Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Depression is one of the most disabling mental disorders, with the second highest social burden; its prevalence has grown by more than 27% in recent years, affecting 246 million in 2021. Despite the wide range of antidepressants available, more than 50% of patients show treatment-resistant depression. In this review, we summarized the progress in developing a new augmentation strategy based on combining the N-terminal fragment of Galanin (1-15) and SSRI-type antidepressants in animal models.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241003125019
2024-10-31
2025-04-07
The full text of this item is not currently available.

References

  1. Depression and other common mental disorders.2017Available from: https://www.who.int/publications/i/item/depression-global-health-estimates
    [Google Scholar]
  2. ChisholmD. SweenyK. SheehanP. RasmussenB. SmitF. CuijpersP. SaxenaS. Scaling-up treatment of depression and anxiety: A global return on investment analysis.Lancet Psychiatry20163541542410.1016/S2215‑0366(16)30024‑4 27083119
    [Google Scholar]
  3. SantomauroD.F. MantillaH.A.M. ShadidJ. ZhengP. AshbaughC. PigottD.M. AbbafatiC. AdolphC. AmlagJ.O. AravkinA.Y. Bang-JensenB.L. BertolacciG.J. BloomS.S. CastellanoR. CastroE. ChakrabartiS. ChattopadhyayJ. CogenR.M. CollinsJ.K. DaiX. DangelW.J. DapperC. DeenA. EricksonM. EwaldS.B. FlaxmanA.D. FrostadJ.J. FullmanN. GilesJ.R. GirefA.Z. GuoG. HeJ. HelakM. HullandE.N. IdrisovB. LindstromA. LinebargerE. LotufoP.A. LozanoR. MagistroB. MaltaD.C. MånssonJ.C. MarinhoF. MokdadA.H. MonastaL. NaikP. NomuraS. O’HalloranJ.K. OstroffS.M. PasovicM. PenberthyL. ReinerR.C.Jr ReinkeG. RibeiroA.L.P. SholokhovA. SorensenR.J.D. VaravikovaE. VoA.T. WalcottR. WatsonS. WiysongeC.S. ZiglerB. HayS.I. VosT. MurrayC.J.L. WhitefordH.A. FerrariA.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic.Lancet2021398103121700171210.1016/S0140‑6736(21)02143‑7 34634250
    [Google Scholar]
  4. HankinB.L. AbramsonL.Y. Development of gender differences in depression: Description and possible explanations.Ann. Med.199931637237910.3109/07853899908998794 10680851
    [Google Scholar]
  5. KesslerR. Epidemiology of women and depression.J. Affect. Disord.200374151310.1016/S0165‑0327(02)00426‑3 12646294
    [Google Scholar]
  6. Nolen-HoeksemaS. Sex Differences in Depression.Stanford University Press199010.1515/9781503621640
    [Google Scholar]
  7. American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders201310.1176/appi.books.9780890425596
    [Google Scholar]
  8. ICD-11 for mortality and morbidity statistics (2018).2018Available from: https://icd.who.int/browse/2024-01/mms/en
  9. LaiH.M.X. ClearyM. SitharthanT. HuntG.E. Prevalence of comorbid substance use, anxiety and mood disorders in epidemiological surveys, 1990-2014: A systematic review and meta-analysis.Drug Alcohol Depend.201515411310.1016/j.drugalcdep.2015.05.031 26072219
    [Google Scholar]
  10. HoffmannA. SportelliV. ZillerM. SpenglerD. Epigenomics of major depressive disorders and schizophrenia: Early life decides.Int. J. Mol. Sci.2017188171110.3390/ijms18081711 28777307
    [Google Scholar]
  11. DeanJ. KeshavanM. The neurobiology of depression: An integrated view.Asian J. Psychiatr.20172710111110.1016/j.ajp.2017.01.025 28558878
    [Google Scholar]
  12. MalhiG.S. MannJ.J. Depression.Lancet2018392101612299231210.1016/S0140‑6736(18)31948‑2 30396512
    [Google Scholar]
  13. JesulolaE. MicalosP. BaguleyI.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - Are we there yet?Behav. Brain Res.2018341799010.1016/j.bbr.2017.12.025 29284108
    [Google Scholar]
  14. KrishnanV. NestlerE.J. The molecular neurobiology of depression.Nature2008455721589490210.1038/nature07455 18923511
