Skip to content
2000
image of A New Augmentation Strategy against Depression Combining SSRIs and the N-terminal Fragment of Galanin (1-15)

Abstract

Depression is one of the most disabling mental disorders, with the second highest social burden; its prevalence has grown by more than 27% in recent years, affecting 246 million in 2021. Despite the wide range of antidepressants available, more than 50% of patients show treatment-resistant depression. In this review, we summarized the progress in developing a new augmentation strategy based on combining the N-terminal fragment of Galanin (1-15) and SSRI-type antidepressants in animal models.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241003125019
2024-10-31
2024-12-30
Loading full text...

Full text loading...

References

  1. Depression Depression and other common mental disorders 2017 Available from: https://www.who.int/publications/i/item/depression-global-health-estimates
  2. Chisholm D. Sweeny K. Sheehan P. Rasmussen B. Smit F. Cuijpers P. Saxena S. Scaling-up treatment of depression and anxiety: A global return on investment analysis. Lancet Psychiatry 2016 3 5 415 424 10.1016/S2215‑0366(16)30024‑4 27083119
    [Google Scholar]
  3. Santomauro D.F. Mantilla Herrera A.M. Shadid J. Zheng P. Ashbaugh C. Pigott D.M. Abbafati C. Adolph C. Amlag J.O. Aravkin A.Y. Bang-Jensen B.L. Bertolacci G.J. Bloom S.S. Castellano R. Castro E. Chakrabarti S. Chattopadhyay J. Cogen R.M. Collins J.K. Dai X. Dangel W.J. Dapper C. Deen A. Erickson M. Ewald S.B. Flaxman A.D. Frostad J.J. Fullman N. Giles J.R. Giref A.Z. Guo G. He J. Helak M. Hulland E.N. Idrisov B. Lindstrom A. Linebarger E. Lotufo P.A. Lozano R. Magistro B. Malta D.C. Månsson J.C. Marinho F. Mokdad A.H. Monasta L. Naik P. Nomura S. O’Halloran J.K. Ostroff S.M. Pasovic M. Penberthy L. Reiner R.C. Jr Reinke G. Ribeiro A.L.P. Sholokhov A. Sorensen R.J.D. Varavikova E. Vo A.T. Walcott R. Watson S. Wiysonge C.S. Zigler B. Hay S.I. Vos T. Murray C.J.L. Whiteford H.A. Ferrari A.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021 398 10312 1700 1712 10.1016/S0140‑6736(21)02143‑7 34634250
    [Google Scholar]
  4. Hankin B.L. Abramson L.Y. Development of gender differences in depression: Description and possible explanations. Ann. Med. 1999 31 6 372 379 10.3109/07853899908998794 10680851
    [Google Scholar]
  5. Kessler R. Epidemiology of women and depression. J. Affect. Disord. 2003 74 1 5 13 10.1016/S0165‑0327(02)00426‑3 12646294
    [Google Scholar]
  6. Nolen-Hoeksema S. Sex Differences in Depression 1990 10.1515/9781503621640
    [Google Scholar]
  7. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders 2013 10.1176/appi.books.9780890425596
    [Google Scholar]
  8. ICD-11 for mortality and morbidity statistics (2018) 2018 Available from: https://icd.who.int/browse/2024-01/mms/en
  9. Lai H.M.X. Cleary M. Sitharthan T. Hunt G.E. Prevalence of comorbid substance use, anxiety and mood disorders in epidemiological surveys, 1990-2014: A systematic review and meta-analysis. Drug Alcohol Depend. 2015 154 1 13 10.1016/j.drugalcdep.2015.05.031 26072219
    [Google Scholar]
  10. Hoffmann A. Sportelli V. Ziller M. Spengler D. Epigenomics of major depressive disorders and schizophrenia: Early life decides. Int. J. Mol. Sci. 2017 18 8 1711 10.3390/ijms18081711 28777307
    [Google Scholar]
  11. Dean J. Keshavan M. The neurobiology of depression: An integrated view. Asian J. Psychiatr. 2017 27 101 111 10.1016/j.ajp.2017.01.025 28558878
    [Google Scholar]
  12. Malhi G.S. Mann J.J. Depression. Lancet 2018 392 10161 2299 2312 10.1016/S0140‑6736(18)31948‑2 30396512
    [Google Scholar]
  13. Jesulola E. Micalos P. Baguley I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - Are we there yet? Behav. Brain Res. 2018 341 79 90 10.1016/j.bbr.2017.12.025 29284108
    [Google Scholar]
