Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Commercial plastics are potentially hazardous and can be carcinogenic due to the incorporation of chemical additives along with other additional components utilized as brominated flame retardants and phthalate plasticizers during production that excessively produce large numbers of gases, litter, and toxic components resulting in environmental pollution.

Methods

Biodegradable plastic derived from natural renewable resources is the novel, alternative, and innovative approach considered to be potentially safe as a substitute for traditional synthetic plastic as they decompose easily without causing any harm to the ecosystem and natural habitat. The utilization of undervalued compounds, such as by-products of fruits and vegetables in the production of biodegradable packaging films, is currently a matter of interest because of their accessibility, affordability, ample supply, nontoxicity, physiochemical and nutritional properties. Industrial food waste was processed under controlled conditions with appropriate plasticizers to extract polymeric materials. Biodegradability, solubility, and air test analysis were performed to examine the physical properties of polymers prior to the characterization of the biofilm by Fourier-transformed infrared spectroscopy (FTIR) for the determination of polymeric characteristics.

Results

The loss of mass examined in each bioplastic film was in the range of 0.01g to 0.20g. The dimension of each bioplastic was recorded in the range of 4.6 mm to 28.7 mm. The existence of -OH, C=C, C=O stretching, and other crucial functional groups that aid in the creation of a solid polymeric material are confirmed by FTIR analysis. This study provides an alternative approach for sustainable and commercially value-added production of polymeric-based biomaterials from agro-industrial waste as they are rich in starch, cellulose, and pectin for the development of bio-plastics.

Conclusion

The rationale of this project is to achieve a straightforward, economical, and durable method for the production of bio-plastics through effective utilization of industrial and commercial fruit waste, ultimately aiding in revenue generation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304507240528064315
2024-06-05
2025-03-29
Loading full text...

Full text loading...

