Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

CircRNA is stable due to its ring structure and is abundant in humans, which not only exists in various tissues and biofluids steadily but also plays a significant role in the physiology and pathology of human beings. CircPVT1, an endogenous circRNA, has recently been identified from the PVT1 gene located in the cancer risk region 8q24. CircPVT1 is reported to be highly expressed in many different tumors, where it affects tumor cell proliferation, apoptosis, invasion, and migration. We summarize the biosynthesis and biological functions of circPVT1 and analyze the relationship between circPVT1 and tumors as well as its significance to tumors. Further, it’s noteworthy for the diagnosis, treatment, and prognosis of cancer patients. Therefore, circPVT1 is likely to become an innovative tumor marker.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010282141240226112253
2024-03-06
2025-04-02
Loading full text...

Full text loading...

References

  1. SangerH.L. KlotzG. RiesnerD. GrossH.J. KleinschmidtA.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.Proc. Natl. Acad. Sci.197673113852385610.1073/pnas.73.11.3852 1069269
    [Google Scholar]
  2. ZhouW.Y. CaiZ.R. LiuJ. WangD.S. JuH.Q. XuR.H. Circular RNA: Metabolism, functions and interactions with proteins.Mol. Cancer202019117210.1186/s12943‑020‑01286‑3 33317550
    [Google Scholar]
  3. WiluszJ.E.A. 360° view of circular RNAs: From biogenesis to functions.Wiley Interdiscip. Rev. RNA201894e147810.1002/wrna.1478 29655315
    [Google Scholar]
  4. VoJ.N. CieslikM. ZhangY. ShuklaS. XiaoL. ZhangY. WuY.M. DhanasekaranS.M. EngelkeC.G. CaoX. RobinsonD.R. NesvizhskiiA.I. ChinnaiyanA.M. The landscape of circular RNA in cancer.Cell20191764869881.e1310.1016/j.cell.2018.12.021 30735636
    [Google Scholar]
  5. StarkeS. JostI. RossbachO. SchneiderT. SchreinerS. HungL.H. BindereifA. Exon circularization requires canonical splice signals.Cell Rep.201510110311110.1016/j.celrep.2014.12.002 25543144
    [Google Scholar]
  6. ZhangX.O. WangH.B. ZhangY. LuX. ChenL.L. YangL. Complementary sequence-mediated exon circularization.Cell2014159113414710.1016/j.cell.2014.09.001 25242744
    [Google Scholar]
  7. LiangD. WiluszJ.E. Short intronic repeat sequences facilitate circular RNA production.Genes Dev.201428202233224710.1101/gad.251926.114 25281217
    [Google Scholar]
  8. YangW. DuW.W. LiX. YeeA.J. YangB.B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis.Oncogene201635303919393110.1038/onc.2015.460 26657152
    [Google Scholar]
  9. ZangJ. LuD. XuA. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function.J. Neurosci. Res.2020981879710.1002/jnr.24356 30575990
    [Google Scholar]
  10. LiJ. YangJ. ZhouP. LeY. ZhouC. WangS. XuD. LinH.K. GongZ. Circular RNAs in cancer: Novel insights into origins, properties, functions and implications.Am. J. Cancer Res.201552472480 25973291
    [Google Scholar]
  11. AufieroS. ReckmanY.J. PintoY.M. CreemersE.E. Circular RNAs open a new chapter in cardiovascular biology.Nat. Rev. Cardiol.201916850351410.1038/s41569‑019‑0185‑2 30952956
    [Google Scholar]
  12. JeckW.R. SharplessN.E. Detecting and characterizing circular RNAs.Nat. Biotechnol.201432545346110.1038/nbt.2890 24811520
    [Google Scholar]
  13. WangF. YuanJ.H. WangS.B. YangF. YuanS.X. YeC. YangN. ZhouW.P. LiW.L. LiW. SunS.H. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2.Hepatology20146041278129010.1002/hep.27239 25043274