  14. Krishnan V. Nestler E.J. The molecular neurobiology of depression. Nature 2008 455 7215 894 902 10.1038/nature07455 18923511
    [Google Scholar]
  15. Mikulska J. Juszczyk G. Gawrońska-Grzywacz M. Herbet M. HPA Axis in the pathomechanism of depression and schizophrenia: New Therapeutic strategies based on its participation. Brain Sci. 2021 11 10 1298 10.3390/brainsci11101298 34679364
    [Google Scholar]
  16. Boku S. Nakagawa S. Toda H. Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin. Neurosci. 2018 72 1 3 12 10.1111/pcn.12604 28926161
    [Google Scholar]
  17. de Kloet E.R. Joëls M. Holsboer F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005 6 6 463 475 10.1038/nrn1683 15891777
    [Google Scholar]
  18. Tartt A.N. Mariani M.B. Hen R. Mann J.J. Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol. Psychiatry 2022 27 6 2689 2699 10.1038/s41380‑022‑01520‑y 35354926
    [Google Scholar]
  19. Beurel E. Toups M. Nemeroff C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020 107 2 234 256 10.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  20. Duman R.S. Sanacora G. Krystal J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019 102 1 75 90 10.1016/j.neuron.2019.03.013 30946828
    [Google Scholar]
  21. Rana T. Behl T. Sehgal A. Singh S. Sharma N. Abdeen A. Ibrahim S.F. Mani V. Iqbal M.S. Bhatia S. Abdel Daim M.M. Bungau S. Exploring the role of neuropeptides in depression and anxiety. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022 114 110478 10.1016/j.pnpbp.2021.110478 34801611
    [Google Scholar]
  22. Kormos V. Gaszner B. Role of neuropeptides in anxiety, stress, and depression: From animals to humans. Neuropeptides 2013 47 6 401 419 10.1016/j.npep.2013.10.014 24210138
    [Google Scholar]
  23. Mandrioli R. Protti M. Mercolini L. New-generation, non-SSRI antidepressants: Therapeutic drug monitoring and pharmacological interactions. Part 1: SNRIs, SMSs, SARIs. Curr. Med. Chem. 2018 25 7 772 792 10.2174/0929867324666170712165042 28707591
    [Google Scholar]
  24. Perez-Caballero L. Torres-Sanchez S. Romero-López-Alberca C. González-Saiz F. Mico J.A. Berrocoso E. Monoaminergic system and depression. Cell Tissue Res. 2019 377 1 107 113 10.1007/s00441‑018‑2978‑8 30627806
    [Google Scholar]
  25. Bonet de Luna C. Fernández García M. Chamón Parra M. Depression, anxiety, and separation in childhood: Practical aspects for busy pediatricians. Pediatría Atención Primaria 2011 13 51 471 489 10.4321/S1139‑76322011000300012
    [Google Scholar]
  26. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacol. Ther. 2013 137 1 119 131 10.1016/j.pharmthera.2012.09.006 23022360
    [Google Scholar]
  27. Castro E. Díaz A. Rodriguez-Gaztelumendi A. del Olmo E. Pazos A. WAY100635 prevents the changes induced by fluoxetine upon the 5-HT1A receptor functionality. Neuropharmacology 2008 55 8 1391 1396 10.1016/j.neuropharm.2008.08.038 18809415
    [Google Scholar]
  28. Bortolozzi A. Castañé A. Semakova J. Santana N. Alvarado G. Cortés R. Ferrés-Coy A. Fernández G. Carmona M.C. Toth M. Perales J.C. Montefeltro A. Artigas F. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol. Psychiatry 2012 17 6 612 623 10.1038/mp.2011.92 21808255
    [Google Scholar]
  29. Samuels B.A. Anacker C. Hu A. Levinstein M.R. Pickenhagen A. Tsetsenis T. Madroñal N. Donaldson Z.R. Drew L.J. Dranovsky A. Gross C.T. Tanaka K.F. Hen R. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat. Neurosci. 2015 18 11 1606 1616 10.1038/nn.4116 26389840
    [Google Scholar]
  30. Tardito D. Perez J. Tiraboschi E. Musazzi L. Racagni G. Popoli M. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: A critical overview. Pharmacol. Rev. 2006 58 1 115 134 10.1124/pr.58.1.7 16507885
    [Google Scholar]
  31. Castrén E. Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev. Neurobiol. 2010 70 5 289 297 10.1002/dneu.20758 20186711
