Skip to content
2000
image of Parkinson’s Disease: A Progressive Neurodegenerative Disorder and Structure-Activity Relationship of MAO Inhibitor Scaffolds as an Important Therapeutic Regimen

Abstract

Parkinson’s disease is considered an advancing neurodegenerative disorder with unknown causes, and its association with some risk factors, including aging, family history, and exposure to chemicals, makes it the second most common occurring neurodegenerative disorder throughout the world with increasing prevalence. Parkinson’s disease is associated with slow movement, rigidity, tremors, imbalance, depression, anxiety, cognitive impairment, orthostasis, hyperhidrosis, sleep disorders, pain, and sensory disturbances. In recent decades, there has been a rise in research on the development of effective and potential therapies for the treatment of Parkinson’s disease. An important target for neuroprotection is Monoamine Oxidases (MAO), which hydrolyze neurotransmitters like dopamine and produce very reactive free radicals as a by-product. Aging and neurodegenerative illnesses cause overexpression in the brain, which exacerbates neuronal loss. The treatment of Parkinson's disease with MAO inhibitors has shown promising outcomes. Herein, we reported characteristic features of Parkinson’s disease, various treatment strategies, and the SAR of potential drugs that can be explored further as lead for the development of newer molecules with improved pharmacological profiles.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273324300241010054029
2024-10-30
2025-01-18
Loading full text...

Full text loading...

References

  1. DeMaagd G. Philip A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P. T. 2015 40 8 504 532 26236139
    [Google Scholar]
  2. Salcedo-Arellano M.J. Wolf-Ochoa M.W. Hong T. Amina S. Tassone F. Lechpammer M. Hagerman R. Martínez-Cerdeño V. Parkinsonism versus concomitant parkinson’s disease in fragile X–associated tremor/ataxia syndrome. Mov. Disord. Clin. Pract. (Hoboken) 2020 7 4 413 418 10.1002/mdc3.12942 32373658
    [Google Scholar]
  3. Goyal V. Radhakrishnan D.M. Parkinson’s disease: A review. Neurol. India 2018 66 Suppl. 7 26 10.4103/0028‑3886.226451 29503325
    [Google Scholar]
  4. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  5. Yang W. Hamilton J.L. Kopil C. Beck J.C. Tanner C.M. Albin R.L. Ray Dorsey E. Dahodwala N. Cintina I. Hogan P. Thompson T. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 2020 6 1 15 10.1038/s41531‑020‑0117‑1 32665974
    [Google Scholar]
  6. Mulroy E. Stamelou M. Bhatia K.P. How to approach a patient with parkinsonism – red flags for atypical parkinsonism. Int. Rev. Neurobiol. 2019 149 1 34 10.1016/bs.irn.2019.10.001 31779810
    [Google Scholar]
  7. Jankovic J. Tan E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  8. Rasheed M.Z. Tabassum H. Parvez S. Mitochondrial permeability transition pore: A promising target for the treatment of Parkinson’s disease. Protoplasma 2017 254 1 33 42 10.1007/s00709‑015‑0930‑2 26825389
    [Google Scholar]
  9. Gillies G.E. Pienaar I.S. Vohra S. Qamhawi Z. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 2014 35 3 370 384 10.1016/j.yfrne.2014.02.002 24607323
    [Google Scholar]
  10. Cerri S. Mus L. Blandini F. Parkinson’s disease in women and men: What’s the difference? J. Parkinsons Dis. 2019 9 3 501 515 10.3233/JPD‑191683 31282427
    [Google Scholar]
  11. Elmer L.W. Hauser R.A. Initial and disease-modifying strategies in Parkinson’s disease. Parkinson’s Disease: Medical and Surgical Treatment 23 41 2013
