/j.phrs.2022.10628535662627
    [Google Scholar]
  76. YangR WenwenZ DanL XiaoL YaomeiM PengpengQ TYMP1 inhibits carcinogenesis and cisplatin resistance in ovarian cancer by reducing Smad2/3 phosphorylation via a microRNA-182a-3p/TGF1B axis.Contrast Media Mol. Imaging2022
    [Google Scholar]
  77. ShimM.S. NettesheimA. DixonA. LitonP.B. Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells.Proc. Natl. Acad. Sci. USA202111813e202194211810.1073/pnas.202194211833753495
    [Google Scholar]
  78. YangF. HouR. LiuX. TianY. BaiY. LiJ. ZhaoP. Yangqing Chenfei formula attenuates silica-induced pulmonary fibrosis by suppressing activation of fibroblast via regulating PI3K/AKT, JAK/STAT, and Wnt signaling pathway.Phytomedicine2023110015462210.1016/j.phymed.2022.15462236577208
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010308103240830063504
Loading
/content/journals/cpb/10.2174/0113892010308103240830063504
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatics; biomarker; immune infiltration; pan-cancer; prognosis; TRIB3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test