Skip to content
2000
Volume 11, Issue 2
  • ISSN: 1871-5249
  • E-ISSN:

Abstract

Due to a lack of efficient treatments, searching for novel therapies against acute ischemic stroke represents one of the main fields in neuropharmacology. In this review we summarize and discuss the role of mitochondrial participation in ischemia-induced neuronal death. Mitochondria are regarded as the main link between cellular stress signals and the execution of programmed death of nerve cells. Since it was described that the release of mitochondrial proteins such as cytochrome c, apoptosis inducing factor and endonuclease G are key elements in cell death pathways, they have been the focus of cell death studies. Changes in the permeability of the mitochondrial outer membrane result in a non-reversible step in cell death processes. Cytochrome c released from mitochondria binds in the cytoplasm to Apaf-1 to initiate the formation of an apoptosome, which then binds pro-caspase-9. Active caspase-9 cleaves “executioner” caspases, which in turn proceed to cleave key substrates in the cell. Thus, the identification of new targets might enable establishment of novel strategies for therapeutic research, in this case based on the molecular mechanisms of mitochondrial pathways, to improve the development of compounds for treatment of ischemia.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/187152411796011358
2011-06-01
2024-10-11
Loading full text...

Full text loading...

/content/journals/cnsamc/10.2174/187152411796011358
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test