    [Google Scholar]
  14. CuiD. YuC.H. LiuM. XiaQ.Q. ZhangY.F. JiangW.L. Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer.Tumour Biol.20163734127413410.1007/s13277‑015‑4261‑x 26490983
    [Google Scholar]
  15. ChoS.W. XuJ. SunR. MumbachM.R. CarterA.C. ChenY.G. YostK.E. KimJ. HeJ. NevinsS.A. ChinS.F. CaldasC. LiuS.J. HorlbeckM.A. LimD.A. WeissmanJ.S. CurtisC. ChangH.Y. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element.Cell2018173613981412.e2210.1016/j.cell.2018.03.068 29731168
    [Google Scholar]
  16. MemczakS. JensM. ElefsiniotiA. TortiF. KruegerJ. RybakA. MaierL. MackowiakS.D. GregersenL.H. MunschauerM. LoewerA. ZieboldU. LandthalerM. KocksC. le NobleF. RajewskyN. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature11928 23446348
    [Google Scholar]
  17. ChenJ. LiY. ZhengQ. BaoC. HeJ. ChenB. LyuD. ZhengB. XuY. LongZ. ZhouY. ZhuH. WangY. HeX. ShiY. HuangS. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer.Cancer Lett.201738820821910.1016/j.canlet.2016.12.006 27986464
    [Google Scholar]
  18. VerduciL. FerraiuoloM. SacconiA. GanciF. VitaleJ. ColomboT. PaciP. StranoS. MacinoG. RajewskyN. BlandinoG. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex.Genome Biol.201718123710.1186/s13059‑017‑1368‑y 29262850
    [Google Scholar]
  19. L.A, A. MYC-containing amplicons in acute myeloid leukemia: Genomic structures, evolution, and transcriptional consequences.Leukemia2018321021522166
    [Google Scholar]
  20. PandaA.C. GrammatikakisI. KimK.M. DeS. MartindaleJ.L. MunkR. YangX. AbdelmohsenK. GorospeM. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1.Nucleic Acids Res.20174574021403510.1093/nar/gkw1201 27928058
    [Google Scholar]
  21. LeeY.S. DuttaA. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene.Genes Dev.20072191025103010.1101/gad.1540407 17437991
    [Google Scholar]
  22. PalcauA.C. CanuV. DonzelliS. StranoS. PulitoC. BlandinoG. CircPVT1: A pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals.Mol. Cancer20222113310.1186/s12943‑022‑01514‑y 35090471
    [Google Scholar]
  23. DongY. HeD. PengZ. PengW. ShiW. WangJ. LiB. ZhangC. DuanC. Circular RNAs in cancer: An emerging key player.J. Hematol. Oncol.2017101210.1186/s13045‑016‑0370‑2 28049499
    [Google Scholar]
  24. EbbesenK.K. HansenT.B. KjemsJ. Insights into circular RNA biology.RNA Biol.20171481035104510.1080/15476286.2016.1271524 27982727
    [Google Scholar]
  25. ZhangY. XueW. LiX. ZhangJ. ChenS. ZhangJ.L. YangL. ChenL.L. The biogenesis of nascent circular RNAs.Cell Rep.201615361162410.1016/j.celrep.2016.03.058 27068474
    [Google Scholar]
  26. NotoJ.J. SchmidtC.A. MateraA.G. Engineering and expressing circular RNAs via tRNA splicing.RNA Biol.201714897898410.1080/15476286.2017.1317911 28402213
    [Google Scholar]
  27. RaganC. GoodallG.J. ShirokikhN.E. PreissT. Insights into the biogenesis and potential functions of exonic circular RNA.Sci. Rep.201991204810.1038/s41598‑018‑37037‑0 30765711
    [Google Scholar]
  28. DehghannasiriR. SzaboL. SalzmanJ. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.Bioinformatics20193581263126810.1093/bioinformatics/bty785 30192918
    [Google Scholar]
  29. ZhangX.O. DongR. ZhangY. ZhangJ.L. LuoZ. ZhangJ. ChenL.L. YangL. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.Genome Res.20162691277128710.1101/gr.202895.115 27365365
    [Google Scholar]
  30. IvanovA. MemczakS. WylerE. TortiF. PorathH.T. OrejuelaM.R. PiechottaM. LevanonE.Y. LandthalerM. DieterichC. RajewskyN. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.Cell Rep.201510217017710.1016/j.celrep.2014.12.019 25558066
