Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Central Nervous System (CNS) disorders affect millions of people worldwide, with a significant proportion experiencing drug-resistant forms where conventional medications fail to provide adequate seizure control. This abstract delves into recent advancements and innovative therapies aimed at addressing the complex challenge of CNS-related drug-resistant epilepsy (DRE) management. The idea of precision medicine has opened up new avenues for epilepsy treatment. Herbs such as curcumin, ginkgo biloba, panax ginseng, bacopa monnieri, ashwagandha, and rhodiola rosea influence the BDNF pathway through various mechanisms. These include the activation of CREB, inhibition of NF-κB, modulation of neurotransmitters, reduction of oxidative stress, and anti-inflammatory effects. By promoting BDNF expression and activity, these herbs support neuroplasticity, cognitive function, and overall neuronal health. Novel antiepileptic drugs (AEDs) with distinct mechanisms of action demonstrate efficacy in refractory cases where traditional medications falter. Additionally, repurposing existing drugs for antiepileptic purposes presents a cost-effective strategy to broaden therapeutic choices. Cannabidiol (CBD), derived from cannabis herbs, has garnered attention for its anticonvulsant properties, offering a potential adjunctive therapy for refractory seizures. In conclusion, recent advances and innovative therapies represent a multifaceted approach to managing drug-resistant epilepsy. Leveraging precision medicine, neurostimulation technologies, novel pharmaceuticals, and complementary therapies, clinicians can optimize treatment outcomes and improve the life expectancy of patients living with refractory seizures. Genetic testing and biomarker identification now allow for personalized therapeutic approaches tailored to individual patient profiles. Utilizing next-generation sequencing techniques, researchers have elucidated genetic mutations.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273332140240724093837
2024-07-26
2024-11-22
Loading full text...

Full text loading...

References

  1. AbramoviciS. BagićA. Epidemiology of epilepsy.Handb. Clin. Neurol.201613815917110.1016/B978‑0‑12‑802973‑2.00010‑0
    [Google Scholar]
  2. AfraP. AdamolekunB. AydemirS. WatsonG.D.R. Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy.Front. Med. Technol.2021369654310.3389/fmedt.2021.696543 35047938
    [Google Scholar]
  3. AlachkarA. ŁażewskaD. LataczG. Studies on anticonvulsant effects of novel histamine H3R antagonists in electrically and chemically induced seizures in rats.Int. J. Mol. Sci.20181911338610.3390/ijms19113386 30380674
    [Google Scholar]
  4. AllahverdiyevO. DzhafarS. BerközM. YıldırımM. Advances in current medication and new therapeutic approaches in epilepsy.East. J. Med.2018231485910.5505/ejm.2018.62534
    [Google Scholar]
  5. AlnamerR. AlaouiK. BouididaE.H. BenjouadA. CherrahY. Sedative and hypnotic activities of the methanolic and aqueous extracts of Lavandula officinalis from Morocco.Adv. Pharmacol. Pharm. Sci.2012621501554 33299983
    [Google Scholar]
  6. AnandP. OthonG.C. SakadiF. Epilepsy and traditional healers in the Republic of Guinea: A mixed methods study.Epilepsy Behav.20199227628210.1016/j.yebeh.2019.01.017 30731293
    [Google Scholar]
  7. AndersonR.J. FryeM.A. AbulseoudO.A. Deep brain stimulation for treatment-resistant depression: Efficacy, safety and mechanisms of action.Neurosci. Biobehav. Rev.20123681920193310.1016/j.neubiorev.2012.06.001 22721950
    [Google Scholar]
  8. AnnegersJ.F. Epidemiology and genetics of epilepsy.Neurol. Clin.1994121153010.1016/S0733‑8619(18)30108‑7 8183207
    [Google Scholar]
  9. AnuradhaH. SrikumarB.N. Shankaranarayana RaoB.S. LakshmanaM. Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABAA receptor benzodiazepine receptor-Cl-channel complex.J. Neural Transm.20081151354210.1007/s00702‑007‑0821‑6 18087670
    [Google Scholar]
