Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Germinal matrix-intraventricular hemorrhage (GM-IVH) is a detrimental neurological complication that occurs in preterm infants, especially in babies born before 32 weeks of gestation and in those with a very low birth weight. GM-IVH is defined as a rupture of the immature and fragile capillaries located in the subependymal germinal matrix zone of the preterm infant brain, and it can lead to detrimental neurological sequelae such as posthemorrhagic hydrocephalus (PHH), cerebral palsy, and other cognitive impairments. PHH following GM-IVH is difficult to treat in the clinic, and no level-one strategies have been recommended to pediatric neurosurgeons. Several cellular and molecular mechanisms of PHH following GM-IVH have been studied in animal models, but no effective pharmacological strategies have been used in the clinic. Thus, a comprehensive understanding of molecular mechanisms, potential pharmacological strategies, and surgical management of PHH is urgently needed. The present review presents a synopsis of the pathogenesis, diagnosis, and cellular and molecular mechanisms of PHH following GM-IVH and explores pharmacological strategies and surgical management.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666240906115817
2024-09-06
2025-04-25
Loading full text...

Full text loading...

References

  1. RamenghiL.A. FumagalliM. GroppoM. ConsonniD. GattiL. BertazziP.A. MannucciP.M. MoscaF. Germinal matrix hemorrhage: Intraventricular hemorrhage in very-low-birth-weight infants: The independent role of inherited thrombophilia.Stroke20114271889189310.1161/STROKEAHA.110.590455 21597013
    [Google Scholar]
  2. YeoK.T. ThomasR. ChowS.S.W. BolisettyS. HaslamR. Tarnow-MordiW. LuiK. Improving incidence trends of severe intraventricular haemorrhages in preterm infants <32 weeks gestation: a cohort study.Arch. Dis. Child. Fetal Neonatal Ed.2020105214515010.1136/archdischild‑2018‑316664 31201252
    [Google Scholar]
  3. SiffelC. KistlerK.D. SardaS.P. Global incidence of intraventricular hemorrhage among extremely preterm infants: a systematic literature review.J. Perinat. Med.20214991017102610.1515/jpm‑2020‑0331 33735943
    [Google Scholar]
  4. LiuJ. ChangL. WangQ. QinG. General evaluation of periventricular-intraventricular hemorrhage in premature infants in mainland China.J. Turk. Ger. Gynecol. Assoc.2010112737710.5152/jtgga.2010.02 24591902
    [Google Scholar]
  5. BolisettyS. DhawanA. Abdel-LatifM. BajukB. StackJ. OeiJ-L. LuiK. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants.Pediatrics20141331556210.1542/peds.2013‑0372 24379238
    [Google Scholar]
  6. AllenK.A. Treatment of intraventricular hemorrhages in premature infants: where is the evidence?Adv. Neonatal Care201313212713010.1097/ANC.0b013e31828ac82e 23532032
    [Google Scholar]
  7. SzpechtD. SzymankiewiczM. Seremak-MrozikiewiczA. GadzinowskiJ. The role of genetic factors in the pathogenesis of neonatal intraventricular hemorrhage.Folia Neuropathol.2015111710.5114/fn.2015.49968 25909869
    [Google Scholar]
  8. KosikK. SzpechtD. KarbowskiŁ. Al-SaadS.R. Chmielarz-CzarnocińskaA. MintaM. SowińskaA. StraussE. Hemangioma-related gene polymorphisms in the pathogenesis of intraventricular hemorrhage in preterm infants.Childs Nerv. Syst.20233961589159410.1007/s00381‑023‑05824‑4 36656337
    [Google Scholar]
  9. PapileL.A. BursteinJ. BursteinR. KofflerH. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm.J. Pediatr.197892452953410.1016/S0022‑3476(78)80282‑0 305471
    [Google Scholar]
  10. VolpeJ.J. Intracranial hemorrhage: Germinal matrixintraventricular hemorrhage of the premature infant. Neurology of the Newborn5th ed.2008
    [Google Scholar]
  11. PapeK. CusickG. BlackwellR.J. HouangM.T.W. SherwoodA. ThorburnR. ReynoldsE.O.R. Ultrasound detection of brain damage in preterm infants.Lancet197931381291261126410.1016/S0140‑6736(79)92227‑X 87726