    [Google Scholar]
  15. MikulskaJ. JuszczykG. Gawrońska-GrzywaczM. HerbetM. HPA Axis in the pathomechanism of depression and schizophrenia: New Therapeutic strategies based on its participation.Brain Sci.20211110129810.3390/brainsci11101298 34679364
    [Google Scholar]
  16. BokuS. NakagawaS. TodaH. HishimotoA. Neural basis of major depressive disorder: Beyond monoamine hypothesis.Psychiatry Clin. Neurosci.201872131210.1111/pcn.12604 28926161
    [Google Scholar]
  17. de KloetE.R. JoëlsM. HolsboerF. Stress and the brain: From adaptation to disease.Nat. Rev. Neurosci.20056646347510.1038/nrn1683 15891777
    [Google Scholar]
  18. TarttA.N. MarianiM.B. HenR. MannJ.J. BoldriniM. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications.Mol. Psychiatry20222762689269910.1038/s41380‑022‑01520‑y 35354926
    [Google Scholar]
  19. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  20. DumanR.S. SanacoraG. KrystalJ.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments.Neuron20191021759010.1016/j.neuron.2019.03.013 30946828
    [Google Scholar]
  21. RanaT. BehlT. SehgalA. SinghS. SharmaN. AbdeenA. IbrahimS.F. ManiV. IqbalM.S. BhatiaS. Abdel DaimM.M. BungauS. Exploring the role of neuropeptides in depression and anxiety.Prog. Neuropsychopharmacol. Biol. Psychiatry202211411047810.1016/j.pnpbp.2021.110478 34801611
    [Google Scholar]
  22. KormosV. GasznerB. Role of neuropeptides in anxiety, stress, and depression: From animals to humans.Neuropeptides201347640141910.1016/j.npep.2013.10.014 24210138
    [Google Scholar]
  23. MandrioliR. ProttiM. MercoliniL. New-generation, non-SSRI antidepressants: Therapeutic drug monitoring and pharmacological interactions. Part 1: SNRIs, SMSs, SARIs.Curr. Med. Chem.201825777279210.2174/0929867324666170712165042 28707591
    [Google Scholar]
  24. Perez-CaballeroL. Torres-SanchezS. Romero-López-AlbercaC. González-SaizF. MicoJ.A. BerrocosoE. Monoaminergic system and depression.Cell Tissue Res.2019377110711310.1007/s00441‑018‑2978‑8 30627806
    [Google Scholar]
  25. Bonet de LunaC. Fernández GarcíaM. Chamón ParraM. Depression, anxiety, and separation in childhood: Practical aspects for busy pediatricians.Pediatría Atención Primaria2011135147148910.4321/S1139‑76322011000300012
    [Google Scholar]
  26. ArtigasF. Serotonin receptors involved in antidepressant effects.Pharmacol. Ther.2013137111913110.1016/j.pharmthera.2012.09.006 23022360
    [Google Scholar]
  27. CastroE. DíazA. Rodriguez-GaztelumendiA. del OlmoE. PazosA. WAY100635 prevents the changes induced by fluoxetine upon the 5-HT1A receptor functionality.Neuropharmacology20085581391139610.1016/j.neuropharm.2008.08.038 18809415
    [Google Scholar]
  28. BortolozziA. CastañéA. SemakovaJ. SantanaN. AlvaradoG. CortésR. Ferrés-CoyA. FernándezG. CarmonaM.C. TothM. PeralesJ.C. MontefeltroA. ArtigasF. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects.Mol. Psychiatry201217661262310.1038/mp.2011.92 21808255
    [Google Scholar]
  29. SamuelsB.A. AnackerC. HuA. LevinsteinM.R. PickenhagenA. TsetsenisT. MadroñalN. DonaldsonZ.R. DrewL.J. DranovskyA. GrossC.T. TanakaK.F. HenR. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response.Nat. Neurosci.201518111606161610.1038/nn.4116 26389840
    [Google Scholar]
  30. TarditoD. PerezJ. TiraboschiE. MusazziL. RacagniG. PopoliM. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: A critical overview.Pharmacol. Rev.200658111513410.1124/pr.58.1.7 16507885
    [Google Scholar]
  31. CastrénE. RantamäkiT. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity.Dev. Neurobiol.201070528929710.1002/dneu.20758 20186711
    [Google Scholar]