    [Google Scholar]
  32. Pittenger C. Duman R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008 33 1 88 109 10.1038/sj.npp.1301574 17851537
    [Google Scholar]
  33. Witkin J.M. Martin A.E. Golani L.K. Xu N.Z. Smith J.L. Rapid-acting antidepressants. Adv. Pharmacol. 2019 86 47 96 10.1016/bs.apha.2019.03.002 31378256
    [Google Scholar]
  34. Madhukar H.T. Ella J.D. Treatment strategies to improve and sustain remission in major depressive disorder. Dialogues Clin. Neurosci. 2008 10 4 377 384 10.31887/DCNS.2008.10.4/mhtrivedi 19170395
    [Google Scholar]
  35. Fekadu A. Wooderson S.C. Markopoulo K. Donaldson C. Papadopoulos A. Cleare A.J. What happens to patients with treatment-resistant depression? A systematic review of medium to long term outcome studies. J. Affect. Disord. 2009 116 1-2 4 11 10.1016/j.jad.2008.10.014 19007996
    [Google Scholar]
  36. Shelton R.C. Osuntokun O. Heinloth A.N. Corya S.A. Therapeutic options for treatment-resistant depression. CNS Drugs 2010 24 2 131 161 10.2165/11530280‑000000000‑00000 20088620
    [Google Scholar]
  37. Zhou X. Keitner G.I. Qin B. Ravindran A.V. Bauer M. Del Giovane C. Zhao J. Liu Y. Fang Y. Zhang Y. Xie P. Atypical antipsychotic augmentation for treatment-resistant depression: A systematic review and network meta-analysis. Int. J. Neuropsychopharmacol. 2015 18 11 pyv060 10.1093/ijnp/pyv060 26012350
    [Google Scholar]
  38. Pandarakalam J.P. Challenges of treatment-resistant depression. Psychiatr. Danub. 2018 30 3 273 284 10.24869/psyd.2018.273 30267518
    [Google Scholar]
  39. Artigas F. Perez V. Alvarez E. Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch. Gen. Psychiatry 1994 51 3 248 251 10.1001/archpsyc.1994.03950030084009 8122960
    [Google Scholar]
  40. Ebrahimzadeh M. El Mansari M. Blier P. Synergistic effect of aripiprazole and escitalopram in increasing serotonin but not norepinephrine neurotransmission in the rat hippocampus. Neuropharmacology 2019 146 12 18 10.1016/j.neuropharm.2018.11.006 30414871
    [Google Scholar]
  41. Morton E. Bhat V. Giacobbe P. Lou W. Michalak E.E. McInerney S. Chakrabarty T. Frey B.N. Milev R.V. Müller D.J. Parikh S.V. Rotzinger S. Kennedy S.H. Lam R.W. Predictors of quality of life improvement with escitalopram and adjunctive aripiprazole in patients with major depressive disorder: A CAN-BIND study report. CNS Drugs 2021 35 4 439 450 10.1007/s40263‑021‑00803‑2 33860922
    [Google Scholar]
  42. Shin C. Ko Y.H. Shim S.H. Kim J.S. Na K.S. Hahn S.W. Lee S.H. Efficacy of buspirone augmentation of escitalopram in patients with major depressive disorder with and without atypical features: A randomized, 8 week, multicenter, open-label clinical trial. Psychiatry Investig. 2020 17 8 796 803 10.30773/pi.2020.0017 32750760
    [Google Scholar]
  43. Jacobowitz D.M. Kresse A. Skofitsch G. Galanin in the brain: chemoarchitectonics and brain cartography—a historical review. Peptides 2004 25 3 433 464 10.1016/j.peptides.2004.02.015 15134866
    [Google Scholar]
  44. Melander T. Hökfelt T. Rökaeus A. Cuello A.C. Oertel W.H. Verhofstad A. Goldstein M. Coexistence of galanin-like immunoreactivity with catecholamines, 5- hydroxytryptamine, GABA and neuropeptides in the rat CNS. J. Neurosci. 1986 6 12 3640 3654 10.1523/JNEUROSCI.06‑12‑03640.1986 2432203
    [Google Scholar]
  45. Fuxe K. Borroto-Escuela D. Fisone G. Agnati L. Tanganelli S. Understanding the role of heteroreceptor complexes in the central nervous system. Curr. Protein Pept. Sci. 2014 15 7 647 10.2174/138920371507140916122738 25256022
    [Google Scholar]
  46. Borroto-Escuela D.O. Carlsson J. Ambrogini P. Narváez M. Wydra K. Tarakanov A.O. Li X. Millón C. Ferraro L. Cuppini R. Tanganelli S. Liu F. Filip M. Diaz-Cabiale Z. Fuxe K. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front. Cell. Neurosci. 2017 11 37 10.3389/fncel.2017.00037 28270751