    [Google Scholar]
  12. Reichmann H. Clinical criteria for the diagnosis of Parkinson’s disease. Neurodegener. Dis. 2010 7 5 284 290 10.1159/000314478 20616563
    [Google Scholar]
  13. Hely M.A. Reid W.G.J. Adena M.A. Halliday G.M. Morris J.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008 23 6 837 844 10.1002/mds.21956 18307261
    [Google Scholar]
  14. Meireles J. Massano J. Cognitive impairment and dementia in Parkinson’s disease: clinical features, diagnosis, and management. Front. Neurol. 2012 3 88 10.3389/fneur.2012.00088 22654785
    [Google Scholar]
  15. Delenclos M. Jones D.R. McLean P.J. Uitti R.J. Biomarkers in Parkinson’s disease: Advances and strategies. Parkinsonism Relat. Disord. 2016 22 Suppl 1 S106 S110 10.1016/j.parkreldis.2015.09.048 26439946
    [Google Scholar]
  16. Dadu A. Application of machine learning to the detection and prediction of Parkinson’s disease subtypes. Thesis, University of Illinois at Urbana-Champaign 2021
    [Google Scholar]
  17. Pfeiffer R.F. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 2016 22 Suppl. 1 S119 S122 10.1016/j.parkreldis.2015.09.004 26372623
    [Google Scholar]
  18. Saeed U. Compagnone J. Aviv R.I. Strafella A.P. Black S.E. Lang A.E. Masellis M. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: Current and emerging concepts. Transl. Neurodegener. 2017 6 1 8 10.1186/s40035‑017‑0076‑6 28360997
    [Google Scholar]
  19. Lee T.K. Yankee E.L. A review on Parkinson’s disease treatment. Neuroimmunol. Neuroinflamm. 2022 8 222 10.20517/2347‑8659.2020.58
    [Google Scholar]
  20. Jost W.H. Parkinsonian drugs: Indications. NeuroPsychopharmacother Springer Cham Riederer P. Laux G. Nagatsu T. Le W. Riederer C. 2022 2871 2889 10.1007/978‑3‑030‑62059‑2_216
    [Google Scholar]
  21. Reis J. Encarnação I. Gaspar A. Morales A. Milhazes N. Borges F. Parkinson’s disease management. Part II- discovery of MAO-B inhibitors based on nitrogen heterocycles and analogues. Curr. Top. Med. Chem. 2012 12 20 2116 2130 10.2174/156802612805220020 23231391
    [Google Scholar]
  22. More S.V. Choi D.K. Promising cannabinoid-based therapies for Parkinson’s disease: Motor symptoms to neuroprotection. Mol. Neurodegener. 2015 10 1 17 10.1186/s13024‑015‑0012‑0 25888232
    [Google Scholar]
  23. Doyon J. Bellec P. Amsel R. Penhune V. Monchi O. Carrier J. Lehéricy S. Benali H. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 2009 199 1 61 75 10.1016/j.bbr.2008.11.012 19061920
    [Google Scholar]
  24. Ferrazzoli D. Carter A. Ustun F.S. Palamara G. Ortelli P. Maestri R. Yücel M. Frazzitta G. Dopamine replacement therapy, learning and reward prediction in Parkinson’s disease: Implications for rehabilitation. Front. Behav. Neurosci. 2016 10 121 10.3389/fnbeh.2016.00121 27378872
    [Google Scholar]
  25. Corcos D.M. Robichaud J.A. David F.J. Leurgans S.E. Vaillancourt D.E. Poon C. Rafferty M.R. Kohrt W.M. Comella C.L. A two‐year randomized controlled trial of progressive resistance exercise for Parkinson’s disease. Mov. Disord. 2013 28 9 1230 1240 10.1002/mds.25380 23536417
    [Google Scholar]
  26. Xia Q.P. Cheng Z.Y. He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int. Immunopharmacol. 2019 76 105908 10.1016/j.intimp.2019.105908 31622861
    [Google Scholar]
  27. Butini S. Nikolic K. Kassel S. Brückmann H. Filipic S. Agbaba D. Gemma S. Brogi S. Brindisi M. Campiani G. Stark H. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol. 2016 142 68 103 10.1016/j.pneurobio.2016.03.011 27234980
    [Google Scholar]