  32. PittengerC. DumanR.S. Stress, depression, and neuroplasticity: A convergence of mechanisms.Neuropsychopharmacology20083318810910.1038/sj.npp.1301574 17851537
    [Google Scholar]
  33. WitkinJ.M. MartinA.E. GolaniL.K. XuN.Z. SmithJ.L. Rapid-acting antidepressants.Adv. Pharmacol.201986479610.1016/bs.apha.2019.03.002 31378256
    [Google Scholar]
  34. MadhukarH.T. EllaJ.D. Treatment strategies to improve and sustain remission in major depressive disorder.Dialogues Clin. Neurosci.200810437738410.31887/DCNS.2008.10.4/mhtrivedi 19170395
    [Google Scholar]
  35. FekaduA. WoodersonS.C. MarkopouloK. DonaldsonC. PapadopoulosA. CleareA.J. What happens to patients with treatment-resistant depression? A systematic review of medium to long term outcome studies.J. Affect. Disord.20091161-241110.1016/j.jad.2008.10.014 19007996
    [Google Scholar]
  36. SheltonR.C. OsuntokunO. HeinlothA.N. CoryaS.A. Therapeutic options for treatment-resistant depression.CNS Drugs201024213116110.2165/11530280‑000000000‑00000 20088620
    [Google Scholar]
  37. ZhouX. KeitnerG.I. QinB. RavindranA.V. BauerM. Del GiovaneC. ZhaoJ. LiuY. FangY. ZhangY. XieP. Atypical antipsychotic augmentation for treatment-resistant depression: A systematic review and network meta-analysis.Int. J. Neuropsychopharmacol.20151811pyv06010.1093/ijnp/pyv060 26012350
    [Google Scholar]
  38. PandarakalamJ.P. Challenges of treatment-resistant depression. Psychiatr. Danub. 2108,30327328410.24869/psyd.2018.27330267518
    [Google Scholar]
  39. ArtigasF. PerezV. AlvarezE. Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors.Arch. Gen. Psychiatry199451324825110.1001/archpsyc.1994.03950030084009 8122960
    [Google Scholar]
  40. EbrahimzadehM. El MansariM. BlierP. Synergistic effect of aripiprazole and escitalopram in increasing serotonin but not norepinephrine neurotransmission in the rat hippocampus.Neuropharmacology2019146121810.1016/j.neuropharm.2018.11.006 30414871
    [Google Scholar]
  41. MortonE. BhatV. GiacobbeP. LouW. MichalakE.E. McInerneyS. ChakrabartyT. FreyB.N. MilevR.V. MüllerD.J. ParikhS.V. RotzingerS. KennedyS.H. LamR.W. Predictors of quality of life improvement with escitalopram and adjunctive aripiprazole in patients with major depressive disorder: A CAN-BIND study report.CNS Drugs202135443945010.1007/s40263‑021‑00803‑2 33860922
    [Google Scholar]
  42. ShinC. KoY.H. ShimS.H. KimJ.S. NaK.S. HahnS.W. LeeS.H. Efficacy of buspirone augmentation of escitalopram in patients with major depressive disorder with and without atypical features: A randomized, 8 week, multicenter, open-label clinical trial.Psychiatry Investig.202017879680310.30773/pi.2020.0017 32750760
    [Google Scholar]
  43. JacobowitzD.M. KresseA. SkofitschG. Galanin in the brain: chemoarchitectonics and brain cartography—a historical review.Peptides200425343346410.1016/j.peptides.2004.02.015 15134866
    [Google Scholar]
  44. MelanderT. HökfeltT. RökaeusA. CuelloA.C. OertelW.H. VerhofstadA. GoldsteinM. Coexistence of galanin-like immunoreactivity with catecholamines, 5- hydroxytryptamine, GABA and neuropeptides in the rat CNS.J. Neurosci.19866123640365410.1523/JNEUROSCI.06‑12‑03640.1986 2432203
    [Google Scholar]
  45. FuxeK. Borroto-EscuelaD. FisoneG. AgnatiL. TanganelliS. Understanding the role of heteroreceptor complexes in the central nervous system.Curr. Protein Pept. Sci.201415764710.2174/138920371507140916122738 25256022
    [Google Scholar]
  46. Borroto-EscuelaD.O. CarlssonJ. AmbroginiP. NarváezM. WydraK. TarakanovA.O. LiX. MillónC. FerraroL. CuppiniR. TanganelliS. LiuF. FilipM. Diaz-CabialeZ. FuxeK. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease.Front. Cell. Neurosci.2017113710.3389/fncel.2017.00037 28270751
    [Google Scholar]
