Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Background

Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease (HD) induced by 3-nitropropionic acid (3-NP). In the 3-NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin-3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NP-induced striatal degeneration in mice .

Methods

Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways.

Results

Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT-3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery.

Conclusion

Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273298919240531110022
2024-12-01
2024-11-15
Loading full text...

Full text loading...

References

  1. BleschA. Neurotrophic factors in neurodegeneration.Brain Pathol.200616429530310.1111/j.1750‑3639.2006.00036.x 17107599
    [Google Scholar]
  2. HenniganA. O’CallaghanR.M. KellyÁ.M. Neurotrophins and their receptors: Roles in plasticity, neurodegeneration and neuroprotection.Biochem. Soc. Trans.200735242442710.1042/BST0350424 17371291
    [Google Scholar]
  3. YuenE.C. MobleyW.C. Therapeutic potential of neurotrophic factors for neurological disorders.Ann. Neurol.199640334635410.1002/ana.410400304 8797524
    [Google Scholar]
  4. AlberchJ. Pérez-NavarroE. CanalsJ.M. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease.Brain Res. Bull.200257681782210.1016/S0361‑9230(01)00775‑4 12031278
    [Google Scholar]
  5. ZuccatoC. CiammolaA. RigamontiD. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease.Science2001293552949349810.1126/science.1059581 11408619
    [Google Scholar]
  6. ChanD.C. Mitochondria: Dynamic organelles in disease, aging, and development.Cell200612571241125210.1016/j.cell.2006.06.010 16814712
    [Google Scholar]
  7. BrouilletE. HantrayeP. FerranteR.J. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates.Proc. Natl. Acad. Sci. USA199592157105710910.1073/pnas.92.15.7105 7624378
    [Google Scholar]
  8. TabriziS.J. CleeterM.W.J. XuerebJ. TaanmanJ.W. CooperJ.M. SchapiraA.H.V. Biochemical abnormalities and excitotoxicity in Huntington’s disease brain.Ann. Neurol.1999451253210.1002/1531‑8249(199901)45:1<25:AID‑ART6>3.0.CO;2‑E 9894873
    [Google Scholar]
  9. SeongI.S. IvanovaE. LeeJ.M. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism.Hum. Mol. Genet.200514192871288010.1093/hmg/ddi319 16115812
    [Google Scholar]
  10. ReddyP.H. MaoP. ManczakM. Mitochondrial structural and functional dynamics in Huntington’s disease.Brain Res. Brain Res. Rev.2009611334810.1016/j.brainresrev.2009.04.001 19394359
    [Google Scholar]
  11. RodríguezE. RiveraI. AstorgaS. MendozaE. GarcíaF. Hernández-EcheagarayE. Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage.Int. J. Biol. Sci.20106319921210.7150/ijbs.6.199 20440403
    [Google Scholar]
  12. Hernandez-EcheagarayE. De La Rosa-LopezG. MendozaE. The use of the mitochondrial toxin 3-NP to uncover cellular dysfunction in huntington’s disease.Huntington's Disease - Core Concepts and Current Advances2012
    [Google Scholar]
  13. MendozaE. Miranda-BarrientosJ.A. Vázquez-RoqueR.A. In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins.Neuroscience201428015617010.1016/j.neuroscience.2014.09.018 25241069
    [Google Scholar]
  14. AlstonT.A. MelaL. BrightH.J. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase.Proc. Natl. Acad. Sci. USA19777493767377110.1073/pnas.74.9.3767 269430
    [Google Scholar]
  15. ColesC.J. EdmondsonD.E. SingerT.P. Inactivation of succinate dehydrogenase by 3-nitropropionate.J. Biol. Chem.1979254125161516710.1016/S0021‑9258(18)50574‑3 447637
    [Google Scholar]
  16. BrouilletE. CondéF. BealM.F. HantrayeP. Replicating Huntington’s disease phenotype in experimental animals.Prog. Neurobiol.199959542746810.1016/S0301‑0082(99)00005‑2 10515664