  10. AwadR. LevacD. CybulskaP. MeraliZ. TrudeauV.L. ArnasonJ.T. Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) systemThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products.Can. J. Physiol. Pharmacol.200785993394210.1139/Y07‑083 18066140
    [Google Scholar]
  11. BanerjeeP.N. FilippiD. Allen HauserW. The descriptive epidemiology of epilepsy-A review.Epilepsy Res.2009851314510.1016/j.eplepsyres.2009.03.003 19369037
    [Google Scholar]
  12. BaranS. BrownP.C. BaudyA.R. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate).Altern. Anim. Exp.202239229731410.14573/altex.2112203 35064273
    [Google Scholar]
  13. BartschT. WulffP. The hippocampus in aging and disease: From plasticity to vulnerability.Neuroscience201530911610.1016/j.neuroscience.2015.07.084 26241337
    [Google Scholar]
  14. BauerS. BaierH. BaumgartnerC. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial (cMPsE02).Brain Stimul.20169335636310.1016/j.brs.2015.11.003 27033012
    [Google Scholar]
  15. BeghiE. The epidemiology of epilepsy.Neuroepidemiology202054218519110.1159/000503831 31852003
    [Google Scholar]
  16. BenabidA.L. Deep brain stimulation for Parkinson’s disease.Curr. Opin. Neurobiol.200313669670610.1016/j.conb.2003.11.001 14662371
    [Google Scholar]
  17. BenarrochE.E. GABA A receptor heterogeneity, function, and implications for epilepsy.Neurology200768861261410.1212/01.wnl.0000255669.83468.dd 17310035
    [Google Scholar]
  18. Ben-MenachemE. FrenchJ.A. VNS Therapy versus the latest antiepileptic drug.Epileptic Disord.20057S1Suppl. 1S22S2610.1684/j.1950‑6945.2005.tb00148.x 16120490
    [Google Scholar]
  19. BerényiA. BelluscioM. MaoD. BuzsákiG. Closed-loop control of epilepsy by transcranial electrical stimulation.Science2012337609573573710.1126/science.1223154 22879515
    [Google Scholar]
  20. BergA.T. TestaF.M. LevyS.R. ShinnarS. The epidemiology of epilepsy. Past, present, and future.Neurol. Clin.199614238339810.1016/S0733‑8619(05)70263‑2 8827178
    [Google Scholar]
  21. BergeyG.K. MorrellM.J. MizrahiE.M. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures.Neurology201584881081710.1212/WNL.0000000000001280 25616485
    [Google Scholar]
  22. BoisonD. Cell and gene therapies for refractory epilepsy.Curr. Neuropharmacol.20075211512510.2174/157015907780866938 18615179
    [Google Scholar]
  23. BratsosS.P. KarponisD. SalehS.N. Efficacy and safety of deep brain stimulation in the treatment of Parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials.Cureus20181010e347410.7759/cureus.3474 30648026
    [Google Scholar]
  24. BrodieM.J. DichterM.A. Established antiepileptic drugs.Seizure19976315917410.1016/S1059‑1311(97)80001‑5 9203243
    [Google Scholar]
  25. BrodieM.J. Tolerability and safety of commonly used antiepileptic drugs in adolescents and adults: A clinician’s overview.CNS Drugs201731213514710.1007/s40263‑016‑0406‑8 28101765
    [Google Scholar]
  26. BrowneT.R. PenryJ.K. Benzodiazepines in the treatment of epilepsy. A review.Epilepsia197314327731010.1111/j.1528‑1157.1973.tb03965.x 4204764
    [Google Scholar]
  27. CattaneoS. VerlengiaG. MarinoP. SimonatoM. BettegazziB. NPY and gene therapy for epilepsy: How, when, and Y.Front. Mol. Neurosci.20211360800110.3389/fnmol.2020.608001 33551745
    [Google Scholar]
  28. ChabanguQ. MaputleM.S. LebeseR.T. Management of epilepsy through indigenous traditional and Western approaches in Africa: A systematic review.Health SA202227198410.4102/hsag.v27i0.1984 36483509
    [Google Scholar]
  29. ChindoB.A. SchröderH. BeckerA. Methanol extract of Ficus platyphylla ameliorates seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice.Phytomedicine2015221869310.1016/j.phymed.2014.10.005 25636876
    [Google Scholar]
  30. CragoP.E. MortimerJ.T. PeckhamP.H. Closed-loop control of force during electrical stimulation of muscle.IEEE Trans. Biomed. Eng.1980BME-27630631210.1109/TBME.1980.326738 7390527
    [Google Scholar]
  31. CukiertA. Vagus nerve stimulation for epilepsy: An evidence-based approach.Prog. Neurol. Surg.201629395210.1159/000434654 26393531