    [Google Scholar]
  47. Tatemoto K. Rökaeus Å. Jörnvall H. McDonald T.J. Mutt V. Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett. 1983 164 1 124 128 10.1016/0014‑5793(83)80033‑7 6197320
    [Google Scholar]
  48. Wiczk W. Rekowski P. Kupryszewski G. Łubkowski J. Oldziej S. Liwo A. Fluorescence and Monte Carlo conformational studies of the (1-15) galanin amide fragment. Biophys. Chem. 1996 58 3 303 312 10.1016/0301‑4622(95)00104‑2 8820413
    [Google Scholar]
  49. Skofitsch G. Jacobowitz D.M. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 1985 6 3 509 546 10.1016/0196‑9781(85)90118‑4 2415952
    [Google Scholar]
  50. Mitsukawa K. Lu X. Bartfai T. Galanin, galanin receptors and drug targets. Cell. Mol. Life Sci. 2008 65 12 1796 1805 10.1007/s00018‑008‑8153‑8 18500647
    [Google Scholar]
  51. Díaz-Cabiale Z. Parrado C. Narváez M. Millón C. Puigcerver A. Fuxe K. Narváez J.A. Neurochemical modulation of central cardiovascular control: the integrative role of galanin. EXS 2010 102 113 131 10.1007/978‑3‑0346‑0228‑0_9 21299065
    [Google Scholar]
  52. Fang P. He B. Shi M. Kong G. Dong X. Zhu Y. Bo P. Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015 71 240 249 10.1016/j.peptides.2015.07.007 26188174
    [Google Scholar]
  53. Lang R. Gundlach A. Kofler B. The galanin peptide family: Receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther. 2007 115 2 177 207 10.1016/j.pharmthera.2007.05.009 17604107
    [Google Scholar]
  54. Branchek T.A. Smith K.E. Gerald C. Walker M.W. Galanin receptor subtypes. Trends Pharmacol. Sci. 2000 21 3 109 117 10.1016/S0165‑6147(00)01446‑2 10689365
    [Google Scholar]
  55. Porsolt R.D. Le Pichon M. Jalfre M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977 266 5604 730 732 10.1038/266730a0 559941
    [Google Scholar]
  56. Bogdanova O.V. Kanekar S. D’Anci K.E. Renshaw P.F. Factors influencing behavior in the forced swim test. Physiol. Behav. 2013 118 227 239 10.1016/j.physbeh.2013.05.012 23685235
    [Google Scholar]
  57. Millón C. Flores-Burgess A. Narváez M. Borroto-Escuela D.O. Gago B. Santín L. Castilla-Ortega E. Narváez J.Á. Fuxe K. Díaz-Cabiale Z. The neuropeptides galanin and Galanin(1-15) in depression-like behaviours. Neuropeptides 2017 64 39 45 10.1016/j.npep.2017.01.004 28196617
    [Google Scholar]
  58. Weiss J.M. Bonsall R.W. Demetrikopoulos M.K. Emery M.S. West C.H.K. Galanin: A significant role in depression? Ann. N. Y. Acad. Sci. 1998 863 1 364 382 10.1111/j.1749‑6632.1998.tb10707.x 9928183
    [Google Scholar]
  59. Kuteeva E. Hökfelt T. Wardi T. Ogren S.O. Galanin, galanin receptor subtypes and depression-like behaviour. Cell. Mol. Life Sci. 2008 65 12 1854 1863 10.1007/s00018‑008‑8160‑9 18500640
    [Google Scholar]
  60. Wang P. Li H. Barde S. Zhang M.D. Sun J. Wang T. Zhang P. Luo H. Wang Y. Yang Y. Wang C. Svenningsson P. Theodorsson E. Hökfelt T.G.M. Xu Z.Q.D. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc. Natl. Acad. Sci. USA 2016 113 32 E4726 E4735 10.1073/pnas.1609198113 27457954
    [Google Scholar]
  61. Xu Z.Q.D. Zhang X. Pieribone V.A. Grillner S. Hökfelt T. Galanin-5-hydroxytryptamine interactions: Electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 1998 87 1 79 94 10.1016/S0306‑4522(98)00151‑1 9722143
    [Google Scholar]
  62. Fuxe K. Ögren S.O. Jansson A. Cintra A. Härfstrand A. Agnati L.F. Intraventricular injections of galanin reduces 5‐HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto‐parietal cortex of the male rat. Acta Physiol. Scand. 1988 133 4 579 581 10.1111/j.1748‑1716.1988.tb08444.x 2465672
    [Google Scholar]
  63. Borroto-Escuela D.O. Narvaez M. Marcellino D. Parrado C. Narvaez J.A. Tarakanov A.O. Agnati L.F. Díaz-Cabiale Z. Fuxe K. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem. Biophys. Res. Commun. 2010 393 4 767 772 10.1016/j.bbrc.2010.02.078 20171159