    [Google Scholar]
  17. EspíndolaS. Vilches-FloresA. Hernández-EcheagarayE. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum.Neurosci. Bull.201228551753110.1007/s12264‑012‑1259‑x 22961474
    [Google Scholar]
  18. GuS. HuangH. BiJ. YaoY. WenT. Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model.Brain Res.200912571910.1016/j.brainres.2008.12.016 19111525
    [Google Scholar]
  19. Torres-PerazaJ. PezziS. CanalsJ.M. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-d-aspartate receptors.Neuroscience2007144246247110.1016/j.neuroscience.2006.09.038 17081696
    [Google Scholar]
  20. JeH.S. ZhouJ. YangF. LuB. Distinct mechanisms for neurotrophin-3-induced acute and long-term synaptic potentiation.J. Neurosci.20052550117191172910.1523/JNEUROSCI.4087‑05.2005 16354930
    [Google Scholar]
  21. JeH.S. YangF. ZhouJ. LuB. Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms.J. Cell Biol.200617561029104210.1083/jcb.200603061 17178914
    [Google Scholar]
  22. Gómez-PinedaV.G. Torres-CruzF.M. Vivar-CortésC.I. Hernández-EcheagarayE. Neurotrophin‐3 restores synaptic plasticity in the striatum of a mouse model of Huntington’s disease.CNS Neurosci. Ther.201824435336310.1111/cns.12824 29453932
    [Google Scholar]
  23. AkopianG. CrawfordC. BealM.F. Decreased striatal dopamine release underlies increased expression of long-term synaptic potentiation at corticostriatal synapses 24 h after 3-nitropropionic-acid-induced chemical hypoxia.J. Neurosci.200828389585959710.1523/JNEUROSCI.5698‑07.2008 18799690
    [Google Scholar]
  24. RouxP. BarkerP.A. Neurotrophin signaling through the p75 neurotrophin receptor.Prog. Neurobiol.200267320323310.1016/S0301‑0082(02)00016‑3 12169297
    [Google Scholar]
  25. ChoD.H. NakamuraT. LiptonS.A. Mitochondrial dynamics in cell death and neurodegeneration.Cell. Mol. Life Sci.201067203435344710.1007/s00018‑010‑0435‑2 20577776
    [Google Scholar]
  26. VosM. LauwersE. VerstrekenP. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease.Front. Synaptic Neurosci.2010213910.3389/fnsyn.2010.00139 21423525
    [Google Scholar]
  27. LealG. CompridoD. DuarteC.B. BDNF-induced local protein synthesis and synaptic plasticity.Neuropharmacology201476Pt C63965610.1016/j.neuropharm.2013.04.005 23602987
    [Google Scholar]
  28. BegniV. RivaM.A. CattaneoA. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions.Clin. Sci. (Lond.)2017131212313810.1042/CS20160009 28011898
    [Google Scholar]
  29. XingJ. GintyD.D. GreenbergM.E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase.Science1996273527795996310.1126/science.273.5277.959 8688081
    [Google Scholar]
  30. SweattJ.D. Mitogen-activated protein kinases in synaptic plasticity and memory.Curr. Opin. Neurobiol.200414331131710.1016/j.conb.2004.04.001 15194111
    [Google Scholar]
  31. YuanL.L. AdamsJ.P. SwankM. SweattJ.D. JohnstonD. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway.J. Neurosci.200222124860486810.1523/JNEUROSCI.22‑12‑04860.2002 12077183
    [Google Scholar]
  32. ZanassiP. PaolilloM. FelicielloA. AvvedimentoE.V. GalloV. SchinelliS. cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons.J. Biol. Chem.200127615114871149510.1074/jbc.M007631200 11139572
    [Google Scholar]
  33. GiraultJ. ValjentE. CabocheJ. HervéD. ERK2: A logical AND gate critical for drug-induced plasticity?Curr. Opin. Pharmacol.200771778510.1016/j.coph.2006.08.012 17085074
    [Google Scholar]
  34. WestA.E. GreenbergM.E. Neuronal activity-regulated gene transcription in synapse development and cognitive function.Cold Spring Harb. Perspect. Biol.201136a00574410.1101/cshperspect.a005744 21555405
    [Google Scholar]