    [Google Scholar]
  32. DalgaardL. Comparison of minipig, dog, monkey and human drug metabolism and disposition.J. Pharmacol. Toxicol. Methods201574809210.1016/j.vascn.2014.12.005 25545337
    [Google Scholar]
  33. DalicL. CookM. Managing drug-resistant epilepsy: challenges and solutions.Neuropsychiatr. Dis. Treat.2016122605261610.2147/NDT.S84852 27789949
    [Google Scholar]
  34. DoostmohammadiM. RahimiH.R. ADME and toxicity considerations for tramadol: From basic research to clinical implications.Expert Opin. Drug Metab. Toxicol.202016762764010.1080/17425255.2020.1776700 32476523
    [Google Scholar]
  35. DostrovskyJ.O. LozanoA.M. Mechanisms of deep brain stimulation.Mov. Disord.200217S3S63S6810.1002/mds.10143
    [Google Scholar]
  36. DreesC. AfraP. VernerR. Feasibility study of microburst VNS therapy in drug-resistant focal and generalized epilepsy.Brain Stimul.202417238239110.1016/j.brs.2024.03.010 38499287
    [Google Scholar]
  37. EksteinD. SchachterS.C. Natural products in epilepsy- the present situation and perspectives for the future.Pharmaceuticals2010351426144510.3390/ph3051426 27713311
    [Google Scholar]
  38. EzzyatY. WandaP.A. LevyD.F. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory.Nat. Commun.20189136510.1038/s41467‑017‑02753‑0 29410414
    [Google Scholar]
  39. FanJ.J. ShanW. WuJ.P. WangQ. Research progress of vagus nerve stimulation in the treatment of epilepsy.CNS Neurosci. Ther.201925111222122810.1111/cns.13209 31429206
    [Google Scholar]
  40. ForsgrenL. BeghiE. ÕunA. SillanpääM. The epidemiology of epilepsy in Europe - A systematic review.Eur. J. Neurol.200512424525310.1111/j.1468‑1331.2004.00992.x 15804240
    [Google Scholar]
  41. FortunaA. AlvesG. Soares-da-SilvaP. FalcãoA. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: New set of data for predictive in silico ADME models.Epilepsy Res.20131071-2375010.1016/j.eplepsyres.2013.08.013 24050973
    [Google Scholar]
  42. FountasK.N. SmithJ.R. MurroA.M. PolitskyJ. ParkY.D. JenkinsP.D. Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy: A technical note.Stereotact. Funct. Neurosurg.200583415315810.1159/000088656 16205108
    [Google Scholar]
  43. FrenchJ.A. WhiteH.S. KlitgaardH. Development of new treatment approaches for epilepsy: Unmet needs and opportunities.Epilepsia201354s4Suppl. 431210.1111/epi.12294 23909849
    [Google Scholar]
  44. GalanopoulouA.S. BuckmasterP.S. StaleyK.J. Identification of new epilepsy treatments: Issues in preclinical methodology.Epilepsia201253357158210.1111/j.1528‑1167.2011.03391.x 22292566
    [Google Scholar]
  45. GazolaA.C. CostaG.M. ZucolottoS.M. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway.Biomed. Pharmacother.201810038839310.1016/j.biopha.2018.02.002 29454287
    [Google Scholar]
  46. GidalB.E. ResnickT. SmithM.C. WhelessJ.W. Zonisamide.Neurol. Clin. Pract.2024141e20021010.1212/CPJ.0000000000200210 38170117
    [Google Scholar]
  47. GilaniA.H. AzizN. KhanM.A. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L.J. Ethnopharmacol.2000711-216116710.1016/S0378‑8741(99)00198‑1 10904159
    [Google Scholar]
  48. GuiraudD. AndreuD. BonnetS. Vagus nerve stimulation: State of the art of stimulation and recording strategies to address autonomic function neuromodulation.J. Neural Eng.201613404100210.1088/1741‑2560/13/4/041002 27351347
    [Google Scholar]
  49. GuptaG. KazmiI. AfzalM. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats.J. Ethnopharmacol.2012141381081610.1016/j.jep.2012.03.013 22449438
    [Google Scholar]
  50. GürdereM.B. BudakY. KocyigitU.M. TaslimiP. TüzünB. CeylanM. ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. In Silico Pharmacol.2021913410.1007/s40203‑021‑00094‑x 33968600
    [Google Scholar]
  51. HauserW.A. AnnegersJ.F. RoccaW.A. Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota.Mayo Clin. Proc.199671657658610.4065/71.6.576 8642887
    [Google Scholar]