References

  1. VenâncioC. LopesI. OliveiraM. Bioplastics: Known effects and potential consequences to marine and estuarine ecosystem services.Chemosphere2022309Pt 213681010.1016/j.chemosphere.2022.13681036228730
    [Google Scholar]
  2. RzayevaA. CoffigniezF. ZeynalovN. GontardN. GuillardV. Integrating the latest biological advances in the key steps of a food packaging life cycle.Front. Nutr.202310122363810.3389/fnut.2023.122363837575333
    [Google Scholar]
  3. SiracusaV. RocculiP. RomaniS. RosaM.D. Biodegradable polymers for food packaging: A review.Trends Food Sci. Technol.2008191263464310.1016/j.tifs.2008.07.003
    [Google Scholar]
  4. Liwarska-BizukojcE. Effect of (bio)plastics on soil environment: A review.Sci. Total Environ.202179514888910.1016/j.scitotenv.2021.14888934328943
    [Google Scholar]
  5. AminU. KhanM.K.I. MaanA.A. NazirA. RiazS. KhanM.U. SultanM. MunekataP.E.S. LorenzoJ.M. Biodegradable active, intelligent, and smart packaging materials for food applications.Food Packag. Shelf Life20223310090310.1016/j.fpsl.2022.100903
    [Google Scholar]
  6. GetachewA. WoldesenbetF. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material.BMC Res. Notes20169150910.1186/s13104‑016‑2321‑y27955705
    [Google Scholar]
  7. SinghA. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: A focused review.J. Biomater. Sci. Polym. Ed.202314237943320
    [Google Scholar]
  8. ShilpaN. BasakN. MeenaS.S. Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective.Front. Environ. Sci. Eng.2022161216110.1007/s11783‑022‑1596‑635874797
    [Google Scholar]
  9. Zeenat; Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics degradation by microbes: A sustainable approach.J. King Saud Univ. Sci.202133610153810.1016/j.jksus.2021.101538
    [Google Scholar]
  10. BarnesD.K.A. GalganiF. ThompsonR.C. BarlazM. Accumulation and fragmentation of plastic debris in global environments.Philos. Trans. R. Soc. Lond. B Biol. Sci.200936415261985199810.1098/rstb.2008.020519528051
    [Google Scholar]
  11. EmadianS.M. OnayT.T. DemirelB. Biodegradation of bioplastics in natural environments.Waste Manag.20175952653610.1016/j.wasman.2016.10.00627742230
    [Google Scholar]
  12. RonaldE. Marine Pollution and Human Health. LytleC.L.G. LondonRoyal Society of Chemistry2011
    [Google Scholar]
  13. AdamF. SubramaniamS.D.
  14. AubinS. BeaugrandJ. BertelootM. BoutrouR. BucheP. GontardN. GuillardV. Plastics in a circular economy: Mitigating the ambiguity of widely-used terms from stakeholders consultation.Environ. Sci. Policy202213411912610.1016/j.envsci.2022.04.011
    [Google Scholar]
  15. RhodesC.J. Plastic pollution and potential solutions.Sci. Prog.2018101320726010.3184/003685018X1529487670621130025551
    [Google Scholar]
  16. WierckxN. Plastic biodegradation: Challenges and opportunities.Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. SteffanR. ChamSpringer International Publishing201812910.1007/978‑3‑319‑44535‑9_23‑1
    [Google Scholar]
  17. Mathieu-DenoncourtJ. WallaceS.J. de SollaS.R. LangloisV.S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species.Gen. Comp. Endocrinol.2015219748810.1016/j.ygcen.2014.11.00325448254
    [Google Scholar]
  18. YaradoddiJ. Biodegradable plastic production from fruit waste material and its sustainable use for green applications.IJPRAS201620165666
    [Google Scholar]
  19. LotsF.A.E. BehrensP. VijverM.G. HortonA.A. BoskerT. A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment.Mar. Pollut. Bull.20171231-221922610.1016/j.marpolbul.2017.08.05728893402
    [Google Scholar]
  20. TiagoG.A.O. MariquitoA. Martins-DiasS. MarquesA.C. The problem of polyethylene waste – recent attempts for its mitigation.Sci. Total Environ.202389216462910.1016/j.scitotenv.2023.16462937285989
    [Google Scholar]
  21. OkunolaA. Public and environmental health effects of plastic wastes disposal: A review.JTRA201951
    [Google Scholar]
  22. AcharjeeS.A. BharaliP. PHA-based bioplastic: A potential alternative to address microplastic pollution.Water Air Soil Pollut.2023234121