  47. TatemotoK. RökaeusÅ. JörnvallH. McDonaldT.J. MuttV. Galanin — a novel biologically active peptide from porcine intestine.FEBS Lett.1983164112412810.1016/0014‑5793(83)80033‑7 6197320
    [Google Scholar]
  48. WiczkW. RekowskiP. KupryszewskiG. ŁubkowskiJ. OldziejS. LiwoA. Fluorescence and Monte Carlo conformational studies of the (1-15) galanin amide fragment.Biophys. Chem.199658330331210.1016/0301‑4622(95)00104‑2 8820413
    [Google Scholar]
  49. SkofitschG. JacobowitzD.M. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system.Peptides19856350954610.1016/0196‑9781(85)90118‑4 2415952
    [Google Scholar]
  50. MitsukawaK. LuX. BartfaiT. Galanin, galanin receptors and drug targets.Cell. Mol. Life Sci.200865121796180510.1007/s00018‑008‑8153‑8 18500647
    [Google Scholar]
  51. Díaz-CabialeZ. ParradoC. NarváezM. MillónC. PuigcerverA. FuxeK. NarváezJ.A. Neurochemical modulation of central cardiovascular control: the integrative role of galanin.EXS201010211313110.1007/978‑3‑0346‑0228‑0_9 21299065
    [Google Scholar]
  52. FangP. HeB. ShiM. KongG. DongX. ZhuY. BoP. ZhangZ. The regulative effect of galanin family members on link of energy metabolism and reproduction.Peptides20157124024910.1016/j.peptides.2015.07.007 26188174
    [Google Scholar]
  53. LangR. GundlachA. KoflerB. The galanin peptide family: Receptor pharmacology, pleiotropic biological actions, and implications in health and disease.Pharmacol. Ther.2007115217720710.1016/j.pharmthera.2007.05.009 17604107
    [Google Scholar]
  54. BranchekT.A. SmithK.E. GeraldC. WalkerM.W. Galanin receptor subtypes.Trends Pharmacol. Sci.200021310911710.1016/S0165‑6147(00)01446‑2 10689365
    [Google Scholar]
  55. PorsoltR.D. Le PichonM. JalfreM. Depression: A new animal model sensitive to antidepressant treatments.Nature1977266560473073210.1038/266730a0 559941
    [Google Scholar]
  56. BogdanovaO.V. KanekarS. D’AnciK.E. RenshawP.F. Factors influencing behavior in the forced swim test.Physiol. Behav.201311822723910.1016/j.physbeh.2013.05.012 23685235
    [Google Scholar]
  57. MillónC. Flores-BurgessA. NarváezM. Borroto-EscuelaD.O. GagoB. SantínL. Castilla-OrtegaE. NarváezJ.Á. FuxeK. Díaz-CabialeZ. The neuropeptides galanin and Galanin(1-15) in depression-like behaviours.Neuropeptides201764394510.1016/j.npep.2017.01.004 28196617
    [Google Scholar]
  58. WeissJ.M. BonsallR.W. DemetrikopoulosM.K. EmeryM.S. WestC.H.K. Galanin: A significant role in depression?Ann. N. Y. Acad. Sci.1998863136438210.1111/j.1749‑6632.1998.tb10707.x 9928183
    [Google Scholar]
  59. KuteevaE. HökfeltT. WardiT. OgrenS.O. Galanin, galanin receptor subtypes and depression-like behaviour.Cell. Mol. Life Sci.200865121854186310.1007/s00018‑008‑8160‑9 18500640
    [Google Scholar]
  60. WangP. LiH. BardeS. ZhangM.D. SunJ. WangT. ZhangP. LuoH. WangY. YangY. WangC. SvenningssonP. TheodorssonE. HökfeltT.G.M. XuZ.Q.D. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray.Proc. Natl. Acad. Sci. USA201611332E4726E473510.1073/pnas.1609198113 27457954
    [Google Scholar]
  61. XuZ.Q.D. ZhangX. PieriboneV.A. GrillnerS. HökfeltT. Galanin-5-hydroxytryptamine interactions: Electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors.Neuroscience1998871799410.1016/S0306‑4522(98)00151‑1 9722143
    [Google Scholar]
  62. FuxeK. ÖgrenS.O. JanssonA. CintraA. HärfstrandA. AgnatiL.F. Intraventricular injections of galanin reduces 5‐HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto‐parietal cortex of the male rat.Acta Physiol. Scand.1988133457958110.1111/j.1748‑1716.1988.tb08444.x 2465672
    [Google Scholar]
  63. Borroto-EscuelaD.O. NarvaezM. MarcellinoD. ParradoC. NarvaezJ.A. TarakanovA.O. AgnatiL.F. Díaz-CabialeZ. FuxeK. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization.Biochem. Biophys. Res. Commun.2010393476777210.1016/j.bbrc.2010.02.078 20171159