  52. HeL.Y. HuM.B. LiR.L. Natural medicines for the treatment of epilepsy: Bioactive components, pharmacology and mechanism.Front. Pharmacol.20211260404010.3389/fphar.2021.604040 33746751
    [Google Scholar]
  53. HellF. PalleisC. MehrkensJ.H. KoeglspergerT. BötzelK. Deep brain stimulation programming 2.0: Future perspectives for target identification and adaptive closed loop stimulation.Front. Neurol.20191031410.3389/fneur.2019.00314 31001196
    [Google Scholar]
  54. HenryT.R. Therapeutic mechanisms of vagus nerve stimulation.Neurology2002596Suppl. 4S3S14 12270962
    [Google Scholar]
  55. HoT.Y. TangN.Y. HsiangC.Y. HsiehC.L. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.Phytomedicine201421689390010.1016/j.phymed.2014.01.011 24636743
    [Google Scholar]
  56. HolmesM.D. SilbergeldD.L. DrouhardD. WilenskyA.J. OjemannL.M. Effect of vagus nerve stimulation on adults with pharmacoresistant generalized epilepsy syndromes.Seizure200413534034510.1016/j.seizure.2003.09.002 15158706
    [Google Scholar]
  57. HowlandR.H. Vagus nerve stimulation.Curr. Behav. Neurosci. Rep.201412647310.1007/s40473‑014‑0010‑5 24834378
    [Google Scholar]
  58. HuangY. MaS. WangY. The role of traditional Chinese herbal medicines and bioactive ingredients on ion channels: A brief review and prospect.CNS Neurol. Disord. Drug Targets201918425726510.2174/1871527317666181026165400 30370864
    [Google Scholar]
  59. IngusciS. CattaneoS. VerlengiaG. ZucchiniS. SimonatoM. A matter of genes: the hurdles of gene therapy for epilepsy.Epilepsy Curr.2019191384310.1177/1535759718822846 30838918
    [Google Scholar]
  60. JacobsM.P. FischbachG.D. DavisM.R. Future directions for epilepsy research.Neurology20015791536154210.1212/WNL.57.9.1536 11706087
    [Google Scholar]
  61. JangraS. BudhwarV. Ethno medicinal plants with anticonvulsant activity through GABAergic mechanism - A review.Indian J. Nat. Prod. Resour.2022133274286
    [Google Scholar]
  62. JohnsonR.L. WilsonC.G. A review of vagus nerve stimulation as a therapeutic intervention.J. Inflamm. Res.20181120321310.2147/JIR.S163248 29844694
    [Google Scholar]
  63. Kakooza-MwesigeA. The importance of botanical treatments in traditional societies and challenges in developing countries.Epilepsy Behav201552Pt B29730710.1016/j.yebeh.2015.06.017 26293314
    [Google Scholar]
  64. KamińskiK. MogilskiS. AbramM. KA-104, a new multitargeted anticonvulsant with potent antinociceptive activity in preclinical models.Epilepsia202061102119212810.1111/epi.16669 32929733
    [Google Scholar]
  65. KandarH.K. DasS.K. GhoshL. GuptaB.K. Epilepsy and its management: A review.J. Pharm. Sci. Technol.2012122026
    [Google Scholar]
  66. Kanter-SchlifkeI. GeorgievskaB. KirikD. KokaiaM. Seizure suppression by GDNF gene therapy in animal models of epilepsy.Mol. Ther.20071561106111310.1038/sj.mt.6300148 17387333
    [Google Scholar]
  67. KeimpemaE. AlpárA. HowellF. Diacylglycerol lipase α manipulation reveals developmental roles for intercellular endocannabinoid signaling.Sci. Rep.201331209310.1038/srep02093 23806960
    [Google Scholar]
  68. KollerW.C. LyonsK.E. WilkinsonS.B. TrosterA.I. PahwaR. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor.Mov. Disord.200116346446810.1002/mds.1089 11391740
    [Google Scholar]
  69. KringelbachM.L. JenkinsonN. OwenS.L.F. AzizT.Z. Translational principles of deep brain stimulation.Nat. Rev. Neurosci.20078862363510.1038/nrn2196 17637800
    [Google Scholar]
  70. KullmannD.M. SchorgeS. WalkerM.C. WykesR.C. Gene therapy in epilepsy—is it time for clinical trials?Nat. Rev. Neurol.201410530030410.1038/nrneurol.2014.43 24638133
    [Google Scholar]
  71. KuoC.S. KwanC.Y. GongC.L. Apocynum venetum leaf aqueous extract inhibits voltage-gated sodium channels of mouse neuroblastoma N2A cells.J. Ethnopharmacol.2011136114915510.1016/j.jep.2011.04.035 21530630
    [Google Scholar]
  72. KwokC.S. JohnsonE.L. KraussG.L. Comparing safety and efficacy of “third-generation” antiepileptic drugs: long-term extension and post-marketing treatment.CNS Drugs2017311195997410.1007/s40263‑017‑0480‑6 29204953