  28. Borovac J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med. 2016 89 1 37 47 27505015
    [Google Scholar]
  29. Murugan N.A. Muvva C. Jeyarajpandian C. Jeyakanthan J. Subramanian V. Performance of force-field- and machine learning-based scoring functions in ranking MAO-B protein–inhibitor complexes in relevance to developing parkinson’s therapeutics. Int. J. Mol. Sci. 2020 21 20 7648 10.3390/ijms21207648 33081086
    [Google Scholar]
  30. Finberg J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther. 2014 143 2 133 152 10.1016/j.pharmthera.2014.02.010 24607445
    [Google Scholar]
  31. Finberg J.P.M. Inhibitors of MAO-B and COMT: Their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. (Vienna) 2019 126 4 433 448 10.1007/s00702‑018‑1952‑7 30386930
    [Google Scholar]
  32. Finberg J.P.M. Rabey J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol. 2016 7 340 10.3389/fphar.2016.00340 27803666
    [Google Scholar]
  33. Melfi F. Carradori S. Angeli A. D’Agostino I. Nature as a source and inspiration for human monoamine oxidase B (hMAO-B) inhibition: A review of the recent advances in chemical modification of natural compounds. Expert Opin. Drug Discov. 2023 18 8 851 879 10.1080/17460441.2023.2226860 37332199
    [Google Scholar]
  34. Karasulu B. Patil M. Thiel W. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661. J. Am. Chem. Soc. 2013 135 36 13400 13413 10.1021/ja403582u 23988016
    [Google Scholar]
  35. Koh R.Y. Chew Z.X. Lim C.L. Ng K.Y. Chye S.M. Ling A.P.K. The Role of monoamine oxidase B inhibitors in the treatment of Parkinson’s disease - An update. CNS Neurol. Disord. Drug Targets 2023 22 3 329 352 10.2174/1871527321666211231100255 34970960
    [Google Scholar]
  36. Balon R. Mufti R. Arfken C.L. A survey of prescribing practices for monoamine oxidase inhibitors. Psychiatr. Serv. 1999 50 7 945 947 10.1176/ps.50.7.945 10402617
    [Google Scholar]
  37. van Haelst I.M.M. van Klei W.A. Doodeman H.J. Kalkman C.J. Egberts T.C.G. Antidepressive treatment with monoamine oxidase inhibitors and the occurrence of intraoperative hemodynamic events: A retrospective observational cohort study. J. Clin. Psychiatry 2012 73 8 1103 1109 10.4088/JCP.11m07607 22938842
    [Google Scholar]
  38. Teo K.C. Ho S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease. Transl. Neurodegener. 2013 2 1 19 10.1186/2047‑9158‑2‑19 24011391
    [Google Scholar]
  39. Sjöqvist F. Psychotropic drugs (2). Interaction between monoamine oxidase (MAO) inhibitors and other substances. Proc. R. Soc. Med. 1965 58 11P2 967 978 10.1177/003591576505811P206 4952963
    [Google Scholar]
  40. Garcia E. Santos C. Monoamine oxidase inhibitor toxicity. StatPearls StatPearls Publishing Treasure Island (FL) 2023 29083800
    [Google Scholar]
  41. Happe K. Monoamine oxidase inhibitors. xPharm: The Comprehensive Pharmacology Reference New York Elsevier Enna S.J. Bylund D.B. 2011 1 3
    [Google Scholar]
  42. Zajecka J.M. Zajecka A.M. A clinical overview of monoamine oxidase inhibitors: pharmacological profile, efficacy, safety/tolerability, and strategies for successful outcomes in the management of major depressive disorders. Psychiatr. Ann. 2014 44 11 513 523 10.3928/00485713‑20141106‑07
    [Google Scholar]
  43. Edmondson D.E. Bhattacharyya A.K. Walker M.C. Spectral and kinetic studies of imine product formation in the oxidation of p-(N,N-dimethylamino)benzylamine analogs by monoamine oxidase B. Biochemistry 1993 32 19 5196 5202 10.1021/bi00070a031 8494896
    [Google Scholar]