    [Google Scholar]
  64. RazaniH. Díaz-CabialeZ. MisaneI. WangF.H. FuxeK. ÖgrenS.O. Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat.Neurosci. Lett.20012991-214514910.1016/S0304‑3940(00)01788‑2 11166958
    [Google Scholar]
  65. FuxeK. von EulerG. AgnatiL.F. ÖgrenS.O. Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex.Neurosci. Lett.198885116316710.1016/0304‑3940(88)90448‑X 2452385
    [Google Scholar]
  66. HedlundP.B. FuxeK. Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain.Ann. N. Y. Acad. Sci.1996780119321210.1111/j.1749‑6632.1996.tb15124.x 8602734
    [Google Scholar]
  67. KarlssonR.M. HolmesA. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease.Amino Acids200631323123910.1007/s00726‑006‑0336‑8 16733616
    [Google Scholar]
  68. SiloteG.P. RosalA.B. SouzaM.M. BeijaminiV. Infusion of galanin into the mid-caudal portion of the dorsal raphe nucleus has an anxiolytic effect on rats in the elevated T-maze.Behav. Brain Res.201325231231710.1016/j.bbr.2013.06.023 23791934
    [Google Scholar]
  69. MoraisJ.S. SouzaM.M. CampanhaT.M.N. MullerC.J.T. BittencourtA.S. BortoliV.C. SchenbergL.C. BeijaminiV. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus.Behav. Brain Res.201631412513310.1016/j.bbr.2016.08.007 27498247
    [Google Scholar]
  70. FunckV.R. FracalossiM.P. VidigalA.P.P. BeijaminiV. Dorsal hippocampal galanin modulates anxiety-like behaviours in rats.Brain Res.20181687748110.1016/j.brainres.2018.02.036 29499176
    [Google Scholar]
  71. PieriboneV.A. XuZ.Q. ZhangX. GrillnerS. BartfaiT. HökfeltT. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice.Neuroscience199564486187410.1016/0306‑4522(94)00450‑J 7538638
    [Google Scholar]
  72. MaX. TongY.G. SchmidtR. BrownW. PayzaK. HodzicL. PouC. GodboutC. HökfeltT. XuZ.Q.D. Effects of galanin receptor agonists on locus coeruleus neurons.Brain Res.2001919116917410.1016/S0006‑8993(01)03033‑5 11689176
    [Google Scholar]
  73. MazzocchiG. MalendowiczL.K. RebuffatP. NussdorferG.G. Effects of galanin on the secretory activity of the rat adrenal cortex: in vivo and in vitro studies.Res. Exp. Med. (Berl.)1992192137338110.1007/BF02576294 1282728
    [Google Scholar]
  74. HooiS.C. MaiterD.M. MartinJ.B. KoenigJ. Galaninergic mechanisms are involved in the regulation of corticotropin and thyrotropin secretion in the rat.Endocrinology199012752281228910.1210/endo‑127‑5‑2281 1699744
    [Google Scholar]
  75. IhnatkoR. TheodorssonE. Short N-terminal galanin fragments are occurring naturally in vivo.Neuropeptides20176311310.1016/j.npep.2017.03.005 28434790
    [Google Scholar]
  76. HedlundP.B. YanaiharaN. FuxeK. Evidence for specific N-terminal galanin fragment binding sites in the rat brain.Eur. J. Pharmacol.19922242-320320510.1016/0014‑2999(92)90806‑F 1281778
    [Google Scholar]
  77. Díaz-CabialeZ. ParradoC. VelaC. RazaniH. CoveñasR. FuxeK. NarváezJ.A. Role of galanin and galanin(1-15) on central cardiovascular control.Neuropeptides200539318519010.1016/j.npep.2004.12.009 15944010
    [Google Scholar]
  78. MillónC. Flores-BurgessA. NarváezM. Borroto-EscuelaD.O. SantínL. ParradoC. NarváezJ.A. FuxeK. Díaz-CabialeZ. A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats.Int. J. Neuropsychopharmacol.2014183pyu064 25522404
    [Google Scholar]
  79. MillónC. Flores-BurgessA. GagoB. AlénF. OrioL. García-DuránL. NarváezJ.A. FuxeK. SantínL. Díaz-CabialeZ. Role of the galanin N-terminal fragment (1-15) in anhedonia: Involvement of the dopaminergic mesolimbic system.J. Psychopharmacol.201933673774710.1177/0269881119844188 31081442
    [Google Scholar]