    [Google Scholar]
  73. LiF. SinghA.V. Recent advancements to enhance the therapeutic efficacy of antiepileptic drugs.Acta Pharm.202171452754410.2478/acph‑2021‑0041 36651558
    [Google Scholar]
  74. LiuW. GeT. PanZ. LengY. LvJ. LiB. The effects of herbal medicine on epilepsy.Oncotarget2017829483854839710.18632/oncotarget.16801 28423368
    [Google Scholar]
  75. LöscherW. KleinP. The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond.CNS Drugs202135993596310.1007/s40263‑021‑00827‑8 34145528
    [Google Scholar]
  76. LöscherW. PotschkaH. SisodiyaS.M. VezzaniA. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options.Pharmacol. Rev.202072360663810.1124/pr.120.019539 32540959
    [Google Scholar]
  77. LöscherW. GernertM. HeinemannU. Cell and gene therapies in epilepsy - Promising avenues or blind alleys?Trends Neurosci.2008312627310.1016/j.tins.2007.11.012 18201772
    [Google Scholar]
  78. MalikR. MehtaP. SrivastavaS. ChoudharyB.S. SharmaM. Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents.J. Recept. Signal Transduct. Res.201737325926610.1080/10799893.2016.1217883 27607834
    [Google Scholar]
  79. ManfordM. Recent advances in epilepsy.J. Neurol.201726481811182410.1007/s00415‑017‑8394‑2 28120042
    [Google Scholar]
  80. MaoH. ChenY. GeQ. YeL. ChengH. Short-and long-term response of vagus nerve stimulation therapy in drug-resistant epilepsy: A systematic review and meta-analysis.Neuromodulation202225332734210.1111/ner.13509 35396068
    [Google Scholar]
  81. Martinez-RamirezD. Jimenez-ShahedJ. LeckmanJ.F. Efficacy and safety of deep brain stimulation in Tourette syndrome: The international Tourette syndrome deep brain stimulation public database and registry.JAMA Neurol.201875335335910.1001/jamaneurol.2017.4317 29340590
    [Google Scholar]
  82. MertensA. RaedtR. GadeyneS. CarretteE. BoonP. VonckK. Recent advances in devices for vagus nerve stimulation.Expert Rev. Med. Devices201815852753910.1080/17434440.2018.1507732 30071175
    [Google Scholar]
  83. MesraouaB. DeleuD. KullmannD.M. Novel therapies for epilepsy in the pipeline.Epilepsy Behav.20199728229010.1016/j.yebeh.2019.04.042 31284159
    [Google Scholar]
  84. MilbyA.H. HalpernC.H. BaltuchG.H. Vagus nerve stimulation for epilepsy and depression.Neurotherapeutics200851758510.1016/j.nurt.2007.10.071 18164486
    [Google Scholar]
  85. MiocinovicS. SomayajulaS. ChitnisS. VitekJ.L. History, applications, and mechanisms of deep brain stimulation.JAMA Neurol.201370216317110.1001/2013.jamaneurol.45 23407652
    [Google Scholar]
  86. MirM.A. MalikA.B. QadrieZ. DarM.A. Adverse reactions caused by antiepileptic medications in real-world medical settings.IJCRPP2023102535
    [Google Scholar]
  87. MiziakB. Chrościńska-KrawczykM. BłaszczykB. RadzikI. CzuczwarS.J. Novel approaches to anticonvulsant drug discovery.Expert Opin. Drug Discov.20138111415142710.1517/17460441.2013.837047 24050182
    [Google Scholar]
  88. MorrisG. SchorgeS. Gene therapy for neurological disease: State of the art and opportunities for next-generation approaches.Neuroscience202249030931410.1016/j.neuroscience.2022.03.010 35304290
    [Google Scholar]
  89. MorrisG.III Efficacy and tolerability of gabapentin in clinical practice.Clin. Ther.199517589190010.1016/0149‑2918(95)80067‑0 8595641
    [Google Scholar]
  90. MoshéS.L. PeruccaE. RyvlinP. TomsonT. Epilepsy: New advances.Lancet2015385997188489810.1016/S0140‑6736(14)60456‑6 25260236
    [Google Scholar]
  91. NaegeleJ.R. MaisanoX. YangJ. RoystonS. RibeiroE. Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy.Neuropharmacology201058685586410.1016/j.neuropharm.2010.01.019 20146928
    [Google Scholar]
  92. NahS.Y. Ginseng ginsenoside pharmacology in the nervous system: Involvement in the regulation of ion channels and receptors.Front. Physiol.2014559810.3389/fphys.2014.00098 24678300
    [Google Scholar]
  93. NiriayoY.L. GebregziabherT. DemozG.T. TesfayN. GideyK. Drug therapy problems and contributing factors among patients with epilepsy.PLoS One2024193e029996810.1371/journal.pone.0299968 38451979