    [Google Scholar]
  31. Ashwal-FlussR. MeyerM. PamudurtiN.R. IvanovA. BartokO. HananM. EvantalN. MemczakS. RajewskyN. KadenerS. circRNA biogenesis competes with pre-mRNA splicing.Mol. Cell2014561556610.1016/j.molcel.2014.08.019 25242144
    [Google Scholar]
  32. JeckW.R. SorrentinoJ.A. WangK. SlevinM.K. BurdC.E. LiuJ. MarzluffW.F. SharplessN.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA201319214115710.1261/rna.035667.112 23249747
    [Google Scholar]
  33. LiX. ZhangZ. JiangH. LiQ. WangR. PanH. NiuY. LiuF. GuH. FanX. GaoJ. Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer.Cell. Physiol. Biochem.20185152324234010.1159/000495876 30537738
    [Google Scholar]
  34. LiX. YangL. ChenL.L. The biogenesis, functions, and challenges of circular RNAs.Mol. Cell201871342844210.1016/j.molcel.2018.06.034 30057200
    [Google Scholar]
  35. SalzmanJ. ChenR.E. OlsenM.N. WangP.L. BrownP.O. Cell-type specific features of circular RNA expression.PLoS Genet.201399e100377710.1371/journal.pgen.1003777 24039610
    [Google Scholar]
  36. ZhangM. ZhaoK. XuX. YangY. YanS. WeiP. LiuH. XuJ. XiaoF. ZhouH. YangX. HuangN. LiuJ. HeK. XieK. ZhangG. HuangS. ZhangN. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma.Nat. Commun.201891447510.1038/s41467‑018‑06862‑2 30367041
    [Google Scholar]
  37. PamudurtiN.R. BartokO. JensM. Ashwal-FlussR. StottmeisterC. RuheL. HananM. WylerE. Perez-HernandezD. RambergerE. ShenzisS. SamsonM. DittmarG. LandthalerM. ChekulaevaM. RajewskyN. KadenerS. Translation of circRNAs.Mol. Cell2017661921.e710.1016/j.molcel.2017.02.021 28344080
    [Google Scholar]
  38. NelsonP.T. HatzigeorgiouA.G. MourelatosZ. miRNP:MRNA association in polyribosomes in a human neuronal cell line.RNA200410338739410.1261/rna.5181104 14970384
    [Google Scholar]
  39. FabianM.R. SonenbergN. The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC.Nat. Struct. Mol. Biol.201219658659310.1038/nsmb.2296 22664986
    [Google Scholar]
  40. FilipowiczW. BhattacharyyaS.N. SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?Nat. Rev. Genet.20089210211410.1038/nrg2290 18197166
    [Google Scholar]
  41. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑7 31395983
    [Google Scholar]
  42. AllemaniC. WeirH.K. CarreiraH. HarewoodR. SpikaD. WangX.S. BannonF. AhnJ.V. JohnsonC.J. BonaventureA. Marcos-GrageraR. StillerC. Azevedo e SilvaG. ChenW.Q. OgunbiyiO.J. RachetB. SoebergM.J. YouH. MatsudaT. Bielska-LasotaM. StormH. TuckerT.C. ColemanM.P. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2).Lancet20153859972977101010.1016/S0140‑6736(14)62038‑9 25467588
    [Google Scholar]
  43. AdhikaryJ. ChakrabortyS. DalalS. BasuS. DeyA. GhoshA. Circular PVT1: An oncogenic non-coding RNA with emerging clinical importance.J. Clin. Pathol.201972851351910.1136/jclinpath‑2019‑205891 31154423
    [Google Scholar]
  44. OgunwobiO.O. KumarA. Chemoresistance mediated by ceRNA networks associated with the PVT1 locus.Front. Oncol.2019983410.3389/fonc.2019.00834 31508377
    [Google Scholar]
  45. LiH. XueS. ZhangX. LiF. BeiS. FengL. CircRNA PVT1 modulated cell migration and invasion through Epithelial-Mesenchymal Transition (EMT) mediation in gastric cancer through miR-423-5p/Smad3 pathway.Regen. Ther.202221253310.1016/j.reth.2022.02.003 35663842
    [Google Scholar]