  80. MillónC. Flores-BurgessA. Castilla-OrtegaE. GagoB. García-FernandezM. SerranoA. Rodriguez de FonsecaF. NarváezJ.A. FuxeK. SantínL. Díaz-CabialeZ. Central administration of galanin N‐terminal fragment 1-15 decreases the voluntary alcohol intake in rats.Addict. Biol.2019241768710.1111/adb.12582 29210146
    [Google Scholar]
  81. Cantero-GarcíaN. Flores-BurgessA. Ladrón de Guevara-MirandaD. SerranoA. García-DuránL. PuigcerverA. FuxeK. NarváezJ.Á. SantínL.J. Díaz-CabialeZ. MillónC. The combination of Galanin(1-15) and escitalopram in rats suggests a new strategy for alcohol use disorder comorbidity with depression.Biomedicines202210241210.3390/biomedicines10020412 35203621
    [Google Scholar]
  82. Cantero-GarcíaN. Flores-BurgessA. Pineda-GómezJ.P. OrioL. SerranoA. Díaz-CabialeZ. MillónC. Galanin N-terminal fragment (1-15) reduces alcohol seeking and alcohol relapse in rats: Involvement of mesocorticolimbic system.Biomed. Pharmacother.202215311350810.1016/j.biopha.2022.113508 36076594
    [Google Scholar]
  83. DeussingJ.M. Animal models of depression.Drug Discov. Today Dis. Models20063437538310.1016/j.ddmod.2006.11.003
    [Google Scholar]
  84. FuxeK. MarcellinoD. RiveraA. Diaz-CabialeZ. FilipM. GagoB. RobertsD.C.S. LangelU. GenedaniS. FerraroL. de la CalleA. NarvaezJ. TanganelliS. WoodsA. AgnatiL.F. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.Brain Res. Brain Res. Rev.200858241545210.1016/j.brainresrev.2007.11.007 18222544
    [Google Scholar]
  85. FuxeK. Borroto-EscuelaD.O. Romero-FernandezW. TarakanovA.O. CalvoF. GarrigaP. TenaM. NarvaezM. MillónC. ParradoC. CiruelaF. AgnatiL.F. NarvaezJ.A. Díaz-CabialeZ. On the existence and function of galanin receptor heteromers in the central nervous system.Front. Endocrinol. (Lausanne)2012312710.3389/fendo.2012.00127 23112793
    [Google Scholar]
  86. Borroto-EscuelaD.O. NarvaezM. Di PalmaM. CalvoF. RodriguezD. MillonC. CarlssonJ. AgnatiL.F. GarrigaP. Díaz-CabialeZ. FuxeK. Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex.Biochem. Biophys. Res. Commun.2014452334735310.1016/j.bbrc.2014.08.061 25152404
    [Google Scholar]
  87. Flores-BurgessA. Small interference RNA knockdown rats in behavioral functions: GALR1/GALR2 heteroreceptor in anxiety and depression-like behavior. In: Receptor-Receptor Interactions in the Central Nervous System, 201813314810.1007/978‑1‑4939‑8576‑0_9
    [Google Scholar]
  88. NakajimaH. KuboT. SemiY. ItakuraM. KuwamuraM. IzawaT. AzumaY.T. TakeuchiT. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain.J. Biotechnol.2012157232633310.1016/j.jbiotec.2011.10.003 22079868
    [Google Scholar]
  89. NautiyalK.M. HenR. Serotonin receptors in depression: from A to B.F1000 Res.2017612310.12688/f1000research.9736.1 28232871
    [Google Scholar]
  90. GozlanH. El MestikawyS. PichatL. GlowinskiJ. HamonM. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT.Nature1983305593014014210.1038/305140a0 6225026
    [Google Scholar]
  91. De VryJ. SchreiberR. MelonC. DalmusM. JentzschK.R. 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat.Eur. Neuropsychopharmacol.200414648749510.1016/j.euroneuro.2004.01.004 15589388
    [Google Scholar]
  92. MillónC. Flores-BurgessA. NarváezM. Borroto-EscuelaD.O. SantínL. GagoB. NarváezJ.A. FuxeK. Díaz-CabialeZ. Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system.Brain Struct. Funct.201622194491450410.1007/s00429‑015‑1180‑y 26792005
    [Google Scholar]
  93. HedlundP.B. FinnmanU.B. YanaiharaN. FuxeK. Galanin-(1-15), but not galanin-(1-29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: Possible existence of galanin receptor subtypes.Brain Res.1994634116316710.1016/0006‑8993(94)90271‑2 7512426
    [Google Scholar]
