Skip to content
2000
image of The Potential Role of Dopamine Pathways in the Pathophysiology of 
Depression: Current Advances and Future Aspects

Abstract

Depression is a serious mental health disorder that impacts more than 350 million individuals globally. While the roles of serotonin and norepinephrine in depression have been extensively studied, the importance of dopaminergic pathways—essential for mood, cognition, motor control, and endocrine function—often gets overlooked. This review focuses on four major dopamine (DA) circuits: the mesolimbic (MLP), mesocortical (MCP), nigrostriatal (NSP), and thalamic-tuberoinfundibular pathways (TTFP), and their roles in depression. The MLP, which is key to reward processing, is linked to anhedonia, a primary depression symptom. The MCP, projecting to the prefrontal cortex, affects cognitive issues like impaired attention and decision-making. The NSP, mainly responsible for motor control, is related to psychomotor retardation in depression, while the TTFP manages neuroendocrine responses, which are often disrupted in stress-related depressive conditions. Current antidepressant treatments mainly target serotonin and norepinephrine systems but tend to be less effective for patients with DArgic dysfunction, leading to treatment resistance. This review underscores emerging evidence that suggests targeting DArgic pathways could improve treatment outcomes, especially for symptoms like anhedonia and cognitive deficits that conventional therapies often fail to address. Future research should aim to combine advancements in neuroimaging, optogenetics, and genetic studies to better map DArgic pathways and create personalized treatment plans. This review highlights the potential for new therapies that focus on DA systems, which could pave the way for more effective and tailored approaches to treating depression.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273357909241126064951
2024-12-05
2025-01-29
Loading full text...

Full text loading...

References

  1. Depression and other common mental disorders: Global health estimates. Geneva World Health Organization 2017
    [Google Scholar]
  2. Mizuno Y. Ashok A.H. Bhat B.B. Jauhar S. Howes O.D. Dopamine in major depressive disorder: A systematic review and meta-analysis of in vivo imaging studies. J. Psychopharmacol. 2023 37 11 1058 1069 10.1177/02698811231200881 37811803
    [Google Scholar]
  3. Malhi G.S. Mann J.J. Depression. Lancet 2018 392 10161 2299 2312 10.1016/S0140‑6736(18)31948‑2 30396512
    [Google Scholar]
  4. Zhao F. Cheng Z. Piao J. Cui R. Li B. Dopamine receptors: Is it possible to become a therapeutic target for depression? Front. Pharmacol. 2022 13 947785 10.3389/fphar.2022.947785 36059987
    [Google Scholar]
  5. Ashok A.H. Mizuno Y. Volkow N.D. Howes O.D. Association of stimulant use with DArgic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry 2017 74 5 511 519 10.1001/jamapsychiatry.2017.0135 28297025
    [Google Scholar]
  6. Árgyelán M. Szabó Z. Kanyó B. Tanács A. Kovács Z. Janka Z. Pávics L. Dopamine transporter availability in medication free and in bupropion treated depression: A 99mTc-TRODAT-1 SPECT study. J. Affect. Disord. 2005 89 1-3 115 123 10.1016/j.jad.2005.08.016 16213028
    [Google Scholar]
  7. Amsterdam J.D. Newberg A.B. Soeller I. Shults J. Greater striatal dopamine transporter density may be associated with major depressive episode. J. Affect. Disord. 2012 141 2-3 425 431 10.1016/j.jad.2012.03.007 22482744