  44. Aljanabi R. Alsous L. Sabbah D.A. Gul H.I. Gul M. Bardaweel S.K. Monoamine Oxidase (MAO) as a potential target for anticancer drug design and development Molecules 2021 26 19 6019 10.3390/molecules26196019
    [Google Scholar]
  45. Lanier M. Ambrus G. Cole D.C. Davenport R. Ellery J. Fosbeary R. Jennings A.J. Kadotani A. Kamada Y. Kamran R. Matsumoto S.I. Mizukami A. Okubo S. Okada K. Saikatendu K. Walsh L. Wu H. Hixon M.S. A fragment-based approach to identifying S-adenosyl-l-methionine -competitive inhibitors of catechol O-methyl transferase (COMT). J. Med. Chem. 2014 57 12 5459 5463 10.1021/jm500475k 24847974
    [Google Scholar]
  46. Ahmed H. Haider A. Ametamey S.M. N -Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin. Ther. Pat. 2020 30 10 743 767 10.1080/13543776.2020.1811234 32926646
    [Google Scholar]
  47. Nagai J. Baba R. Ohshima T. CRMPs Function in neurons and glial cells: Potential therapeutic targets for neurodegenerative diseases and CNS injury. Mol. Neurobiol. 2017 54 6 4243 4256 10.1007/s12035‑016‑0005‑1 27339876
    [Google Scholar]
  48. Carrarini C. Russo M. Dono F. Di Pietro M. Rispoli M.G. Di Stefano V. Ferri L. Barbone F. Vitale M. Thomas A. Sensi S.L. Onofrj M. Bonanni L. A stage-based approach to therapy in Parkinson’s disease. Biomolecules 2019 9 8 388 10.3390/biom9080388 31434341
    [Google Scholar]
  49. Williams-Gray C.H. Worth P.F. Parkinson’s disease. Medicine (Abingdon) 2020 48 9 595 601 10.1016/j.mpmed.2020.06.001
    [Google Scholar]
  50. Gohil K. Steady progress on Parkinson’s disease. P. T. 2014 39 10 712 713 25336868
    [Google Scholar]
  51. Jismy B. El Qami A. Pišlar A. Frlan R. Kos J. Gobec S. Knez D. Abarbri M. Pyrimido[1,2-b]indazole derivatives: Selective inhibitors of human monoamine oxidase B with neuroprotective activity. Eur. J. Med. Chem. 2021 209 112911 10.1016/j.ejmech.2020.112911 33071056
    [Google Scholar]
  52. Agrawal N. Mishra P. Novel isoxazole derivatives as potential antiparkinson agents: synthesis, evaluation of monoamine oxidase inhibitory activity and docking studies. Med. Chem. Res. 2019 28 9 1488 1501 10.1007/s00044‑019‑02388‑4
    [Google Scholar]
  53. Li S. Lv X. Cheng K. Tian Y. Huang X. Kong H. Duan Y. Han J. Liao C. Xie Z. Discovery of novel 2,3-dihydro-1H-inden-1-amine derivatives as selective monoamine oxidase B inhibitors. Bioorg. Med. Chem. Lett. 2019 29 9 1090 1093 10.1016/j.bmcl.2019.02.030 30833108
    [Google Scholar]
  54. Minders C. Petzer J.P. Petzer A. Lourens A.C.U. Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorg. Med. Chem. Lett. 2015 25 22 5270 5276 10.1016/j.bmcl.2015.09.049 26432037
    [Google Scholar]
  55. Kong Z. Sun D. Jiang Y. Hu Y. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. J. Enzyme Inhib. Med. Chem. 2020 35 1 1513 1523 10.1080/14756366.2020.1797711 32705910
    [Google Scholar]
  56. Chaurasiya N.D. Zhao J. Pandey P. Doerksen R.J. Muhammad I. Tekwani B.L. Selective inhibition of human monoamine oxidase B by acacetin 7-methyl ether isolated from turnera diffusa (Damiana). Molecules 2019 24 4 810 10.3390/molecules24040810 30813423
    [Google Scholar]
  57. Kong H. Meng X. Hou R. Yang X. Han J. Xie Z. Duan Y. Liao C. Novel 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as potent selective human monoamine oxidase B inhibitors: Design, SAR development, and biological evaluation. Bioorg. Med. Chem. Lett. 2021 43 128051 10.1016/j.bmcl.2021.128051 33887441
    [Google Scholar]