  94. MarchJ. SilvaS. PetryckiS. CurryJ. WellsK. FairbankJ. BurnsB. DominoM. McNultyS. VitielloB. SevereJ. Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial.JAMA2004292780782010.1001/jama.292.7.807 15315995
    [Google Scholar]
  95. Flores-BurgessA. MillónC. GagoB. NarváezM. Borroto-EscuelaD.O. MengodG. NarváezJ.A. FuxeK. SantínL. Díaz-CabialeZ. Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression.Neuropharmacology201711823324110.1016/j.neuropharm.2017.03.010 28288814
    [Google Scholar]
  96. EstradacamarenaE. LópezrubalcavaC. FernándezguastiA. Facilitating antidepressant-like actions of estrogens are mediated by 5-HT1A and estrogen receptors in the rat forced swimming test.Psychoneuroendocrinology200631890591410.1016/j.psyneuen.2006.05.001 16843610
    [Google Scholar]
  97. SerresF. MumaN.A. RaapD.K. GarciaF. BattagliaG. Van de KarL.D. Coadministration of 5-hydroxytryptamine(1A) antagonist WAY-100635 prevents fluoxetine-induced desensitization of postsynaptic 5-hydroxytryptamine(1A) receptors in hypothalamus.J. Pharmacol. Exp. Ther.20002941296301 10871325
    [Google Scholar]
  98. MenesesA. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: Short- and long-term memory.Behav. Brain Res.20071841819010.1016/j.bbr.2007.06.026 17692935
    [Google Scholar]
  99. AhernE. SemkovskaM. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis.Neuropsychology2017311527210.1037/neu0000319 27732039
    [Google Scholar]
  100. DunkinJ.J. LeuchterA.F. CookI.A. Kasl-GodleyJ.E. AbramsM. Rosenberg-ThompsonS. Executive dysfunction predicts nonresponse to fluoxetine in major depression.J. Affect. Disord.2000601132310.1016/S0165‑0327(99)00157‑3 10940443
    [Google Scholar]
  101. BarkerG.R.I. WarburtonE.C. When is the hippocampus involved in recognition memory?J. Neurosci.20113129107211073110.1523/JNEUROSCI.6413‑10.2011 21775615
    [Google Scholar]
  102. MüllerN.G. KnightR.T. The functional neuroanatomy of working memory: Contributions of human brain lesion studies.Neuroscience20061391515810.1016/j.neuroscience.2005.09.018 16352402
    [Google Scholar]
  103. AmpueroE. StehbergJ. GonzalezD. BesserN. FerreroM. Diaz-VelizG. WynekenU. RubioF.J. Repetitive fluoxetine treatment affects long-term memories but not learning.Behav. Brain Res.20132479210010.1016/j.bbr.2013.03.011 23511254
    [Google Scholar]
  104. CastañéA. KargiemanL. CeladaP. BortolozziA. ArtigasF. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.Eur. Neuropsychopharmacol.20152581353136110.1016/j.euroneuro.2015.04.006 25914158
    [Google Scholar]
  105. Flores-BurgessA. MillónC. GagoB. García-DuránL. Cantero-GarcíaN. CoveñasR. NarváezJ.A. FuxeK. SantínL. Díaz-CabialeZ. Galanin (1-15)-fluoxetine interaction in the novel object recognition test. Involvement of 5-HT1A receptors in the prefrontal cortex of the rats.Neuropharmacology201915510411210.1016/j.neuropharm.2019.05.023 31128121
    [Google Scholar]
  106. RinaldiA. RomeoS. Agustín-PavónC. OliverioA. MeleA. Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice.Neurobiol. Learn. Mem.201094337338110.1016/j.nlm.2010.08.004 20736076
    [Google Scholar]
  107. Castilla-OrtegaE. PedrazaC. ChunJ. FonsecaF.R. Estivill-TorrúsG. SantínL.J. Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands.Behav. Brain Res.2012232240040510.1016/j.bbr.2012.04.018 22537775
    [Google Scholar]
  108. Morales-MedinaJ.C. IannittiT. FreemanA. CaldwellH.K. The olfactory bulbectomized rat as a model of depression: The hippocampal pathway.Behav. Brain Res.201731756257510.1016/j.bbr.2016.09.029 27633561
    [Google Scholar]
  109. la CourC.M. El MestikawyS. HanounN. HamonM. LanfumeyL. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain.Mol. Pharmacol.20067031013102110.1124/mol.106.022756 16772521
    [Google Scholar]