    [Google Scholar]
  8. Luo S.X. Huang E.J. Dopaminergic neurons and brain reward pathways: From neurogenesis to circuit assembly. Am. J. Pathol. 2016 186 3 478 488 10.1016/j.ajpath.2015.09.023 26724386
    [Google Scholar]
  9. Nestler E.J. Carlezon W.A. Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 2006 59 12 1151 1159 10.1016/j.biopsych.2005.09.018 16566899
    [Google Scholar]
  10. Nevue A.A. Felix R.A. II Portfors C.V. Dopaminergic projections of the subparafascicular thalamic nucleus to the auditory brainstem. Hear. Res. 2016 341 202 209 10.1016/j.heares.2016.09.001 27620513
    [Google Scholar]
  11. Delva N.C. Stanwood G.D. Dysregulation of brain dopamine systems in major depressive disorder. Exp. Biol. Med. 2021 246 9 1084 1093 10.1177/1535370221991830 33593109
    [Google Scholar]
  12. Pannu A. K Goyal R. Serotonin and depression: Scrutiny of new targets for future anti-depressant drug development. Curr. Drug Targets 2023 24 10 816 837 10.2174/1389450124666230425233727 37170981
    [Google Scholar]
  13. Chandley M.J. Ordway G.A. Noradrenergic dysfunction in depression and suicide. The neurobiological basis of suicide. Dwivedi Y. Boca Raton, FL CRC Press/Taylor & Francis 2012 55 74 10.1201/b12215‑4
    [Google Scholar]
  14. Millan M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 2006 110 2 135 370 10.1016/j.pharmthera.2005.11.006 16522330
    [Google Scholar]
  15. Grace A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 2016 17 8 524 532 10.1038/nrn.2016.57 27256556
    [Google Scholar]
  16. Dunlop B.W. Nemeroff C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 2007 64 3 327 337 10.1001/archpsyc.64.3.327 17339521
    [Google Scholar]
  17. Taylor S.F. Liberzon I. Neural correlates of emotion regulation in psychopathology. Trends Cogn. Sci. 2007 11 10 413 418 10.1016/j.tics.2007.08.006 17928261
    [Google Scholar]
  18. Voon V. Dalley J.W. Translatable and back-translatable measurement of motivation and apathy: The neurobiology of the nigrostriatal dopamine pathway. Neurosci. Biobehav. Rev. 2011 35 5 901 911
    [Google Scholar]
  19. Koob G.F. Volkow N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010 35 1 217 238 10.1038/npp.2009.110 19710631
    [Google Scholar]
  20. Pizzagalli D.A. Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annu. Rev. Clin. Psychol. 2014 10 1 393 423 10.1146/annurev‑clinpsy‑050212‑185606 24471371
    [Google Scholar]
  21. Der-Avakian A. Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012 35 1 68 77 10.1016/j.tins.2011.11.005 22177980
    [Google Scholar]
  22. Hyman S.E. Malenka R.C. Nestler E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006 29 1 565 598 10.1146/annurev.neuro.29.051605.113009 16776597
    [Google Scholar]
  23. Arnsten A.F.T. Stress weakens prefrontal networks: Molecular insults to higher cognition. Nat. Neurosci. 2015 18 10 1376 1385 10.1038/nn.4087 26404712
    [Google Scholar]
  24. Robinson O.J. Vytal K. Cornwell B.R. Grillon C. The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Front. Hum. Neurosci. 2013 7 203 10.3389/fnhum.2013.00203 23730279
    [Google Scholar]
  25. Holmes A. Wellman C.L. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci. Biobehav. Rev. 2009 33 6 773 783 10.1016/j.neubiorev.2008.11.005 19111570
    [Google Scholar]
  26. Pariante C.M. Lightman S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008 31 9 464 468 10.1016/j.tins.2008.06.006 18675469