  58. El-Halaby L.O. El-Husseiny W.M. El-Messery S.M. Goda F.E. Biphenylpiperazine Based M.A.O. Biphenylpiperazine based MAO inhibitors: Synthesis, biological evaluation, reversibility and molecular modeling studies. Bioorg. Chem. 2021 115 105216 10.1016/j.bioorg.2021.105216 34352710
    [Google Scholar]
  59. Sağlık B.N. Osmaniye D. Acar Çevik U. Levent S. Kaya Çavuşoğlu B. Atlı Eklioğlu Ö. Özkay Y. Koparal A.S. Kaplancıklı Z.A. Synthesis, in vitro enzyme activity and molecular docking studies of new benzylamine-sulfonamide derivatives as selective MAO-B inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 1422 1432 10.1080/14756366.2020.1784892 32602377
    [Google Scholar]
  60. Kaya Çavuşoğlu B. Sağlık B.N. Özkay Y. İnci B. Kaplancıklı Z.A. Design, synthesis, monoamine oxidase inhibition and docking studies of new dithiocarbamate derivatives bearing benzylamine moiety. Bioorg. Chem. 2018 76 177 187 10.1016/j.bioorg.2017.11.012 29175589
    [Google Scholar]
  61. Ilgın S. Osmaniye D. Levent S. Sağlık B. Acar Çevik U. Çavuşoğlu B. Özkay Y. Kaplancıklı Z. Design and synthesis of new benzothiazole compounds as selective h MAO-B inhibitors. Molecules 2017 22 12 2187 10.3390/molecules22122187 29232838
    [Google Scholar]
  62. Evranos-Aksöz B. Baysal İ. Yabanoğlu-Çiftçi S. Djikic T. Yelekçi K. Uçar G. Ertan R. Synthesis and screening of human monoamine oxidase‐A inhibitor effect of new 2‐pyrazoline and hydrazone derivatives. Arch. Pharm. (Weinheim) 2015 348 10 743 756 10.1002/ardp.201500212 26293971
    [Google Scholar]
  63. Çeçen M. Oh J.M. Özdemir Z. Büyüktuncel S.E. Uysal M. Abdelgawad M.A. Musa A. Gambacorta N. Nicolotti O. Mathew B. Kim H. Design, synthesis, and biological evaluation of pyridazinones containing the (2-fluorophenyl) piperazine moiety as selective MAO-B inhibitors. Molecules 2020 25 22 5371 10.3390/molecules25225371 33212876
    [Google Scholar]
  64. Sağlık B.N. Kaya Çavuşoğlu B. Acar Çevik U. Osmaniye D. Levent S. Özkay Y. Kaplancıklı Z.A. Novel 1,3,4-thiadiazole compounds as potential MAO-A inhibitors – Design, synthesis, biological evaluation and molecular modelling. RSC Med. Chem. 2020 11 9 1063 1074 10.1039/D0MD00150C 33479699
    [Google Scholar]
  65. Takao K. Takemura Y. Nagai J. Kamauchi H. Hoshi K. Mabashi R. Uesawa Y. Sugita Y. Synthesis and biological evaluation of 3-styrylchromone derivatives as selective monoamine oxidase B inhibitors. Bioorg. Med. Chem. 2021 42 116255 10.1016/j.bmc.2021.116255 34119696
    [Google Scholar]
  66. Turan-Zitouni G. Hussein W. Sağlık B. Tabbi A. Korkut B. Design, synthesis and biological evaluation of novel N-pyridyl-hydrazone derivatives as potential Monoamine Oxidase (MAO) inhibitors. Molecules 2018 23 1 113 10.3390/molecules23010113 29316677
    [Google Scholar]
  67. Elkamhawy A. Paik S. Park J.H. Kim H.J. Hassan A.H.E. Lee K. Park K.D. Roh E.J. Discovery of novel and potent safinamide-based derivatives as highly selective hMAO-B inhibitors for treatment of Parkinson’s disease (PD): Design, synthesis, in vitro, in vivo and in silico biological studies. Bioorg. Chem. 2021 115 105233 10.1016/j.bioorg.2021.105233 34390968
    [Google Scholar]
  68. Rauhamäki S. Postila P.A. Niinivehmas S. Kortet S. Schildt E. Pasanen M. Manivannan E. Ahinko M. Koskimies P. Nyberg N. Huuskonen P. Multamäki E. Pasanen M. Juvonen R.O. Raunio H. Huuskonen J. Pentikäinen O.T. Structure-activity relationship analysis of 3-phenylcoumarin-based monoamine oxidase B inhibitors. Front Chem. 2018 6 41 10.3389/fchem.2018.00041 29552556
    [Google Scholar]