    [Google Scholar]
  23. GuF. GuoJ. ZhangW. SummersP.A. HallP. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.Sci. Total Environ.2017601-6021192120710.1016/j.scitotenv.2017.05.27828605837
    [Google Scholar]
  24. PolmanE.M.N. GruterG.J.M. ParsonsJ.R. TietemaA. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.Sci. Total Environ.202175314195310.1016/j.scitotenv.2020.14195332896737
    [Google Scholar]
  25. PellisA. MalinconicoM. GuarneriA. GardossiL. Renewable polymers and plastics: Performance beyond the green.N. Biotechnol.20216014615810.1016/j.nbt.2020.10.00333068793
    [Google Scholar]
  26. IdrisS.N. AmeliaT.S.M. BhubalanK. LazimA.M.M. ZakwanN.A.M.A. JamaluddinM.I. SanthanamR. AmirulA.A.A. VigneswariS. RamakrishnaS. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.Environ. Res.2023231Pt 111598810.1016/j.envres.2023.11598837105296
    [Google Scholar]
  27. CywarR.M. RorrerN.A. HoytC.B. BeckhamG.T. ChenE.Y-X. Bio-based polymers with performance-advantaged properties.Nat. Rev. Mater.2021728310310.1038/s41578‑021‑00363‑3
    [Google Scholar]
  28. TennakoonP. ChandikaP. YiM. JungW.K. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative.iScience202326410640410.1016/j.isci.2023.10640437034997
    [Google Scholar]
  29. DolciG. RigamontiL. GrossoM. The challenges of bioplastics in waste management.Waste Manag. Res.20234181281128210.1177/0734242X23118199937318145
    [Google Scholar]
  30. NandaS. Innovations in applications and prospects of bioplastics and biopolymers: A review.Environ. Chem. Lett.202220137939410.1007/s10311‑021‑01334‑4
    [Google Scholar]
  31. PoojaN. An insight on sources and biodegradation of bioplastics: A review.3 Biotech.202313722010.1007/s13205‑023‑03638‑4
    [Google Scholar]
  32. KimM.S. ChangH. ZhengL. YanQ. PflegerB.F. KlierJ. NelsonK. MajumderE.L.W. HuberG.W. A review of biodegradable plastics: Chemistry, applications, properties, and future research needs.Chem. Rev.2023123169915993910.1021/acs.chemrev.2c0087637470246
    [Google Scholar]
  33. LandriganP.J. Human health and ocean pollution.Ann. Glob. Health2020861151
    [Google Scholar]
  34. ArmynahB. AnugrahwidyaR. TahirD. Composite cassava starch/chitosan/Pineapple Leaf Fiber (PALF)/Zinc Oxide (ZnO): Bioplastics with high mechanical properties and faster degradation in soil and seawater.Int. J. Biol. Macromol.202221381482310.1016/j.ijbiomac.2022.06.03835697163
    [Google Scholar]
  35. KongU. Mohammad RawiN.F. TayG.S. The potential applications of reinforced bioplastics in various industries: A review.Polymers20231510239910.3390/polym1510239937242974
    [Google Scholar]
  36. DasS. KalyaniM.I. From trash to treasure: Review on upcycling of fruit and vegetable wastes into starch based bioplastics.Prep. Biochem. Biotechnol.202353771372710.1080/10826068.2022.2158470
    [Google Scholar]
  37. ArifA. AzeemF. RasulI. SiddiqueM.H. ZubairM. MuneerF. ZaheerW. NadeemH. Bioplastics from waste biomass of marine and poultry industries.J. Biosci.20234821110.1007/s12038‑023‑00332‑837021675
    [Google Scholar]
  38. CensiV. SaianoF. BongiornoD. IndelicatoS. NapoliA. PiazzeseD. Bioplastics: A new analytical challenge.Front Chem.20221097179210.3389/fchem.2022.97179236212056
    [Google Scholar]
  39. ZhangF.L. ZhangL. ZengD.W. LiaoS. FanY. ChampredaV. RunguphanW. ZhaoX.Q. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects.Biotechnol. Adv.20236810822210.1016/j.biotechadv.2023.10822237516259
    [Google Scholar]
  40. JayakumarA. RadoorS. SiengchinS. ShinG.H. KimJ.T. Recent progress of bioplastics in their properties, standards, certifications and regulations: A review.Sci. Total Environ.202387816315610.1016/j.scitotenv.2023.16315637003328
    [Google Scholar]
  41. AtiweshG. MikhaelA. ParrishC.C. BanoubJ. LeT.A.T. Environmental impact of bioplastic use: A review.Heliyon202179e0791810.1016/j.heliyon.2021.e0791834522811
    [Google Scholar]