    [Google Scholar]
  27. Anisman H. Matheson K. Stress, depression, and anhedonia: Caveats concerning animal models. Neurosci. Biobehav. Rev. 2005 29 4-5 525 546 10.1016/j.neubiorev.2005.03.007 15925696
    [Google Scholar]
  28. Elgellaie A. Larkin T. Kaelle J. Mills J. Thomas S. Plasma prolactin is higher in major depressive disorder and females, and associated with anxiety, hostility, somatization, psychotic symptoms and heart rate. Compr. Psychoneuroendocrinol. 2021 6 100049 10.1016/j.cpnec.2021.100049 35757357
    [Google Scholar]
  29. Fitzgerald P. Dinan T.G. Prolactin and dopamine: What is the connection? A review article. J. Psychopharmacol. 2008 22 2_suppl 12 19 10.1177/0269216307087148 18477617
    [Google Scholar]
  30. Kirsch P. Kunadia J. Shah S. Agrawal N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front. Endocrinol. 2022 13 1002320 10.3389/fendo.2022.1002320 36246929
    [Google Scholar]
  31. Barker D.J. Root D.H. Zhang S. Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 2016 73 33 42 10.1016/j.jchemneu.2015.12.016 26763116
    [Google Scholar]
  32. Gasbarri A. Verney C. Innocenzi R. Campana E. Pacitti C. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: A combined retrograde tracing and immunohistochemical study. Brain Res. 1994 668 1-2 71 79 10.1016/0006‑8993(94)90512‑6 7704620
    [Google Scholar]
  33. Bouarab C. Thompson B. Polter A.M. VTA GABA neurons at the interface of stress and reward. Front. Neural Circuits 2019 13 78 10.3389/fncir.2019.00078 31866835
    [Google Scholar]
  34. van Zessen R. Phillips J.L. Budygin E.A. Stuber G.D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 2012 73 6 1184 1194 10.1016/j.neuron.2012.02.016 22445345
    [Google Scholar]
  35. Yamaguchi T. Sheen W. Morales M. Glutamatergic neurons are present in the rat ventral tegmental area. Eur. J. Neurosci. 2007 25 1 106 118 10.1111/j.1460‑9568.2006.05263.x 17241272
    [Google Scholar]
  36. Papathanou M. Creed M. Dorst M.C. Bimpisidis Z. Dumas S. Pettersson H. Bellone C. Silberberg G. Lüscher C. Wallén-Mackenzie Å. Targeting VGLUT2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio. Front. Neural Circuits 2018 12 64 10.3389/fncir.2018.00064 30210305
    [Google Scholar]
  37. Hasbi A. Perreault M.L. Shen M.Y.F. Fan T. Nguyen T. Alijaniaram M. Banasikowski T.J. Grace A.A. O’Dowd B.F. Fletcher P.J. George S.R. Activation of dopamine D1-D2 receptor complex attenuates cocaine reward and reinstatement of cocaine-seeking through inhibition of DARPP-32, ERK, and ΔFosB. Front. Pharmacol. 2018 8 924 10.3389/fphar.2017.00924 29354053
    [Google Scholar]
  38. Zhang H. Chaudhury D. Nectow A.R. Friedman A.K. Zhang S. Juarez B. Liu H. Pfau M.L. Aleyasin H. Jiang C. Crumiller M. Calipari E.S. Ku S.M. Morel C. Tzavaras N. Montgomery S.E. He M. Salton S.R. Russo S.J. Nestler E.J. Friedman J.M. Cao J.L. Han M.H. α1- and β3-adrenergic receptor-mediated mesolimbic homeostatic plasticity confers resilience to social stress in susceptible mice. Biol. Psychiatry 2019 85 3 226 236 10.1016/j.biopsych.2018.08.020 30336931
    [Google Scholar]
  39. Su M. Li L. Wang J. Sun H. Zhang L. Zhao C. Xie Y. Gamper N. Du X. Zhang H. Kv7.4 channel contributes to projection-specific auto-inhibition of dopamine neurons in the ventral tegmental area. Front. Cell. Neurosci. 2019 13 557 10.3389/fncel.2019.00557 31920557
    [Google Scholar]