  69. Park H.R. Kim J. Kim T. Jo S. Yeom M. Moon B. Choo I.H. Lee J. Lim E.J. Park K.D. Min S.J. Nam G. Keum G. Lee C.J. Choo H. Oxazolopyridines and thiazolopyridines as monoamine oxidase B inhibitors for the treatment of Parkinson’s disease. Bioorg. Med. Chem. 2013 21 17 5480 5487 10.1016/j.bmc.2013.05.066 23810676
    [Google Scholar]
  70. Petzer A. Grobler P. Bergh J.J. Petzer J.P. Inhibition of monoamine oxidase by selected phenylalkylcaffeine analogues. J. Pharm. Pharmacol. 2014 66 5 677 687 10.1111/jphp.12193 24313346
    [Google Scholar]
  71. Nam M.H. Park M. Park H. Kim Y. Yoon S. Sawant V.S. Choi J.W. Park J.H. Park K.D. Min S.J. Lee C.J. Choo H. Indole-substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease. ACS Chem. Neurosci. 2017 8 7 1519 1529 10.1021/acschemneuro.7b00050 28332824
    [Google Scholar]
  72. Besada P. Viña D. Costas T. Costas-Lago M.C. Vila N. Torres-Terán I. Sturlese M. Moro S. Terán C. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorg. Chem. 2021 115 105203 10.1016/j.bioorg.2021.105203 34371375
    [Google Scholar]
  73. Carradori S. Ortuso F. Petzer A. Bagetta D. De Monte C. Secci D. De Vita D. Guglielmi P. Zengin G. Aktumsek A. Alcaro S. Petzer J.P. Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. Eur. J. Med. Chem. 2018 143 1543 1552 10.1016/j.ejmech.2017.10.050 29126727
    [Google Scholar]
  74. Wang X. Han C. Xu Y. Wu K. Chen S. Hu M. Wang L. Ye Y. Ye F. Synthesis and evaluation of phenylxanthine derivatives as potential dual A2AR antagonists/MAO-B inhibitors for Parkinson’s disease. Molecules 2017 22 6 1010 10.3390/molecules22061010 28629145
    [Google Scholar]
  75. Acar Çevik U. Osmaniye D. Sağlik B.N. Levent S. Kaya Çavuşoğlu B. Özkay Y. Kaplancikli Z.A. Synthesis and evaluation of new pyrazoline‐thiazole derivatives as monoamine oxidase inhibitors. J. Heterocycl. Chem. 2019 56 11 3000 3007 10.1002/jhet.3694
    [Google Scholar]
  76. Matos M.J. Rodríguez-Enríquez F. Vilar S. Santana L. Uriarte E. Hripcsak G. Estrada M. Rodríguez-Franco M.I. Viña D. Potent and selective MAO-B inhibitory activity: Amino- versus nitro-3-arylcoumarin derivatives. Bioorg. Med. Chem. Lett. 2015 25 3 642 648 10.1016/j.bmcl.2014.12.001 25532905
    [Google Scholar]
  77. Osmaniye D. Kurban B. Sağlık B.N. Levent S. Özkay Y. Kaplancıklı Z.A. Novel thiosemicarbazone derivatives: In vitro and in silico evaluation as potential MAO-B inhibitors. Molecules 2021 26 21 6640 10.3390/molecules26216640 34771054
    [Google Scholar]
  78. Wang D. Hong R.Y. Guo M. Liu Y. Chen N. Li X. Kong D.X. Novel C7-substituted coumarins as selective monoamine oxidase inhibitors: Discovery, synthesis and theoretical simulation. Molecules 2019 24 21 4003 10.3390/molecules24214003 31694262
    [Google Scholar]
  79. Nair A.S. Oh J.M. Koyiparambath V.P. Kumar S. Sudevan S.T. Soremekun O. Soliman M.E. Khames A. Abdelgawad M.A. Pappachen L.K. Mathew B. Kim H. Development of halogenated pyrazolines as selective monoamine oxidase-B Inhibitors: Deciphering via molecular dynamics approach. Molecules 2021 26 11 3264 10.3390/molecules26113264 34071665
    [Google Scholar]
  80. Vishnu Nayak B. Ciftci-Yabanoglu S. Jadav S.S. Jagrat M. Sinha B.N. Ucar G. Jayaprakash V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem. 2013 69 762 767 10.1016/j.ejmech.2013.09.010 24099995
    [Google Scholar]
  81. Chen R. Xiao J. Ni Y. Xu H.F. Zheng M. Tong X. Zhang T.T. Liao C. Tang W.J. Novel tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one: Design, synthesis, model and use as hMAO-B inhibitors. Bioorg. Med. Chem. 2016 24 8 1741 1748 10.1016/j.bmc.2016.02.045 26964672
    [Google Scholar]