    [Google Scholar]
  64. Razani H. Díaz-Cabiale Z. Misane I. Wang F.H. Fuxe K. Ögren S.O. Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat. Neurosci. Lett. 2001 299 1-2 145 149 10.1016/S0304‑3940(00)01788‑2 11166958
    [Google Scholar]
  65. Fuxe K. von Euler G. Agnati L.F. Ögren S.O. Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neurosci. Lett. 1988 85 1 163 167 10.1016/0304‑3940(88)90448‑X 2452385
    [Google Scholar]
  66. Hedlund P.B. Fuxe K. Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain. Ann. N. Y. Acad. Sci. 1996 780 1 193 212 10.1111/j.1749‑6632.1996.tb15124.x 8602734
    [Google Scholar]
  67. Karlsson R.M. Holmes A. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids 2006 31 3 231 239 10.1007/s00726‑006‑0336‑8 16733616
    [Google Scholar]
  68. Silote G.P. Rosal A.B. Souza M.M. Beijamini V. Infusion of galanin into the mid-caudal portion of the dorsal raphe nucleus has an anxiolytic effect on rats in the elevated T-maze. Behav. Brain Res. 2013 252 312 317 10.1016/j.bbr.2013.06.023 23791934
    [Google Scholar]
  69. Morais J.S. Souza M.M. Campanha T.M.N. Muller C.J.T. Bittencourt A.S. Bortoli V.C. Schenberg L.C. Beijamini V. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus. Behav. Brain Res. 2016 314 125 133 10.1016/j.bbr.2016.08.007 27498247
    [Google Scholar]
  70. Funck V.R. Fracalossi M.P. Vidigal A.P.P. Beijamini V. Dorsal hippocampal galanin modulates anxiety-like behaviours in rats. Brain Res. 2018 1687 74 81 10.1016/j.brainres.2018.02.036 29499176
    [Google Scholar]
  71. Pieribone V.A. Xu Z.Q. Zhang X. Grillner S. Bartfai T. Hökfelt T. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 1995 64 4 861 874 10.1016/0306‑4522(94)00450‑J 7538638
    [Google Scholar]
  72. Ma X. Tong Y.G. Schmidt R. Brown W. Payza K. Hodzic L. Pou C. Godbout C. Hökfelt T. Xu Z.Q.D. Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res. 2001 919 1 169 174 10.1016/S0006‑8993(01)03033‑5 11689176
    [Google Scholar]
  73. Mazzocchi G. Malendowicz L.K. Rebuffat P. Nussdorfer G.G. Effects of galanin on the secretory activity of the rat adrenal cortex: in vivo and in vitro studies. Res. Exp. Med. (Berl.) 1992 192 1 373 381 10.1007/BF02576294 1282728
    [Google Scholar]
  74. Hooi S.C. Maiter D.M. Martin J.B. Koenig J. Galaninergic mechanisms are involved in the regulation of corticotropin and thyrotropin secretion in the rat. Endocrinology 1990 127 5 2281 2289 10.1210/endo‑127‑5‑2281 1699744
    [Google Scholar]
  75. Ihnatko R. Theodorsson E. Short N-terminal galanin fragments are occurring naturally in vivo. Neuropeptides 2017 63 1 13 10.1016/j.npep.2017.03.005 28434790
    [Google Scholar]
  76. Hedlund P.B. Yanaihara N. Fuxe K. Evidence for specific N-terminal galanin fragment binding sites in the rat brain. Eur. J. Pharmacol. 1992 224 2-3 203 205 10.1016/0014‑2999(92)90806‑F 1281778
    [Google Scholar]
  77. Díaz-Cabiale Z. Parrado C. Vela C. Razani H. Coveñas R. Fuxe K. Narváez J.A. Role of galanin and galanin(1-15) on central cardiovascular control. Neuropeptides 2005 39 3 185 190 10.1016/j.npep.2004.12.009 15944010
    [Google Scholar]
  78. Millón C. Flores-Burgess A. Narváez M. Borroto-Escuela D.O. Santín L. Parrado C. Narváez J.A. Fuxe K. Díaz-Cabiale Z. A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats. Int. J. Neuropsychopharmacol. 2014 18 3 pyu064 25522404
    [Google Scholar]
  79. Millón C. Flores-Burgess A. Gago B. Alén F. Orio L. García-Durán L. Narváez J.A. Fuxe K. Santín L. Díaz-Cabiale Z. Role of the galanin N-terminal fragment (1-15) in anhedonia: Involvement of the dopaminergic mesolimbic system. J. Psychopharmacol. 2019 33 6 737 747 10.1177/0269881119844188 31081442
    [Google Scholar]