  40. Soares-Cunha C. de Vasconcelos N.A.P. Coimbra B. Domingues A.V. Silva J.M. Loureiro-Campos E. Gaspar R. Sotiropoulos I. Sousa N. Rodrigues A.J. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol. Psychiatry 2020 25 12 3241 3255 10.1038/s41380‑019‑0484‑3 31462765
    [Google Scholar]
  41. Sesack S.R. Grace A.A. Cortico-Basal Ganglia reward network: Microcircuitry. Neuropsychopharmacology 2010 35 1 27 47 10.1038/npp.2009.93 19675534
    [Google Scholar]
  42. Francis T.C. Yano H. Demarest T.G. Shen H. Bonci A. High-frequency activation of nucleus accumbens D1-MSNs drives excitatory potentiation on D2-MSNs. Neuron 2019 103 3 432 444.e3 10.1016/j.neuron.2019.05.031 31221559
    [Google Scholar]
  43. Perreault M.L. Hasbi A. Alijaniaram M. Fan T. Varghese G. Fletcher P.J. Seeman P. O’Dowd B.F. George S.R. The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: Increased high affinity state following amphetamine and in schizophrenia. J. Biol. Chem. 2010 285 47 36625 36634 10.1074/jbc.M110.159954 20864528
    [Google Scholar]
  44. Soares-Cunha C. Coimbra B. Sousa N. Rodrigues A.J. Reappraising striatal D1 and D2-neurons in reward and aversion. Neurosci. Biobehav. Rev. 2016 68 370 386 10.1016/j.neubiorev.2016.05.021 27235078
    [Google Scholar]
  45. Koo J.W. Chaudhury D. Han M.H. Nestler E.J. Role of mesolimbic brain-derived neurotrophic factor in depression. Biol. Psychiatry 2019 86 10 738 748 10.1016/j.biopsych.2019.05.020 31327473
    [Google Scholar]
  46. Marmot M.G. Status Syndrome. JAMA 2006 295 11 1304 1307 10.1001/jama.295.11.1304 16537740
    [Google Scholar]
  47. Godoy L.D. Tarecki R.L. Meissner K. Day P. Shaikh M.K. McKinney A.M. Mindfulness training and stress reactivity in depression: Results from a controlled trial. Psychosom. Med. 2018 80 2 141 148 10.1097/PSY.0000000000000548 29389736
    [Google Scholar]
  48. Kessler R.C. Berglund P. Demler O. Jin R. Merikangas K.R. Walters E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005 62 6 593 602 10.1001/archpsyc.62.6.593 15939837
    [Google Scholar]
  49. Heim C. Binder E.B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp. Neurol. 2012 233 1 102 111 10.1016/j.expneurol.2011.10.032 22101006
    [Google Scholar]
  50. Fatima M. Ahmad M.H. Srivastav S. Rizvi M.A. Mondal A.C. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochem. Int. 2020 136 104730 10.1016/j.neuint.2020.104730 32201282
    [Google Scholar]
  51. Santana N. Mengod G. Artigas F. Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 2009 19 4 849 860 10.1093/cercor/bhn134 18689859
    [Google Scholar]
  52. Trantham-Davidson H. Neely L.C. Lavin A. Seamans J.K. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J. Neurosci. 2004 24 47 10652 10659 10.1523/JNEUROSCI.3179‑04.2004 15564581
    [Google Scholar]
  53. McCarthy C.I. Chou-Freed C. Rodríguez S.S. Yaneff A. Davio C. Raingo J. Constitutive activity of dopamine receptor type 1 (D1R) increases CaV2.2 currents in PFC neurons. J. Gen. Physiol. 2020 152 5 e201912492 10.1085/jgp.201912492 32259196
    [Google Scholar]
  54. Scornaiencki R. Cantrup R. Rushlow W.J. Rajakumar N. Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int. J. Neuropsychopharmacol. 2009 12 9 1195 1208 10.1017/S1461145709000121 19275776
    [Google Scholar]
  55. Beaulieu J.M. Gainetdinov R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011 63 1 182 217 10.1124/pr.110.002642 21303898
    [Google Scholar]