  82. Guglielmi P. Carradori S. Poli G. Secci D. Cirilli R. Rotondi G. Chimenti P. Petzer A. Petzer J.P. Design, synthesis, docking studies and monoamine oxidase inhibition of a small library of 1-acetyl-and 1-thiocarbamoyl-3, 5-diphenyl-4, 5-dihydro-(1 H)-pyrazoles. Molecules 2019 24 3 484 10.3390/molecules24030484 30700029
    [Google Scholar]
  83. Mathew B. Haridas A. Uçar G. Baysal I. Joy M. Mathew G.E. Lakshmanan B. Jayaprakash V. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO‐B inhibitors. ChemMedChem 2016 11 11 1161 1171 10.1002/cmdc.201600122 27159243
    [Google Scholar]
  84. Tok F. Uğraş Z. Sağlık B.N. Özkay Y. Kaplancıklı Z.A. Koçyiğit-Kaymakçıoğlu B. Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem. 2021 112 104917 10.1016/j.bioorg.2021.104917 33932769
    [Google Scholar]
  85. Parambi D.G.T. Oh J.M. Baek S.C. Lee J.P. Tondo A.R. Nicolotti O. Kim H. Mathew B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg. Chem. 2019 93 103335 10.1016/j.bioorg.2019.103335 31606547
    [Google Scholar]
  86. Tong X. Chen R. Zhang T.T. Han Y. Tang W.J. Liu X.H. Design and synthesis of novel 2-pyrazoline-1-ethanone derivatives as selective MAO inhibitors. Bioorg. Med. Chem. 2015 23 3 515 525 10.1016/j.bmc.2014.12.010 25541201
    [Google Scholar]
  87. Qhobosheane M.A. Petzer A. Petzer J.P. Legoabe L.J. Synthesis and evaluation of 2-substituted 4(3H)-quinazolinone thioether derivatives as monoamine oxidase inhibitors. Bioorg. Med. Chem. 2018 26 20 5531 5537 10.1016/j.bmc.2018.09.032 30279044
    [Google Scholar]
  88. Choi J.W. Jang B.K. Cho N. Park J.H. Yeon S.K. Ju E.J. Lee Y.S. Han G. Pae A.N. Kim D.J. Park K.D. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg. Med. Chem. 2015 23 19 6486 6496 10.1016/j.bmc.2015.08.012 26337020
    [Google Scholar]
  89. Mathew B. Oh J.M. Baty R.S. Batiha G.E.S. Parambi D.G.T. Gambacorta N. Nicolotti O. Kim H. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. Environ. Sci. Pollut. Res. Int. 2021 28 29 38855 38866 10.1007/s11356‑021‑13320‑y 33743158
    [Google Scholar]
  90. Özdemir Z. Alagöz M.A. Uslu H. Karakurt A. Erikci A. Ucar G. Uysal M. Synthesis, molecular modelling and biological activity of some pyridazinone derivatives as selective human monoamine oxidase-B inhibitors. Pharmacol. Rep. 2020 72 3 692 704 10.1007/s43440‑020‑00070‑w 32144745
    [Google Scholar]
  91. Mathew B. Uçar G. Rapheal C. Mathew G.E. Joy M. Machaba K.E. Soliman M.E.S. Characterization of thienylchalcones as hMAO‐B inhibitors: Synthesis, biochemistry and molecular dynamics studies. ChemistrySelect 2017 2 34 11113 11119 10.1002/slct.201702141
    [Google Scholar]
  92. Strydom B. Bergh J.J. Petzer J.P. Inhibition of monoamine oxidase by phthalide analogues. Bioorg. Med. Chem. Lett. 2013 23 5 1269 1273 10.1016/j.bmcl.2013.01.003 23374869
    [Google Scholar]
  93. Tripathi R.K.P. Krishnamurthy S. Ayyannan S.R. Discovery of 3‐hydroxy‐3‐phenacyloxindole analogues of isatin as potential monoamine oxidase inhibitors. ChemMedChem 2016 11 1 119 132 10.1002/cmdc.201500443 26592797
    [Google Scholar]
  94. Legoabe L.J. Petzer A. Petzer J.P. The synthesis and evaluation of C7‐substituted α‐tetralone derivatives as inhibitors of monoamine oxidase. Chem. Biol. Drug Des. 2015 86 4 895 904 10.1111/cbdd.12508 25581511
    [Google Scholar]
  95. Kumar B. Kumar M. Dwivedi A.R. Kumar V. Synthesis, biological evaluation and molecular modeling studies of propargyl‐containing 2,4,6‐trisubstituted pyrimidine derivatives as potential anti‐parkinson agents. ChemMedChem 2018 13 7 705 712 10.1002/cmdc.201700589 29534334