    [Google Scholar]
  94. NMDPO Molecular and genetic therapies 11.Neuromuscular Disorders: Treatment and Management2021194225
    [Google Scholar]
  95. NoéF. FrascaA. BalducciC. Neuropeptide Y overexpression using recombinant adeno-associated viral vectors.Neurotherapeutics20096230030610.1016/j.nurt.2009.01.012 19332323
    [Google Scholar]
  96. NoèF. PoolA.H. NissinenJ. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy.Brain200813161506151510.1093/brain/awn079 18477594
    [Google Scholar]
  97. OroszI. McCormickD. ZamponiN. Vagus nerve stimulation for drug-resistant epilepsy: A European long-term study up to 24 months in 347 children.Epilepsia201455101576158410.1111/epi.12762 25231724
    [Google Scholar]
  98. ParadisoB. ZucchiniS. SuT. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fibre sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus.Epilepsia2011523572578
    [Google Scholar]
  99. ParastarfeizabadiM. KouzaniA.Z. Advances in closed-loop deep brain stimulation devices.J. Neuroeng. Rehabil.20171417910.1186/s12984‑017‑0295‑1 28800738
    [Google Scholar]
  100. PellockJ.M. Efficacy and adverse effects of antiepileptic drugs.Pediatr. Clin. North Am.198936243544810.1016/S0031‑3955(16)36658‑5 2648284
    [Google Scholar]
  101. PerlmutterJ.S. MinkJ.W. Deep brain stimulation.Annu. Rev. Neurosci.200629122925710.1146/annurev.neuro.29.051605.112824 16776585
    [Google Scholar]
  102. PeruccaP. SchefferI.E. KileyM. The management of epilepsy in children and adults.Med. J. Aust.2018208522623310.5694/mja17.00951 29540143
    [Google Scholar]
  103. PitkänenA. NehligA. Brooks-KayalA.R. Issues related to development of antiepileptogenic therapies.Epilepsia201354s4Suppl. 4354310.1111/epi.12297 23909852
    [Google Scholar]
  104. PouratianN. ThakkarS. KimW. BronsteinJ.M. Deep brain stimulation for the treatment of Parkinson’s disease: Efficacy and safety.Degener. Neurol. Neuromuscul. Dis.201220122107117 24298202
    [Google Scholar]
  105. PowellK.L. FitzgeraldX. ShallueC. Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model.Neurobiol. Dis.2018113233210.1016/j.nbd.2018.01.016 29414380
    [Google Scholar]
  106. PriviteraM. Current challenges in the management of epilepsy.Am. J. Manag. Care201117Suppl. 7S195S203 21761951
    [Google Scholar]
  107. QiuY. O’NeillN. MaffeiB. On-demand cell-autonomous gene therapy for brain circuit disorders.Science2022378661952353210.1126/science.abq6656 36378958
    [Google Scholar]
  108. QuirkG.J. LikhtikE. PelletierJ.G. ParéD. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons.J. Neurosci.200323258800880710.1523/JNEUROSCI.23‑25‑08800.2003 14507980
    [Google Scholar]
  109. RadhakrishnanK. Challenges in the management of epilepsy in resource-poor countries.Nat. Rev. Neurol.20095632333010.1038/nrneurol.2009.53 19455183
    [Google Scholar]
  110. RichichiC. LinE.J.D. StefaninD. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus.J. Neurosci.200424123051305910.1523/JNEUROSCI.4056‑03.2004 15044544
    [Google Scholar]
  111. RogawskiM.A. HolmesG.L. Nontraditional epilepsy treatment approaches.Neurotherapeutics20096221321710.1016/j.nurt.2009.02.002 19332312
    [Google Scholar]
  112. RosinB. SlovikM. MitelmanR. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism.Neuron201172237038410.1016/j.neuron.2011.08.023 22017994
    [Google Scholar]
  113. RyvlinP. JehiL.E. Neuromodulation for refractory epilepsy.Epilepsy Curr.2022221111710.1177/15357597211065587 35233189
    [Google Scholar]
  114. RyvlinP. RheimsS. HirschL.J. SokolovA. JehiL. Neuromodulation in epilepsy: State-of-the-art approved therapies.Lancet Neurol.202120121038104710.1016/S1474‑4422(21)00300‑8 34710360
    [Google Scholar]
  115. SanderJ.W. The epidemiology of epilepsy revisited.Curr. Opin. Neurol.200316216517010.1097/00019052‑200304000‑00008 12644744
    [Google Scholar]