  46. QinS. ZhaoY. LimG. LinH. ZhangX. ZhangX. Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression.Biomed. Pharmacother.201911124425010.1016/j.biopha.2018.12.007 30590312
    [Google Scholar]
  47. HuJ. HanQ. GuY. MaJ. McGrathM. QiaoF. ChenB. SongC. GeZ. Circular RNA PVT1 expression and its roles in acute lymphoblastic leukemia.Epigenomics201810672373210.2217/epi‑2017‑0142 29693417
    [Google Scholar]
  48. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  49. AhnJ.D. MorishitaR. KanedaY. KimH.S. ChangY-C. LeeK-U. ParkJ-Y. LeeH.W. KimY-H. LeeI-K. Novel E2F decoy oligodeoxynucleotides inhibit in vitro vascular smooth muscle cell proliferation and in vivo neointimal hyperplasia.Gene Ther.20029241682169210.1038/sj.gt.3301849 12457282
    [Google Scholar]
  50. LiuH. ChenL. XiaoW. LiuJ. LongC. ZhanW. CuiC. YangL. ChenS. Alteration of E2F2 expression in governing endothelial cell senescence.Genes2022139152210.3390/genes13091522 36140689
    [Google Scholar]
  51. BalzV. ScheckenbachK. GötteK. BockmühlU. PetersenI. BierH. Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2-11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens.Cancer Res.200363611881191 12649174
    [Google Scholar]
  52. Comprehensive genomic characterization of head and neck squamous cell carcinomas.Nature2015517753657658210.1038/nature14129 25631445
    [Google Scholar]
  53. StranskyN. EgloffA.M. TwardA.D. KosticA.D. CibulskisK. SivachenkoA. KryukovG.V. LawrenceM.S. SougnezC. McKennaA. SheflerE. RamosA.H. StojanovP. CarterS.L. VoetD. CortésM.L. AuclairD. BergerM.F. SaksenaG. GuiducciC. OnofrioR.C. ParkinM. RomkesM. WeissfeldJ.L. SeethalaR.R. WangL. Rangel-EscareñoC. Fernandez-LopezJ.C. Hidalgo-MirandaA. Melendez-ZajglaJ. WincklerW. ArdlieK. GabrielS.B. MeyersonM. LanderE.S. GetzG. GolubT.R. GarrawayL.A. GrandisJ.R. The mutational landscape of head and neck squamous cell carcinoma.Science201133360461157116010.1126/science.1208130 21798893
    [Google Scholar]
  54. HuaG. LvX. HeC. RemmengaS.W. RodaboughK.J. DongJ. YangL. LeleS.M. YangP. ZhouJ. KarstA. DrapkinR.I. DavisJ.S. WangC. YAP induces high-grade serous carcinoma in fallopian tube secretory epithelial cells.Oncogene201635172247226510.1038/onc.2015.288 26364602
    [Google Scholar]
  55. ZhaoJ. LiuY. ZhangW. ZhouZ. WuJ. CuiP. ZhangY. HuangG. Long non-coding RNA Linc00152 is involved in cell cycle arrest, apoptosis, epithelial to mesenchymal transition, cell migration and invasion in gastric cancer.Cell Cycle201514193112312310.1080/15384101.2015.1078034 26237576
    [Google Scholar]
  56. ChenC. XieL. RenT. HuangY. XuJ. GuoW. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs.Cancer Lett.202150011010.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  57. Kun-PengZ. Xiao-LongM. Chun-LinZ. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1.Int. J. Biol. Sci.201814332133010.7150/ijbs.24360 29559849
    [Google Scholar]
  58. WanJ. LiuY. LongF. TianJ. ZhangC. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR‐423‐5p to activate Wnt5a/Ror2 signaling.Cancer Sci.202111251707172210.1111/cas.14787 33369809
    [Google Scholar]
  59. YanM. GaoH. LvZ. LiuY. ZhaoS. GongW. LiuW. Circular RNA PVT1 promotes metastasis via regulating of miR‐526b/FOXC2 signals in OS cells.J. Cell. Mol. Med.202024105593560410.1111/jcmm.15215 32249539
    [Google Scholar]
  60. YuF. LinY. AiM.M. TanG.J. HuangJ.L. ZouZ.R. Knockdown of circular RNA hsa_circ_PVT1 inhibited laryngeal cancer progression via preventing wnt4/β-catenin signaling pathway activation.Front. Cell Dev. Biol.2021965811510.3389/fcell.2021.658115 34336825