  80. Millón C. Flores-Burgess A. Castilla-Ortega E. Gago B. García-Fernandez M. Serrano A. Rodriguez de Fonseca F. Narváez J.A. Fuxe K. Santín L. Díaz-Cabiale Z. Central administration of galanin N‐terminal fragment 1-15 decreases the voluntary alcohol intake in rats. Addict. Biol. 2019 24 1 76 87 10.1111/adb.12582 29210146
    [Google Scholar]
  81. Cantero-García N. Flores-Burgess A. Ladrón de Guevara-Miranda D. Serrano A. García-Durán L. Puigcerver A. Fuxe K. Narváez J.Á. Santín L.J. Díaz-Cabiale Z. Millón C. The combination of Galanin(1-15) and escitalopram in rats suggests a new strategy for alcohol use disorder comorbidity with depression. Biomedicines 2022 10 2 412 10.3390/biomedicines10020412 35203621
    [Google Scholar]
  82. Cantero-García N. Flores-Burgess A. Pineda-Gómez J.P. Orio L. Serrano A. Díaz-Cabiale Z. Millón C. Galanin N-terminal fragment (1-15) reduces alcohol seeking and alcohol relapse in rats: Involvement of mesocorticolimbic system. Biomed. Pharmacother. 2022 153 113508 10.1016/j.biopha.2022.113508 36076594
    [Google Scholar]
  83. Deussing J.M. Animal models of depression. Drug Discov. Today Dis. Models 2006 3 4 375 383 10.1016/j.ddmod.2006.11.003
    [Google Scholar]
  84. Fuxe K. Marcellino D. Rivera A. Diaz-Cabiale Z. Filip M. Gago B. Roberts D.C.S. Langel U. Genedani S. Ferraro L. de la Calle A. Narvaez J. Tanganelli S. Woods A. Agnati L.F. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res. Brain Res. Rev. 2008 58 2 415 452 10.1016/j.brainresrev.2007.11.007 18222544
    [Google Scholar]
  85. Fuxe K. Borroto-Escuela D.O. Romero-Fernandez W. Tarakanov A.O. Calvo F. Garriga P. Tena M. Narvaez M. Millón C. Parrado C. Ciruela F. Agnati L.F. Narvaez J.A. Díaz-Cabiale Z. On the existence and function of galanin receptor heteromers in the central nervous system. Front. Endocrinol. (Lausanne) 2012 3 127 10.3389/fendo.2012.00127 23112793
    [Google Scholar]
  86. Borroto-Escuela D.O. Narvaez M. Di Palma M. Calvo F. Rodriguez D. Millon C. Carlsson J. Agnati L.F. Garriga P. Díaz-Cabiale Z. Fuxe K. Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. Biochem. Biophys. Res. Commun. 2014 452 3 347 353 10.1016/j.bbrc.2014.08.061 25152404
    [Google Scholar]
  87. Flores-Burgess A. Small interference RNA knockdown rats in behavioral functions: GALR1/GALR2 heteroreceptor in anxiety and depression-like behavior Receptor-Receptor Interactions in the Central Nervous System 2018 133 148 10.1007/978‑1‑4939‑8576‑0_9
    [Google Scholar]
  88. Nakajima H. Kubo T. Semi Y. Itakura M. Kuwamura M. Izawa T. Azuma Y.T. Takeuchi T. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain. J. Biotechnol. 2012 157 2 326 333 10.1016/j.jbiotec.2011.10.003 22079868
    [Google Scholar]
  89. Nautiyal K.M. Hen R. Serotonin receptors in depression: from A to B. F1000 Res. 2017 6 123 10.12688/f1000research.9736.1 28232871
    [Google Scholar]
  90. Gozlan H. El Mestikawy S. Pichat L. Glowinski J. Hamon M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 1983 305 5930 140 142 10.1038/305140a0 6225026
    [Google Scholar]
  91. De Vry J. Schreiber R. Melon C. Dalmus M. Jentzsch K.R. 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur. Neuropsychopharmacol. 2004 14 6 487 495 10.1016/j.euroneuro.2004.01.004 15589388
    [Google Scholar]
  92. Millón C. Flores-Burgess A. Narváez M. Borroto-Escuela D.O. Santín L. Gago B. Narváez J.A. Fuxe K. Díaz-Cabiale Z. Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct. Funct. 2016 221 9 4491 4504 10.1007/s00429‑015‑1180‑y 26792005
    [Google Scholar]
  93. Hedlund P.B. Finnman U.B. Yanaihara N. Fuxe K. Galanin-(1-15), but not galanin-(1-29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: Possible existence of galanin receptor subtypes. Brain Res. 1994 634 1 163 167 10.1016/0006‑8993(94)90271‑2 7512426
    [Google Scholar]