  116. SantanielloS. FiengoG. GlielmoL. GrillW.M. Closed-loop control of deep brain stimulation: A simulation study.IEEE Trans. Neural Syst. Rehabil. Eng.2011191152410.1109/TNSRE.2010.2081377 20889437
    [Google Scholar]
  117. SchachterS.C. SaperC.B. Vagus nerve stimulation.Epilepsia199839767768610.1111/j.1528‑1157.1998.tb01151.x 9670894
    [Google Scholar]
  118. SchachterS.C. Botanicals and herbs: A traditional approach to treating epilepsy.Neurotherapeutics20096241542010.1016/j.nurt.2008.12.004 19332338
    [Google Scholar]
  119. SchaldachM. What is closed loop stimulation.Prog Biomed Res1998324955
    [Google Scholar]
  120. SenanayakeN. RománG.C. Epidemiology of epilepsy in developing countries.Bull. World Health Organ.1993712247258 8490989
    [Google Scholar]
  121. ShahwanA. BaileyC. MaxinerW. HarveyA.S. Vagus nerve stimulation for refractory epilepsy in children: More to VNS than seizure frequency reduction.Epilepsia20095051220122810.1111/j.1528‑1167.2008.01940.x 19170732
    [Google Scholar]
  122. SharmaA.K. RaniE. WaheedA. RajputS.K. Pharmacoresistant epilepsy: A current update on non-conventional pharmacological and non-pharmacological interventions.J. Epilepsy Res.2015511810.14581/jer.15001 26157666
    [Google Scholar]
  123. ShethR.D. StafstromC.E. HsuD. Nonpharmacological treatment options for epilepsy.Semin. Pediatr. Neurol.200512210611310.1016/j.spen.2005.03.005 16114176
    [Google Scholar]
  124. ShorvonS.D. BermejoP.E. GibbsA.A. HuberfeldG. KälviäinenR. Antiepileptic drug treatment of generalized tonic–clonic seizures: An evaluation of regulatory data and five criteria for drug selection.Epilepsy Behav.2018829110310.1016/j.yebeh.2018.01.039 29602083
    [Google Scholar]
  125. ShrivastavaA. GoyalM.K. GuptaJ.K. Epileptogenic drugs and seizures: A comprehensive review of current knowledge.Int J Pharm Res2020122411
    [Google Scholar]
  126. ShrivastavaA. GuptaJ.K. GoyalM.K. Flavonoids and antiepileptic drugs: A comprehensive review on their neuroprotective potentials.J Med Pharm Allied Sci202211141794186
    [Google Scholar]
  127. ShrivastavaA. GuptaJ.K. GoyalM.K. Neuroprotective efficacy of quercetin with lamotrigine and gabapentin against pentylenetetrazole-induced kindling and associated behavioral comorbidities in mice.Indian J Pharm Educ Res2022564ss659s66810.5530/ijper.56.4s.212
    [Google Scholar]
  128. ShrivastavaA GuptaJ GoyalM Potential efficacy of ocimum sanctum hydro-alcoholic leaf extract as an adjuvant role with phenobarbital: Acute models of epilepsy on mice.Int J Nutr Pharmacol Neurol Dis202200010.4103/ijnpnd.ijnpnd_9_22
    [Google Scholar]
  129. ShrivastavaA. GuptaJ.K. GoyalM.K. Therapeutic approaches of nanotechnology for epileptic seizures: A comprehensive review of current knowledge.Indian J Pharm Educ Res202256362863510.5530/ijper.56.3.111
    [Google Scholar]
  130. ShrivastavaA. GuptaJ.K. ShahK. Neuroprotective potential of orientin with antiepileptic drugs against pentylenetetrazole-induced kindling model and evaluation of behavioral assessment in mice.Curr. Enzym. Inhib.2024201617010.2174/0115734080276565231024054936
    [Google Scholar]
  131. SimonatoM. Brooks-KayalA.R. EngelJ.Jr The challenge and promise of anti-epileptic therapy development in animal models.Lancet Neurol.201413994996010.1016/S1474‑4422(14)70076‑6 25127174
    [Google Scholar]
  132. SimonatoM. Gene therapy for epilepsy.Epilepsy Behav.20143812513010.1016/j.yebeh.2013.09.013 24100249
    [Google Scholar]
  133. SinghA. TrevickS. The epidemiology of global epilepsy.Neurol. Clin.201634483784710.1016/j.ncl.2016.06.015 27719996
    [Google Scholar]
  134. SkarpaasT.L. MorrellM.J. Intracranial stimulation therapy for epilepsy.Neurotherapeutics20096223824310.1016/j.nurt.2009.01.022 19332315
    [Google Scholar]
  135. SkrehotH.C. EnglotD.J. HaneefZ. Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis.Epilepsy Behav.202314210918210.1016/j.yebeh.2023.109182 36972642
    [Google Scholar]
  136. StreetJ.S. QiuY. LignaniG. Are genetic therapies for epilepsy ready for the clinic?Epilepsy Curr.202323424525010.1177/15357597231176234 37662470