    [Google Scholar]
  12. SauerbreiE.E. DigneyM. HarrisonP.B. CooperbergP.L. Ultrasonic evaluation of neonatal intracranial hemorrhage and its complications.Radiology1981139367768510.1148/radiology.139.3.7232735 7232735
    [Google Scholar]
  13. KadriH. MawlaA.A. KazahJ. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates.Childs Nerv. Syst.20062291086109010.1007/s00381‑006‑0050‑6 16636880
    [Google Scholar]
  14. EgesaW.I. OdochS. OdongR.J. NakalemaG. AsiimweD. EkukE. TwesigemukamaS. TuryasiimaM. LokengamaR.K. WaibiW.M. AbdirashidS. KajobaD. KumbakuluP.K. Germinal matrix-intraventricular hemorrhage: A tale of preterm infants.Int. J. Pediatr.2021202111410.1155/2021/6622598 33815512
    [Google Scholar]
  15. JonesR.M. ClarkE.M. BroadK. SmitE. Outcome following preterm intraventricular haemorrhage – what to tell the parents.Paediatrics and Child Health201828943143510.1016/j.paed.2018.07.005
    [Google Scholar]
  16. HandI.L. ShellhaasR.A. MillaS.S. CummingsJ.J. Adams-ChapmanI.S. AucottS.W. GoldsmithJ.P. KaufmanD.A. MartinC.R. PuopoloK.M. HartmanA.L. BonkowskyJ.L. CapalJ.K. LotzeT.E. UrionD.K. AlazrakiA.L. AnnamA. BenyaE. BrownB.P. OteroH.J. RicherE. Routine neuroimaging of the preterm brain.Pediatrics20201465e202002908210.1542/peds.2020‑029082 33106343
    [Google Scholar]
  17. RobinsonS. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts.J. Neurosurg. Pediatr.20129324225810.3171/2011.12.PEDS11136 22380952
    [Google Scholar]
  18. DandyW.E. BlackfanK.D. Internal hydrocephalus: An experimental, clinical and pathological study.J. Neurosurg.19642158863510.3171/jns.1964.21.7.0588
    [Google Scholar]
  19. EgnorM. ZhengL. RosielloA. GutmanF. DavisR. A model of pulsations in communicating hydrocephalus.Pediatr. Neurosurg.200236628130310.1159/000063533 12077474
    [Google Scholar]
  20. GreitzD. Radiological assessment of hydrocephalus: new theories and implications for therapy.Neurosurg. Rev.200427314516510.1007/s10143‑004‑0326‑9 15164255
    [Google Scholar]
  21. OreškovićD. KlaricaM. Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: Facts and illusions.Prog. Neurobiol.201194323825810.1016/j.pneurobio.2011.05.005 21641963
    [Google Scholar]
  22. OiS. Di RoccoC. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain.Childs Nerv. Syst.200622766266910.1007/s00381‑005‑0020‑4 16685545
    [Google Scholar]
  23. SymssN.P. OiS. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend.J. Neurosurg. Pediatr.201311217017710.3171/2012.3.PEDS0934 23215851
    [Google Scholar]
  24. BallabhP. Pathogenesis and prevention of intraventricular hemorrhage.Clin. Perinatol.2014411476710.1016/j.clp.2013.09.007 24524446
    [Google Scholar]
  25. VassilyadiM. TatarynZ. ShamjiM.F. VentureyraE.C.G. Functional outcomes among premature infants with intraventricular hemorrhage.Pediatr. Neurosurg.200945424725510.1159/000228982 19609092
    [Google Scholar]
  26. KlebeD. MBride, D.; Krafft, P.R.; Flores, J.J.; Tang, J.; Zhang, J.H. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways.J. Neurosci. Res.202098110512010.1002/jnr.24394 30793349
    [Google Scholar]
  27. KennedyC.R. AyersS. CampbellM.J. ElbourneD. HopeP. JohnsonA. Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year.Pediatrics2001108359760710.1542/peds.108.3.597 11533324
    [Google Scholar]
  28. WhitelawA. BrionL.P. KennedyC.R. OddD. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation.Cochrane Libr.200120101CD00227010.1002/14651858.CD002270 11406041
    [Google Scholar]
  29. WhitelawA. AquilinaK. Management of posthaemorrhagic ventricular dilatation.Arch. Dis. Child. Fetal Neonatal Ed.2012973F229F23310.1136/adc.2010.190173 21289015
    [Google Scholar]
  30. ChariA. MallucciC. WhitelawA. AquilinaK. Intraventricular haemorrhage and posthaemorrhagic ventricular dilatation: moving beyond CSF diversion.Childs Nerv. Syst.202137113375338310.1007/s00381‑021‑05206‑8 33993367