  94. March J. Silva S. Petrycki S. Curry J. Wells K. Fairbank J. Burns B. Domino M. McNulty S. Vitiello B. Severe J. Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial. JAMA 2004 292 7 807 820 10.1001/jama.292.7.807 15315995
    [Google Scholar]
  95. Flores-Burgess A. Millón C. Gago B. Narváez M. Borroto-Escuela D.O. Mengod G. Narváez J.A. Fuxe K. Santín L. Díaz-Cabiale Z. Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacology 2017 118 233 241 10.1016/j.neuropharm.2017.03.010 28288814
    [Google Scholar]
  96. Estradacamarena E. Lópezrubalcava C. Fernándezguasti A. Facilitating antidepressant-like actions of estrogens are mediated by 5-HT1A and estrogen receptors in the rat forced swimming test. Psychoneuroendocrinology 2006 31 8 905 914 10.1016/j.psyneuen.2006.05.001 16843610
    [Google Scholar]
  97. Serres F. Muma N.A. Raap D.K. Garcia F. Battaglia G. Van de Kar L.D. Coadministration of 5-hydroxytryptamine(1A) antagonist WAY-100635 prevents fluoxetine-induced desensitization of postsynaptic 5-hydroxytryptamine(1A) receptors in hypothalamus. J. Pharmacol. Exp. Ther. 2000 294 1 296 301 10871325
    [Google Scholar]
  98. Meneses A. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: Short- and long-term memory. Behav. Brain Res. 2007 184 1 81 90 10.1016/j.bbr.2007.06.026 17692935
    [Google Scholar]
  99. Ahern E. Semkovska M. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology 2017 31 1 52 72 10.1037/neu0000319 27732039
    [Google Scholar]
  100. Dunkin J.J. Leuchter A.F. Cook I.A. Kasl-Godley J.E. Abrams M. Rosenberg-Thompson S. Executive dysfunction predicts nonresponse to fluoxetine in major depression. J. Affect. Disord. 2000 60 1 13 23 10.1016/S0165‑0327(99)00157‑3 10940443
    [Google Scholar]
  101. Barker G.R.I. Warburton E.C. When is the hippocampus involved in recognition memory? J. Neurosci. 2011 31 29 10721 10731 10.1523/JNEUROSCI.6413‑10.2011 21775615
    [Google Scholar]
  102. Müller N.G. Knight R.T. The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience 2006 139 1 51 58 10.1016/j.neuroscience.2005.09.018 16352402
    [Google Scholar]
  103. Ampuero E. Stehberg J. Gonzalez D. Besser N. Ferrero M. Diaz-Veliz G. Wyneken U. Rubio F.J. Repetitive fluoxetine treatment affects long-term memories but not learning. Behav. Brain Res. 2013 247 92 100 10.1016/j.bbr.2013.03.011 23511254
    [Google Scholar]
  104. Castañé A. Kargieman L. Celada P. Bortolozzi A. Artigas F. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine. Eur. Neuropsychopharmacol. 2015 25 8 1353 1361 10.1016/j.euroneuro.2015.04.006 25914158
    [Google Scholar]
  105. Flores-Burgess A. Millón C. Gago B. García-Durán L. Cantero-García N. Coveñas R. Narváez J.A. Fuxe K. Santín L. Díaz-Cabiale Z. Galanin (1-15)-fluoxetine interaction in the novel object recognition test. Involvement of 5-HT1A receptors in the prefrontal cortex of the rats. Neuropharmacology 2019 155 104 112 10.1016/j.neuropharm.2019.05.023 31128121
    [Google Scholar]
  106. Rinaldi A. Romeo S. Agustín-Pavón C. Oliverio A. Mele A. Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice. Neurobiol. Learn. Mem. 2010 94 3 373 381 10.1016/j.nlm.2010.08.004 20736076
    [Google Scholar]
  107. Castilla-Ortega E. Pedraza C. Chun J. Fonseca F.R. Estivill-Torrús G. Santín L.J. Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands. Behav. Brain Res. 2012 232 2 400 405 10.1016/j.bbr.2012.04.018 22537775
    [Google Scholar]
  108. Morales-Medina J.C. Iannitti T. Freeman A. Caldwell H.K. The olfactory bulbectomized rat as a model of depression: The hippocampal pathway. Behav. Brain Res. 2017 317 562 575 10.1016/j.bbr.2016.09.029 27633561
    [Google Scholar]
  109. la Cour C.M. El Mestikawy S. Hanoun N. Hamon M. Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol. Pharmacol. 2006 70 3 1013 1021 10.1124/mol.106.022756 16772521