  56. Zhang B. Guo F. Ma Y. Song Y. Lin R. Shen F.Y. Jin G.Z. Li Y. Liu Z.Q. Activation of D1R/PKA/mTOR signaling cascade in medial prefrontal cortex underlying the antidepressant effects of l-SPD. Sci. Rep. 2017 7 1 3809 10.1038/s41598‑017‑03680‑2 28630404
    [Google Scholar]
  57. Wohleb E.S. Gerhard D. Thomas A. Duman R.S. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr. Neuropharmacol. 2017 15 1 11 20 10.2174/1570159X14666160309114549 26955968
    [Google Scholar]
  58. Hare B.D. Shinohara R. Liu R.J. Pothula S. DiLeone R.J. Duman R.S. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat. Commun. 2019 10 1 223 10.1038/s41467‑018‑08168‑9 30644390
    [Google Scholar]
  59. Shinohara R. Taniguchi M. Ehrlich A.T. Yokogawa K. Deguchi Y. Cherasse Y. Lazarus M. Urade Y. Ogawa A. Kitaoka S. Sawa A. Narumiya S. Furuyashiki T. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol. Psychiatry 2018 23 8 1717 1730 10.1038/mp.2017.177 28924188
    [Google Scholar]
  60. Gee S. Ellwood I. Patel T. Luongo F. Deisseroth K. Sohal V.S. Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J. Neurosci. 2012 32 14 4959 4971 10.1523/JNEUROSCI.5835‑11.2012 22492051
    [Google Scholar]
  61. Papp M. Gruca P. Lason M. Niemczyk M. Willner P. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. J. Psychopharmacol. 2019 33 6 748 756 10.1177/0269881119827889 30789286
    [Google Scholar]
  62. Wang J. Jia Y. Li G. Wang B. Zhou T. Zhu L. Chen T. Chen Y. The dopamine receptor D3 regulates lipopolysaccharide-induced depressive-like behavior in mice. Int. J. Neuropsychopharmacol. 2018 21 5 448 460 10.1093/ijnp/pyy005 29390063
    [Google Scholar]
  63. Liu W. Ge T. Leng Y. Pan Z. Fan J. Yang W. Cui R. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast. 2017 2017 1 11 10.1155/2017/6871089 28246558
    [Google Scholar]
  64. Palacios-Filardo J. Mellor J.R. Neuromodulation of hippocampal long-term synaptic plasticity. Curr. Opin. Neurobiol. 2019 54 37 43 10.1016/j.conb.2018.08.009 30212713
    [Google Scholar]
  65. Kim J.J. Diamond D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 2002 3 6 453 462 10.1038/nrn849 12042880
    [Google Scholar]
  66. Wiescholleck V. Manahan-Vaughan D. Antagonism of D1/D5 receptors prevents long‐term depression (LTD) and learning‐facilitated LTD at the perforant path–dentate gyrus synapse in freely behaving rats. Hippocampus 2014 24 12 1615 1622 10.1002/hipo.22340 25112177
    [Google Scholar]
  67. Lieberknecht V. Cunha M.P. Junqueira S.C. Coelho I.S. de Souza L.F. dos Santos A.R.S. Rodrigues A.L.S. Dutra R.C. Dafre A.L. Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behav. Brain Res. 2017 320 365 373 10.1016/j.bbr.2016.11.007 27825895
    [Google Scholar]
  68. Bagot R.C. Parise E.M. Peña C.J. Zhang H.X. Maze I. Chaudhury D. Persaud B. Cachope R. Bolaños-Guzmán C.A. Cheer J.F. Deisseroth K. Han M.H. Nestler E.J. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015 6 1 7062 10.1038/ncomms8062 25952660
    [Google Scholar]
  69. Yang Y. Wang H. Hu J. Hu H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 2018 48 90 96 10.1016/j.conb.2017.10.024 29175713
    [Google Scholar]
  70. Cerniauskas I. Winterer J. de Jong J.W. Lukacsovich D. Yang H. Khan F. Peck J.R. Obayashi S.K. Lilascharoen V. Lim B.K. Földy C. Lammel S. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 2019 104 5 899 915.e8 10.1016/j.neuron.2019.09.005 31672263
    [Google Scholar]