  110. CiprianiA. SantilliC. FurukawaT.A. SignorettiA. NakagawaA. McGuireH. ChurchillR. BarbuiC. Escitalopram versus other antidepressive agents for depression.Cochrane Libr.200920165CD00653210.1002/14651858.CD006532.pub2 19370639
    [Google Scholar]
  111. Flores-BurgessA. MillónC. GagoB. García-DuránL. Cantero-GarcíaN. PuigcerverA. NarváezJA. FuxeK. SantínL. Díaz-CabialeZ. Galanin (1-15) enhances the behavioral effects of fluoxetine in the olfactory bulbectomy rat, suggesting a new augmentation strategy in depression. Int. J. Neuropsychopharmacol.,202225430731810.1093/ijnp/pyab089
    [Google Scholar]
  112. ZhouY.F. FengL. LiuX.M. TaoX. WangL.S. ZhangM.D. WangZ. ChenS.G. ChangQ. Urinary metabolic disturbance in the olfactory bulbectomized rats and the modulatory effects of fluoxetine.Life Sci.201923411675110.1016/j.lfs.2019.116751 31415771
    [Google Scholar]
  113. GurevichE.V. AleksandrovaI.A. OtmakhovaN.A. KatkovY.A. NesterovaI.V. BobkovaN.V. Effects of bulbectomy and subsequent antidepressant treatment on brain 5-HT2 and 5-HT1A receptors in mice.Pharmacol. Biochem. Behav.1993451657010.1016/0091‑3057(93)90087‑A 8516375
    [Google Scholar]
  114. RiadM. KobertA. DescarriesL. BoyeS. RompréP.P. LacailleJ.C. Chronic fluoxetine rescues changes in plasma membrane density of 5-HT1A autoreceptors and serotonin transporters in the olfactory bulbectomy rodent model of depression.Neuroscience2017356788810.1016/j.neuroscience.2017.05.021 28528967
    [Google Scholar]
  115. MarcilhacA. FaudonM. AngladeG. HeryF. SiaudP. An investigation of serotonergic involvement in the regulation of ACTH and corticosterone in the olfactory bulbectomized rat.Pharmacol. Biochem. Behav.199963459960510.1016/S0091‑3057(99)00024‑6 10462188
    [Google Scholar]
  116. SchüleC. BaghaiT.C. EserD. RupprechtR. Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression.Expert Rev. Neurother.2009971005101910.1586/ern.09.52 19589050
    [Google Scholar]
  117. HolsboerF. BardenN. Antidepressants and hypothalamic-pituitary-adrenocortical regulation.Endocr. Rev.199617218720510.1210/edrv‑17‑2‑187 8706631
    [Google Scholar]
  118. HolsboerF. The corticosteroid receptor hypothesis of depression.Neuropsychopharmacology200023547750110.1016/S0893‑133X(00)00159‑7 11027914
    [Google Scholar]
  119. García-DuránL. Flores-BurgessA. Cantero-GarcíaN. PuigcerverA. NarváezJ.Á. FuxeK. SantínL. MillónC. Díaz-CabialeZ. Galanin(1-15) potentiates the antidepressant-like effects induced by escitalopram in a rat model of depression.Int. J. Mol. Sci.202122191084810.3390/ijms221910848 34639188
    [Google Scholar]
  120. HuH. CuiY. YangY. Circuits and functions of the lateral habenula in health and in disease.Nat. Rev. Neurosci.202021527729510.1038/s41583‑020‑0292‑4 32269316
    [Google Scholar]
  121. YangY. WangH. HuJ. HuH. Lateral habenula in the pathophysiology of depression.Curr. Opin. Neurobiol.201848909610.1016/j.conb.2017.10.024 29175713
    [Google Scholar]
  122. YangY. CuiY. SangK. DongY. NiZ. MaS. HuH. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.Nature2018554769231732210.1038/nature25509 29446381
    [Google Scholar]
  123. KennedyS.H. LamR.W. McIntyreR.S. TourjmanS.V. BhatV. BlierP. HasnainM. JollantF. LevittA.J. MacQueenG.M. McInerneyS.J. McIntoshD. MilevR.V. MüllerD.J. ParikhS.V. PearsonN.L. RavindranA.V. UherR. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder.Can. J. Psychiatry201661954056010.1177/0706743716659417 27486148
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241003125019
Loading
/content/journals/cn/10.2174/1570159X23666241003125019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): animal models; antidepressants; augmentation therapy; Depression; GAL(1-15); SSRIs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test