  42. CellettiS. FedeliR. GhorbaniM. LoppiS. Impact of starch-based bioplastic on growth and biochemical parameters of basil plants.Sci. Total Environ.2023856Pt 215916310.1016/j.scitotenv.2022.15916336191700
    [Google Scholar]
  43. LiH. ZhouM. MohammedA.E.G.A.Y. ChenL. ZhouC. From fruit and vegetable waste to degradable bioplastic films and advanced materials: A review.Sustain. Chem. Pharm.20223010085910.1016/j.scp.2022.100859
    [Google Scholar]
  44. ZhangC. WangC. CaoG. WangD. HoS.H. A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues.J. Hazard. Mater.202038812177310.1016/j.jhazmat.2019.12177331836373
    [Google Scholar]
  45. KeshavarzT. RoyI. Polyhydroxyalkanoates: Bioplastics with a green agenda.Curr. Opin. Microbiol.201013332132610.1016/j.mib.2010.02.00620227907
    [Google Scholar]
  46. Pascoe OrtizS. Are bioplastics the solution to the plastic pollution problem?PLoS Biol.2023213e300204510.1371/journal.pbio.300204536947568
    [Google Scholar]
  47. JridiM. Editorial for natural biopolymers.Int. J. Biol. Macromol.2019131113710.1016/j.ijbiomac.2019.03.00130844452
    [Google Scholar]
  48. AliS.S. AbdelkarimE.A. ElsamahyT. Al-TohamyR. LiF. KornarosM. ZuorroA. ZhuD. SunJ. Bioplastic production in terms of life cycle assessment: A state-of-the-art review.Environ. Sci. Ecotechnol.20231510025410.1016/j.ese.2023.10025437020495
    [Google Scholar]
  49. AlaswadS.O. MahmoudA.S. ArunachalamP. Recent advances in biodegradable polymers and their biological applications: A brief review.Polymers20221422492410.3390/polym14224924
    [Google Scholar]
  50. AmalrajA. HaponiukJ.T. ThomasS. GopiS. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil.Int. J. Biol. Macromol.202015136637510.1016/j.ijbiomac.2020.02.17632084477
    [Google Scholar]
  51. VolovaT.G. GladyshevM.I. TrusovaM.Y. ZhilaN.O. KartushinskayaM.V. Degradation of bioplastics in natural environment.Dokl. Biol. Sci.20043971-633033210.1023/B:DOBS.0000039707.96839.3315508589
    [Google Scholar]
  52. AndreeßenC. SteinbüchelA. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives.Appl. Microbiol. Biotechnol.2019103114315710.1007/s00253‑018‑9483‑630397765
    [Google Scholar]
  53. DiluciaF. LacivitaV. ConteA. Sustainable use of fruit and vegetable by-products to enhance food packaging performance.Foods20209785710.3390/foods9070857
    [Google Scholar]
  54. FliegerM. KantorováM. PrellA. ŘezankaT. VotrubaJ. Biodegradable plastics from renewable sources.Folia Microbiol.2003481274410.1007/BF0293127312744074
    [Google Scholar]
  55. PeelmanN. RagaertP. De MeulenaerB. AdonsD. PeetersR. CardonL. Van ImpeF. DevlieghereF. Application of bioplastics for food packaging.Trends Food Sci. Technol.201332212814110.1016/j.tifs.2013.06.003
    [Google Scholar]
  56. LuengoJ.M. GarcíaB. SandovalA. NaharroG. OliveraE.R. Bioplastics from microorganisms.Curr. Opin. Microbiol.20036325126010.1016/S1369‑5274(03)00040‑712831901
    [Google Scholar]
  57. EndresH.J. Bioplastics.Adv. Biochem. Eng. Biotechnol.201716642746810.1007/10_2016_7528374047
    [Google Scholar]
  58. SteinbüchelA. Lütke-EverslohT. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms.Biochem. Eng. J.2003162819610.1016/S1369‑703X(03)00036‑6
    [Google Scholar]
  59. NorgrenM. EdlundH. Lignin: Recent advances and emerging applications.Curr. Opin. Colloid Interface Sci.201419540941610.1016/j.cocis.2014.08.004
    [Google Scholar]
  60. YaradoddiJ.S. BanapurmathN.R. GanachariS.V. SoudagarM.E.M. SajjanA.M. KamatS. MujtabaM.A. ShettarA.S. AnqiA.E. SafaeiM.R. ElfasakhanyA. Haque SiddiquiM.I. AliM.A. Bio-based material from fruit waste of orange peel for industrial applications.J. Mater. Res. Technol.2022173186319710.1016/j.jmrt.2021.09.016
    [Google Scholar]
  61. Abdullah; Cai, J.; Hafeez, M.A.; Wang, Q.; Farooq, S.; Huang, Q.; Tian, W.; Xiao, J. Biopolymer-based functional films for packaging applications: A review.Front. Nutr.20229100011610.3389/fnut.2022.100011636071940
    [Google Scholar]