  71. Seo J-S. Zhong P. Liu A. Yan Z. Greengard P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol. Psychiatry 2018 23 5 1113 1119 10.1038/mp.2017.96 28507317
    [Google Scholar]
  72. Li K. Zhou T. Liao L. Yang Z. Wong C. Henn F. Malinow R. Yates J.R. III Hu H. βCaMKII in lateral habenula mediates core symptoms of depression. Science 2013 341 6149 1016 1020 10.1126/science.1240729 23990563
    [Google Scholar]
  73. Matsumoto M. Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007 447 7148 1111 1115 10.1038/nature05860 17522629
    [Google Scholar]
  74. Chan J. Ni Y. Zhang P. Zhang J. Chen Y. D1-like dopamine receptor dysfunction in the lateral habenula nucleus increased anxiety-like behavior in rat. Neuroscience 2017 340 542 550 10.1016/j.neuroscience.2016.11.005 27865867
    [Google Scholar]
  75. Proulx C.D. Hikosaka O. Malinow R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 2014 17 9 1146 1152 10.1038/nn.3779 25157511
    [Google Scholar]
  76. Hui Y. Du C. Xu T. Zhang Q. Tan H. Liu J. Dopamine D4 receptors in the lateral habenula regulate depression-related behaviors via a pre-synaptic mechanism in experimental Parkinson’s disease. Neurochem. Int. 2020 140 104844 10.1016/j.neuint.2020.104844 32891683
    [Google Scholar]
  77. Root D.H. Melendez R.I. Zaborszky L. Napier T.C. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog. Neurobiol. 2015 130 29 70 10.1016/j.pneurobio.2015.03.005 25857550
    [Google Scholar]
  78. Smith K.S. Tindell A.J. Aldridge J.W. Berridge K.C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 2009 196 2 155 167 10.1016/j.bbr.2008.09.038 18955088
    [Google Scholar]
  79. Tooley J. Marconi L. Alipio J.B. Matikainen-Ankney B. Georgiou P. Kravitz A.V. Creed M.C. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol. Psychiatry 2018 83 12 1012 1023 10.1016/j.biopsych.2018.01.003 29452828
    [Google Scholar]
  80. Faget L. Zell V. Souter E. McPherson A. Ressler R. Gutierrez-Reed N. Yoo J.H. Dulcis D. Hnasko T.S. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat. Commun. 2018 9 1 849 10.1038/s41467‑018‑03125‑y 29487284
    [Google Scholar]
  81. Wengler K. Ashinoff B.K. Pueraro E. Cassidy C.M. Horga G. Rutherford B.R. Association between neuromelanin-sensitive MRI signal and psychomotor slowing in late-life depression. Neuropsychopharmacology 2021 46 7 1233 1239 10.1038/s41386‑020‑00860‑z
    [Google Scholar]
  82. Wise T. Radua J. Via E. Cardoner N. Abe O. Adams T.M. Amico F. Cheng Y. Cole J.H. de Azevedo Marques Périco C. Dickstein D.P. Farrow T F D. Frodl T. Wagner G. Gotlib I.H. Gruber O. Ham B.J. Job D.E. Kempton M.J. Kim M.J. Koolschijn P.C.M.P. Malhi G.S. Mataix-Cols D. McIntosh A.M. Nugent A.C. O’Brien J.T. Pezzoli S. Phillips M.L. Sachdev P.S. Salvadore G. Selvaraj S. Stanfield A.C. Thomas A.J. van Tol M.J. van der Wee N.J.A. Veltman D.J. Young A.H. Fu C.H. Cleare A.J. Arnone D. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Mol. Psychiatry 2017 22 10 1455 1463 10.1038/mp.2016.72 27217146
    [Google Scholar]
  83. Brandl F. Weise B. Mulej Bratec S. Jassim N. Hoffmann Ayala D. Bertram T. Ploner M. Sorg C. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: A transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology 2022 47 5 1071 1080 10.1038/s41386‑022‑01271‑y
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273357909241126064951
Loading
/content/journals/cnsnddt/10.2174/0118715273357909241126064951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test