    [Google Scholar]
  61. WangH. WeiM. KangY. XingJ. ZhaoY. Circular RNA circ_PVT1 induces epithelial-mesenchymal transition to promote metastasis of cervical cancer.Aging20201220201392015110.18632/aging.103679 33109773
    [Google Scholar]
  62. ZhuX. DuJ. GuZ. Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma.Mol. Cell. Biochem.20204741-214715810.1007/s11010‑020‑03840‑5 32737775
    [Google Scholar]
  63. TaoL. YangL. TianP. GuoX. ChenY. Knockdown of circPVT1 inhibits progression of papillary thyroid carcinoma by sponging miR-126.RSC Advances2019923133161332410.1039/C9RA01820D 35520785
    [Google Scholar]
  64. YaoW. GuoP. MuQ. WangY. Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells.Cancer Biother. Radiopharm.202136434735910.1089/cbr.2020.3578 32799541
    [Google Scholar]
  65. CaoL. ZhouX. DingX. GaoD. Knockdown of circ PVT1 inhibits the progression of lung adenocarcinoma and enhances the sensitivity to cisplatin via the miR 429/FOXK1 signaling axis.Mol. Med. Rep.202124468410.3892/mmr.2021.12323 34328193
    [Google Scholar]
  66. LiuY. ZhangL. DuW. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p.Biosci. Rep.20193912BSR2019304510.1042/BSR20193045 31793989
    [Google Scholar]
  67. LiD. HuangY. WangG. Circular RNA circPVT1 contributes to doxorubicin (DXR) resistance of osteosarcoma cells by regulating TRIAP1 via miR-137.BioMed Res. Int.2021202111910.1155/2021/7463867 33981772
    [Google Scholar]
  68. GuoJ. HaoC. WangC. LiL. Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2.Cancer Cell Int.20181819810.1186/s12935‑018‑0582‑3 30008615
    [Google Scholar]
  69. BarsottiA.M. BeckermanR. LaptenkoO. HuppiK. CaplenN.J. PrivesC. p53-dependent induction of PVT1 and miR-1204.J. Biol. Chem.201228742509251910.1074/jbc.M111.322875 22110125
    [Google Scholar]
  70. BisioA. De SanctisV. Del VescovoV. DentiM.A. JeggaA.G. IngaA. CiribilliY. Identification of new p53 target microRNAs by bioinformatics and functional analysis.BMC Cancer201313155210.1186/1471‑2407‑13‑552 24256616
    [Google Scholar]
  71. SongJ. WuX. LiuF. LiM. SunY. WangY. WangC. ZhuK. JiaX. WangB. MaX. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma.Biochem. Biophys. Res. Commun.2017490221722410.1016/j.bbrc.2017.06.024 28602700
    [Google Scholar]
  72. HuangC. YuW. WangQ. CuiH. WangY. ZhangL. HanF. HuangT. Increased expression of the lncRNA PVT1 is associated with poor prognosis in pancreatic cancer patients.Minerva Med.20151063143149 25668599
    [Google Scholar]
  73. LiuE. LiuZ. ZhouY. MiR. WangD. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways.Int. J. Clin. Exp. Med.20158112056520572 26884974
    [Google Scholar]
  74. BandariS.K. PurushothamanA. RamaniV.C. BrinkleyG.J. ChandrashekarD.S. VaramballyS. MobleyJ.A. ZhangY. BrownE.E. VlodavskyI. SandersonR.D. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior.Matrix Biol.20186510411810.1016/j.matbio.2017.09.001 28888912
    [Google Scholar]
  75. LiY. ZhengQ. BaoC. LiS. GuoW. ZhaoJ. ChenD. GuJ. HeX. HuangS. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis.Cell Res.201525898198410.1038/cr.2015.82 26138677
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010282141240226112253
Loading
/content/journals/cpb/10.2174/0113892010282141240226112253
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biological functions; biosynthesis; cancer; circPVT1; circRNAs; miRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test