  62. PapoutsisK. PristijonoP. GoldingJ.B. StathopoulosC.E. ScarlettC.J. BowyerM.C. VuongQ.V. Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste.Food Sci. Biotechnol.201625497197710.1007/s10068‑016‑0158‑830263362
    [Google Scholar]
  63. KowalskaH. CzajkowskaK. CichowskaJ. LenartA. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry.Trends Food Sci. Technol.20176715015910.1016/j.tifs.2017.06.016
    [Google Scholar]
  64. SanchesV.L. Insights on the extraction and analysis of phenolic compounds from citrus fruits: Green perspectives and current status.Crit. Rev. Anal. Chem.202212710.1080/10408347.2022.2107871
    [Google Scholar]
  65. JohnI. MuthukumarK. ArunagiriA. A review on the potential of citrus waste for D -Limonene, pectin, and bioethanol production.Int. J. Green Energy201714759961210.1080/15435075.2017.1307753
    [Google Scholar]
  66. OreniaR.M. Fruit and vegetable wastes as potential component of biodegradable plastic.Asian J. Multidiscip. Stud.20181
    [Google Scholar]
  67. GeorgeN. Biowaste to bioplastics: An ecofriendly approach for a sustainable future.J. Appl. Biotechnol. Rep.202183221233
    [Google Scholar]
  68. LandriganP.J. RapsH. Minderoo-monaco commission on plastics and human health.Ann. Glob. Health202389123
    [Google Scholar]
  69. HullW.Q. LindsayC.W. BaierW.E. Chemicals from oranges.Ind. Eng. Chem.195345587689010.1021/ie50521a018
    [Google Scholar]
  70. WangX. ChenQ. LüX. Pectin extracted from apple pomace and citrus peel by subcritical water.Food Hydrocoll.20143812913710.1016/j.foodhyd.2013.12.003
    [Google Scholar]
  71. BorahP.P. DasP. BadwaikL.S. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development.Ultrason. Sonochem.201736111910.1016/j.ultsonch.2016.11.01028069189
    [Google Scholar]
  72. AroojA. KhanM. Starch/pectin as emerging renewable materials for fabrication of sustainable bioplastics for food packaging applications.Preprint2023
    [Google Scholar]
  73. PathakP.D. MandavganeS.A. KulkarniB.D. Fruit peel waste: Characterization and its potential uses.Curr. Sci.2017113344445410.18520/cs/v113/i03/444‑454
    [Google Scholar]
  74. SharmaK. MahatoN. ChoM.H. LeeY.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches.Nutrition201734294610.1016/j.nut.2016.09.00628063510
    [Google Scholar]
  75. SagnelliD. KirkensgaardJ.J.K. GiosafattoC.V.L. OgrodowiczN. KruczałaK. MikkelsenM.S. MaigretJ.E. LourdinD. MortensenK. BlennowA. All-natural bio-plastics using starch-betaglucan composites.Carbohydr. Polym.201717223724510.1016/j.carbpol.2017.05.04328606531
    [Google Scholar]
  76. Ayala-ZavalaJ.F. González-AguilarG.A. Use of additives to preserve the quality of fresh-cut fruits and vegetables.Advances in fresh-cut fruits and vegetables processing.CRC Press2011231254
    [Google Scholar]
  77. AvasthiI. Biodegradable mineral plastics.Small Methods2023e2300575
    [Google Scholar]
  78. TeigiserovaD.A. Tiruta-BarnaL. AhmadiA. HamelinL. ThomsenM. A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils.J. Environ. Manage.202128011183210.1016/j.jenvman.2020.11183233360259
    [Google Scholar]
  79. MathewG.M. RainaD. NarisettyV. KumarV. SaranS. PugazhendiA. SindhuR. PandeyA. BinodP. Recent advances in biodiesel production: Challenges and solutions.Sci. Total Environ.202179414875110.1016/j.scitotenv.2021.14875134218145
    [Google Scholar]
  80. KarmakarA. KarmakarS. MukherjeeS. Properties of various plants and animals feedstocks for biodiesel production.Bioresour. Technol.2010101197201721010.1016/j.biortech.2010.04.07920493683
    [Google Scholar]
  81. ArafatY. AltemimiA. Valorization of sweet lime peel for the extraction of essential oil by solvent free microwave extraction enhanced with ultrasound pretreatment.Molecules20202518407210.3390/molecules25184072
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304507240528064315
Loading
/content/journals/cpb/10.2174/0113892010304507240528064315
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): agro-food waste; biomaterial; Bioplastics; carcinogenic; environmental pollution; FTIR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test