    [Google Scholar]
  31. ShoomanD. PortessH. SparrowO. A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants.Cerebrospinal Fluid Res.200961110.1186/1743‑8454‑6‑1 19183463
    [Google Scholar]
  32. AlshareefM. MallahK. VasasT. AlawiehA. BoruckiD. CouchC. CutroneJ. ShopeC. EskandariR. TomlinsonS. A Role of complement in the pathogenic sequelae of mouse neonatal germinal matrix hemorrhage.Int. J. Mol. Sci.2022236294310.3390/ijms23062943 35328364
    [Google Scholar]
  33. TangJ. JilaS. LuoT. ZhangB. MiaoH. FengH. ChenZ. ZhuG. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats.Neuropharmacology202220510892710.1016/j.neuropharm.2021.108927 34921829
    [Google Scholar]
  34. XiaoJ. CaiT. FangY. LiuR. FloresJ.J. WangW. GaoL. LiuY. LuQ. TangL. ZhangJ.H. LuH. TangJ. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model.J. Neuroinflammation202118116010.1186/s12974‑021‑02209‑9 34275493
    [Google Scholar]
  35. El-DibM. LimbrickD.D.Jr InderT. WhitelawA. KulkarniA.V. WarfB. VolpeJ.J. de VriesL.S. Management of post-hemorrhagic ventricular dilatation in the infant born preterm.J. Pediatr.20202261627.e310.1016/j.jpeds.2020.07.079 32739263
    [Google Scholar]
  36. MurphyB.P. InderT.E. RooksV. TaylorG.A. AndersonN.J. MogridgeN. HorwoodL.J. VolpeJ.J. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome.Arch. Dis. Child. Fetal Neonatal Ed.200287137F4110.1136/fn.87.1.F37 12091289
    [Google Scholar]
  37. ChristianE.A. JinD.L. AttenelloF. WenT. CenS. MackW.J. KriegerM.D. McCombJ.G. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010.J. Neurosurg. Pediatr.201617326026910.3171/2015.7.PEDS15140 26544084
    [Google Scholar]
  38. CizmeciM.N. GroenendaalF. LiemK.D. van HaastertI.C. Benavente-FernándezI. van StraatenH.L.M. SteggerdaS. SmitB.J. WhitelawA. WoerdemanP. HeepA. de VriesL.S. HanK.S. ter HorstH.J. DijkmanK.P. LeyD. FellmanV. de HaanT.R. BrouwerA.J. BendersM.J.N.L. DudinkJ. VerlaatE. GovaertP. SwarteR.M.C. RijkenM. van Wezel-MeijlerG. QuijanoT.A. BarcikU. MathurA.M. GracaA.M. Randomized controlled Early versus late ventricular intervention study in posthemorrhagic ventricular dilatation: Outcome at 2 years.J. Pediatr.20202262835.e310.1016/j.jpeds.2020.08.014 32800815
    [Google Scholar]
  39. LeeJ.Y. KeepR.F. HeY. SagherO. HuaY. XiG. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury.J. Cereb. Blood Flow Metab.201030111793180310.1038/jcbfm.2010.137 20736956
    [Google Scholar]
  40. StrahleJ.M. GartonT. BazziA.A. KilaruH. GartonH.J.L. MaherC.O. MuraszkoK.M. KeepR.F. XiG. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage.Neurosurgery201475669670610.1227/NEU.0000000000000524 25121790
    [Google Scholar]
  41. KlebeD. KrafftP.R. HoffmannC. LekicT. FloresJ.J. RollandW. ZhangJ.H. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats.Stroke20144582475247910.1161/STROKEAHA.114.005079 24947291
    [Google Scholar]
  42. LiQ. DingY. KrafftP. WanW. YanF. WuG. ZhangY. ZhanQ. ZhangJ.H. Targeting germinal matrix hemorrhage-induced overexpression of sodium‐coupled bicarbonate exchanger reduces posthemorrhagic hydrocephalus formation in neonatal rats.J. Am. Heart Assoc.201873e00719210.1161/JAHA.117.007192 29386206
    [Google Scholar]
  43. TangJ. TaoY. TanL. YangL. NiuY. ChenQ. YangY. FengH. ChenZ. ZhuG. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.Neuropharmacology20159542443310.1016/j.neuropharm.2015.04.028 25963415
    [Google Scholar]
  44. TangJ. MiaoH. JiangB. ChenQ. TanL. TaoY. ZhangJ. GaoF. FengH. ZhuG. ChenZ. A selective CB2R agonist (JWH133) restores neuronal circuit after Germinal Matrix Hemorrhage in the preterm via CX3CR1+ microglia.Neuropharmacology201711915716910.1016/j.neuropharm.2017.01.027 28153531
    [Google Scholar]
  45. GleesP. HasanM. Ultrastructure of human cerebral macroglia and microglia: Maturing and hydrocephalic frontal cortex.Neurosurg. Rev.199013323124210.1007/BF00313025 2398953