    [Google Scholar]
  137. SunF.T. MorrellM.J. WharenR.E.Jr Responsive cortical stimulation for the treatment of epilepsy.Neurotherapeutics200851687410.1016/j.nurt.2007.10.069 18164485
    [Google Scholar]
  138. TakeuchiY. HarangozóM. PedrazaL. Closed-loop stimulation of the medial septum terminates epileptic seizures.Brain2021144388590810.1093/brain/awaa450 33501929
    [Google Scholar]
  139. ThijsR.D. SurgesR. O’BrienT.J. SanderJ.W. Epilepsy in adults.Lancet20193931017268970110.1016/S0140‑6736(18)32596‑0 30686584
    [Google Scholar]
  140. ToffaD.H. ToumaL. El MeskineT. BouthillierA. NguyenD.K. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review.Seizure20208310412310.1016/j.seizure.2020.09.027 33120323
    [Google Scholar]
  141. TrinkaE. KwanP. LeeB. DashA. Epilepsy in Asia: Disease burden, management barriers, and challenges.Epilepsia201960S1Suppl. 172110.1111/epi.14458 29953579
    [Google Scholar]
  142. UwanoT. NishijoH. OnoT. TamuraR. Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala.Neuroscience199568233936110.1016/0306‑4522(95)00125‑3 7477945
    [Google Scholar]
  143. VezzaniA. The promise of gene therapy for the treatment of epilepsy.Expert Rev. Neurother.20077121685169210.1586/14737175.7.12.1685 18052764
    [Google Scholar]
  144. VoineskosD. DaskalakisZ.J. BlumbergerD.M. Management of treatment-resistant depression: Challenges and strategies.Neuropsychiatr. Dis. Treat.20201622123410.2147/NDT.S198774 32021216
    [Google Scholar]
  145. VonckK. Van LaereK. DedeurwaerdereS. CaemaertJ. De ReuckJ. BoonP. The mechanism of action of vagus nerve stimulation for refractory epilepsy: The current status.J. Clin. Neurophysiol.200118539440110.1097/00004691‑200109000‑00002 11709643
    [Google Scholar]
  146. WahabA. Difficulties in treatment and management of epilepsy and challenges in new drug development.Pharmaceuticals2010372090211010.3390/ph3072090 27713344
    [Google Scholar]
  147. WeinbergM.S. McCownT.J. Current prospects and challenges for epilepsy gene therapy.Exp. Neurol.2013244273510.1016/j.expneurol.2011.10.003 22008258
    [Google Scholar]
  148. WinterF. KruegerM.T. DelevD. Current state of the art of traditional and minimal invasive epilepsy surgery approaches.Brain and Spine2024410275510.1016/j.bas.2024.102755 38510599
    [Google Scholar]
  149. WitkinJ.M. GolaniL. SmithJ.L. New and emerging antiepileptic drugs. In: Burger’s Medicinal Chemistry, Drug Discovery and Development.8th EdJohn Wiley and Sons202110.1002/0471266949.bmc099.pub3
    [Google Scholar]
  150. WuY. MoJ. SuiL. Deep brain stimulation in treatment-resistant depression: A systematic review and meta-analysis on efficacy and safety.Front. Neurosci.20211565541210.3389/fnins.2021.655412 33867929
    [Google Scholar]
  151. YangH. ShiW. FanJ. Transcutaneous auricular vagus nerve stimulation (Ta-vns) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial.Neurotherapeutics202320387088010.1007/s13311‑023‑01353‑9 36995682
    [Google Scholar]
  152. YoungD. FongD.M. LawlorP.A. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy.Gene Ther.201421121029104010.1038/gt.2014.82 25231174
    [Google Scholar]
  153. YuanH. SilbersteinS.D. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I.Headache2016561717810.1111/head.12647 26364692
    [Google Scholar]
  154. ZhangL. WangY. Gene therapy in epilepsy.Biomed. Pharmacother.202114311207510.1016/j.biopha.2021.112075 34488082
    [Google Scholar]
  155. ZhaoC. ZhangC. XingZ. AhmadZ. LiJ.S. ChangM.W. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review.Int. J. Biol. Macromol.20191211160117810.1016/j.ijbiomac.2018.10.076 30342128
    [Google Scholar]
  156. ZrennerC. ZiemannU. Closed-loop stimulation.Biol. Psychiatry202495654555210.1016/j.biopsych.2023.09.014 37743002
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273332140240724093837
Loading
/content/journals/cnsnddt/10.2174/0118715273332140240724093837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test