    [Google Scholar]
  96. Çavuşoğlu B. Sağlık B. Osmaniye D. Levent S. Acar Çevik U. Karaduman A. Özkay Y. Kaplancıklı Z. Synthesis and biological evaluation of new thiosemicarbazone derivative schiff bases as monoamine oxidase inhibitory agents. Molecules 2017 23 1 60 10.3390/molecules23010060 29283399
    [Google Scholar]
  97. Nel M.S. Petzer A. Petzer J.P. Legoabe L.J. 2-Benzylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett. 2016 26 19 4599 4605 10.1016/j.bmcl.2016.08.067 27578245
    [Google Scholar]
  98. Liu L. Chen Y. Zeng R.F. Liu Y. Xie S.S. Lan J.S. Ding Y. Yang Y.T. Yang J. Zhang T. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease. Bioorg. Chem. 2021 109 104685 10.1016/j.bioorg.2021.104685 33640631
    [Google Scholar]
  99. Mattsson C. Svensson P. Sonesson C. A novel series of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones as selective monoamine oxidase (MAO) A inhibitors. Eur. J. Med. Chem. 2014 73 177 186 10.1016/j.ejmech.2013.11.035 24393810
    [Google Scholar]
  100. Pan Z.X. He X. Chen Y.Y. Tang W.J. Shi J.B. Tang Y.L. Song B.A. Li J. Liu X.H. New 2H-chromene-3-carboxamide derivatives: Design, synthesis and use as inhibitors of hMAO. Eur. J. Med. Chem. 2014 80 278 284 10.1016/j.ejmech.2014.04.060 24793878
    [Google Scholar]
  101. Sasidharan R. Manju S.L. Uçar G. Baysal I. Mathew B. Identification of indole‐based chalcones: Discovery of a potent, selective, and reversible class of MAO‐B inhibitors. Arch. Pharm. (Weinheim) 2016 349 8 627 637 10.1002/ardp.201600088 27373997
    [Google Scholar]
  102. Mertens M.D. Hinz S. Müller C.E. Gütschow M. Alkynyl–coumarinyl ethers as MAO-B inhibitors. Bioorg. Med. Chem. 2014 22 6 1916 1928 10.1016/j.bmc.2014.01.046 24560738
    [Google Scholar]
  103. Guglielmi P. Secci D. Petzer A. Bagetta D. Chimenti P. Rotondi G. Ferrante C. Recinella L. Leone S. Alcaro S. Zengin G. Petzer J.P. Ortuso F. Carradori S. Benzo[ b ]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: Design, synthesis, and biological activity. J. Enzyme Inhib. Med. Chem. 2019 34 1 1511 1525 10.1080/14756366.2019.1653864 31422706
    [Google Scholar]
  104. Tripathi R.K.P. Ayyannan S.R. Design, synthesis, and evaluation of 2‐amino‐6‐nitrobenzothiazole‐derived hydrazones as MAO inhibitors: Role of the methylene spacer group. ChemMedChem 2016 11 14 1551 1567 10.1002/cmdc.201600202 27332045
    [Google Scholar]
  105. Sağlık B.N. Cebeci O. Acar Çevik U. Osmaniye D. Levent S. Kaya Çavuşoğlu B. Ilgın S. Özkay Y. Kaplancıklı Z.A. Design, synthesis, in vitro and in silico studies of new thiazolylhydrazine-piperazine derivatives as selective MAO-A inhibitors. Molecules 2020 25 18 4342 10.3390/molecules25184342 32971892
    [Google Scholar]
  106. Meiring L. Petzer J.P. Petzer A. C6- and C7-substituted 3,4-dihydro-2(1H)-quinolinones as inhibitors of Monoamine Oxidase. Drug Res. (Stuttg.) 2017 67 3 170 178 27926950
    [Google Scholar]
  107. Rodríguez-Enríquez F. Viña D. Uriarte E. Fontenla J.A. Matos M.J. Discovery and optimization of 3-thiophenylcoumarins as novel agents against Parkinson’s disease: Synthesis, in vitro and in vivo studies. Bioorg. Chem. 2020 101 103986 10.1016/j.bioorg.2020.103986 32569895
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273324300241010054029
Loading
/content/journals/cnsnddt/10.2174/0118715273324300241010054029
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Parkinson’s disease ; MAO-B ; SAR ; MAO-A ; neurodegenerative
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test