  35. HuttonS.R. OtisJ.M. KimE.M. LamsalY. StuberG.D. SniderW.D. ERK/MAPK signaling is required for pathway-specific striatal motor functions.J. Neurosci.201737348102811510.1523/JNEUROSCI.0473‑17.2017 28733355
    [Google Scholar]
  36. WangJ.Z. LongC. LiK.Y. XuH.T. YuanL.L. WuG.Y. Potent block of potassium channels by MEK inhibitor U0126 in primary cultures and brain slices.Sci. Rep.201881880810.1038/s41598‑018‑27235‑1 29892075
    [Google Scholar]
  37. GärtnerA. PolnauD.G. StaigerV. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling.J. Neurosci.200626133496350410.1523/JNEUROSCI.3792‑05.2006 16571757
    [Google Scholar]
  38. GruartA. SciarrettaC. Valenzuela-HarringtonM. Delgado-GarcíaJ.M. MinichielloL. Mutation at the TrkB PLCγ-docking site affects hippocampal LTP and associative learning in conscious mice.Learn. Mem.2007141-2546210.1101/lm.428307 17272652
    [Google Scholar]
  39. YanZ. ShiX. WangH. SiC. LiuQ. DuY. Neurotrophin-3 Promotes the Neuronal Differentiation of BMSCs and Improves Cognitive Function in a Rat Model of Alzheimer’s Disease.Front. Cell. Neurosci.20211562935610.3389/fncel.2021.629356 33642999
    [Google Scholar]
  40. EdelmannE. LeßmannV. BrigadskiT. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity.Neuropharmacology201476Pt C61062710.1016/j.neuropharm.2013.05.043 23791959
    [Google Scholar]
  41. HeX. YangF. XieZ. LuB. Intracellular Ca(2+) and Ca(2+)/] calmodulin-dependent kinase II mediate acute potentiation of neurotransmitter release by neurotrophin-3.J. Cell Biol.2000149478379210.1083/jcb.149.4.783 10811820
    [Google Scholar]
  42. SugiuraT. KondoS. SukagawaA. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain.Biochem. Biophys. Res. Commun.19952151899710.1006/bbrc.1995.2437 7575630
    [Google Scholar]
  43. KatonaI. UrbánG.M. WallaceM. Molecular composition of the endocannabinoid system at glutamatergic synapses.J. Neurosci.200626215628563710.1523/JNEUROSCI.0309‑06.2006 16723519
    [Google Scholar]
  44. LeiS. McBainC.J. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses.J. Neurosci.20042492112212110.1523/JNEUROSCI.4645‑03.2004 14999062
    [Google Scholar]
  45. ReichardtL.F. Neurotrophin-regulated signalling pathways.Philos. Trans. R. Soc. Lond. B Biol. Sci.200636114731545156410.1098/rstb.2006.1894 16939974
    [Google Scholar]
  46. BleasdaleJ.E. ThakurN.R. GrembanR.S. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils.J. Pharmacol. Exp. Ther.19902552756768 2147038
    [Google Scholar]
  47. DunciaJ.V. SantellaJ.B.III HigleyC.A. MEK inhibitors: The chemistry and biological activity of U0126, its analogs, and cyclization products.Bioorg. Med. Chem. Lett.19988202839284410.1016/S0960‑894X(98)00522‑8 9873633
    [Google Scholar]
  48. VlahosCJ MatterWF HuiKY BrownRF A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002).J Biol Chem199426975241524810.1016/S0021‑9258(17)37680‑9 8106507
    [Google Scholar]
  49. LuY. SareddyG.R. WangJ. Neuron-derived estrogen regulates synaptic plasticity and memory.J. Neurosci.201939152792280910.1523/JNEUROSCI.1970‑18.2019 30728170
    [Google Scholar]
  50. Sánchez-CastilloC. CuarteroM.I. Fernández-RodrigoA. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition.Sci. Adv.2022847eabq810910.1126/sciadv.abq8109 36417513
    [Google Scholar]
  51. LovingerD.M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum.Neuropharmacology201058795196110.1016/j.neuropharm.2010.01.008 20096294
    [Google Scholar]
  52. MathurB.N. LovingerD.M. Endocannabinoid-dopamine interactions in striatal synaptic plasticity.Front. Pharmacol.201236610.3389/fphar.2012.00066 22529814
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273298919240531110022
Loading
/content/journals/cnsnddt/10.2174/0118715273298919240531110022
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test