    [Google Scholar]
  110. Cipriani A. Santilli C. Furukawa T.A. Signoretti A. Nakagawa A. McGuire H. Churchill R. Barbui C. Escitalopram versus other antidepressive agents for depression. Cochrane Libr. 2009 2016 5 CD006532 10.1002/14651858.CD006532.pub2 19370639
    [Google Scholar]
  111. Flores-Burgess A. Millón C. Gago B. García-Durán L. Cantero-García N. Puigcerver A. Narváez JA. Fuxe K. Santín L. Díaz-Cabiale Z. Galanin (1-15) enhances the behavioral effects of fluoxetine in the olfactory bulbectomy rat, suggesting a new augmentation strategy in depression. Int. J. Neuropsychopharmacol. 2022 45 4 307 318 10.1093/ijnp/pyab089
    [Google Scholar]
  112. Zhou Y.F. Feng L. Liu X.M. Tao X. Wang L.S. Zhang M.D. Wang Z. Chen S.G. Chang Q. Urinary metabolic disturbance in the olfactory bulbectomized rats and the modulatory effects of fluoxetine. Life Sci. 2019 234 116751 10.1016/j.lfs.2019.116751 31415771
    [Google Scholar]
  113. Gurevich E.V. Aleksandrova I.A. Otmakhova N.A. Katkov Y.A. Nesterova I.V. Bobkova N.V. Effects of bulbectomy and subsequent antidepressant treatment on brain 5-HT2 and 5-HT1A receptors in mice. Pharmacol. Biochem. Behav. 1993 45 1 65 70 10.1016/0091‑3057(93)90087‑A 8516375
    [Google Scholar]
  114. Riad M. Kobert A. Descarries L. Boye S. Rompré P.P. Lacaille J.C. Chronic fluoxetine rescues changes in plasma membrane density of 5-HT1A autoreceptors and serotonin transporters in the olfactory bulbectomy rodent model of depression. Neuroscience 2017 356 78 88 10.1016/j.neuroscience.2017.05.021 28528967
    [Google Scholar]
  115. Marcilhac A. Faudon M. Anglade G. Hery F. Siaud P. An investigation of serotonergic involvement in the regulation of ACTH and corticosterone in the olfactory bulbectomized rat. Pharmacol. Biochem. Behav. 1999 63 4 599 605 10.1016/S0091‑3057(99)00024‑6 10462188
    [Google Scholar]
  116. Schüle C. Baghai T.C. Eser D. Rupprecht R. Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev. Neurother. 2009 9 7 1005 1019 10.1586/ern.09.52 19589050
    [Google Scholar]
  117. Holsboer F. Barden N. Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr. Rev. 1996 17 2 187 205 10.1210/edrv‑17‑2‑187 8706631
    [Google Scholar]
  118. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000 23 5 477 501 10.1016/S0893‑133X(00)00159‑7 11027914
    [Google Scholar]
  119. García-Durán L. Flores-Burgess A. Cantero-García N. Puigcerver A. Narváez J.Á. Fuxe K. Santín L. Millón C. Díaz-Cabiale Z. Galanin(1-15) potentiates the antidepressant-like effects induced by escitalopram in a rat model of depression. Int. J. Mol. Sci. 2021 22 19 10848 10.3390/ijms221910848 34639188
    [Google Scholar]
  120. Hu H. Cui Y. Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci. 2020 21 5 277 295 10.1038/s41583‑020‑0292‑4 32269316
    [Google Scholar]
  121. Yang Y. Wang H. Hu J. Hu H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 2018 48 90 96 10.1016/j.conb.2017.10.024 29175713
    [Google Scholar]
  122. Yang Y. Cui Y. Sang K. Dong Y. Ni Z. Ma S. Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018 554 7692 317 322 10.1038/nature25509 29446381
    [Google Scholar]
  123. Kennedy S.H. Lam R.W. McIntyre R.S. Tourjman S.V. Bhat V. Blier P. Hasnain M. Jollant F. Levitt A.J. MacQueen G.M. McInerney S.J. McIntosh D. Milev R.V. Müller D.J. Parikh S.V. Pearson N.L. Ravindran A.V. Uher R. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder. Can. J. Psychiatry 2016 61 9 540 560 10.1177/0706743716659417 27486148
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241003125019
Loading
/content/journals/cn/10.2174/1570159X23666241003125019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antidepressants ; SSRIs ; Depression ; GAL(1-15) ; augmentation therapy ; animal models
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test