    [Google Scholar]
  46. DerenK.E. PackerM. ForsythJ. MilashB. AbdullahO.M. HsuE.W. McAllisterJ.P. II Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus.Exp. Neurol.2010226111011910.1016/j.expneurol.2010.08.010 20713048
    [Google Scholar]
  47. BirbrairA. ZhangT. FilesD.C. MannavaS. SmithT. WangZ.M. MessiM.L. MintzA. DelbonoO. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner.Stem Cell Res. Ther.20145612210.1186/scrt512 25376879
    [Google Scholar]
  48. JungS.Y. KimY.E. ParkW.S. AhnS.Y. SungD.K. SungS.I. JooK.M. KimS.G. ChangY.S. Thrombin preconditioning improves the therapeutic efficacy of mesenchymal stem cells in severe intraventricular hemorrhage induced neonatal rats.Int. J. Mol. Sci.2022238444710.3390/ijms23084447 35457266
    [Google Scholar]
  49. LekicT. KrafftP.R. KlebeD. FloresJ. RollandW.B. TangJ. ZhangJ.H. PAR-1, -4, and the mTOR pathway following germinal matrix hemorrhage.Acta Neurochir. Suppl. (Wien)201612121321610.1007/978‑3‑319‑18497‑5_38 26463951
    [Google Scholar]
  50. LekicT. KlebeD. McBrideD.W. ManaenkoA. RollandW.B. FloresJ.J. AltayO. TangJ. ZhangJ.H. Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury.Stroke20154661710171310.1161/STROKEAHA.114.007889 25931468
    [Google Scholar]
  51. BowenT. JenkinsR.H. FraserD.J. MICRORNAS, transforming growth factor beta‐1, and tissue fibrosis.J. Pathol.2013229227428510.1002/path.4119 23042530
    [Google Scholar]
  52. TadaT. KanajiM. ShigeakiK. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-β1.J. Neuroimmunol.199450215315810.1016/0165‑5728(94)90041‑8 8120136
    [Google Scholar]
  53. ManaenkoA. LekicT. BarnhartM. HartmanR. ZhangJ.H. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage.Stroke201445382883410.1161/STROKEAHA.113.003754 24425124
    [Google Scholar]
  54. XuH. New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus.Neurol. Sci.20163791387139110.1007/s10072‑016‑2589‑7 27115894
    [Google Scholar]
  55. KrishnamurthyS. LiJ. SchultzL. JenrowK.A. Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain.Fluids Barriers CNS2012911310.1186/2045‑8118‑9‑13 22784705
    [Google Scholar]
  56. KrishnamurthyS. LiJ. SchultzL. McAllisterJ.P.II Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus.Cerebrospinal Fluid Res.2009611610.1186/1743‑8454‑6‑16 20003330
    [Google Scholar]
  57. YangY. HeJ. WangY. WangC. TanC. LiaoJ. TongL. XiaoG. Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus.J. Neuroinflammation202219115610.1186/s12974‑022‑02500‑3 35715859
    [Google Scholar]
  58. TanC. WangX. WangY. WangC. TangZ. ZhangZ. LiuJ. XiaoG. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus.Clin. Interv. Aging20211613915310.2147/CIA.S290709 33488070
    [Google Scholar]
  59. Castañeyra-RuizL. Hernández-AbadL.G. Carmona-CaleroE.M. Castañeyra-PerdomoA. González-MarreroI. AQP1 Overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a chiari malformation type II case.J. Neuropathol. Exp. Neurol.201978764164710.1093/jnen/nlz033 31039249
    [Google Scholar]
  60. SveinsdottirS. GramM. CinthioM. SveinsdottirK. MörgelinM. LeyD. Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage.Dev. Neurosci.201436654255110.1159/000366058 25342576
    [Google Scholar]
  61. SilverbergG.D. Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both.Brain2004127594794810.1093/brain/awh178 15111447
    [Google Scholar]
  62. SaitoS. OnoK. TanakaM. Amyloid-β: Structure, function, and pathophysiological significance in neurodegenerative diseases.Int. J. Mol. Sci.202223181027510.3390/ijms231810275 36142187
    [Google Scholar]
  63. NingH. ZhangL. ZhuB. ZhouX. ZhangT. MaT. TARBP2-stablized SNHG7 regulates blood-brain barrier permeability by acting as a competing endogenous RNA to miR-17-5p/] NFATC3 in Aβ-microenvironment.Cell Death Dis.202213545710.1038/s41419‑022‑04920‑8 35562351
    [Google Scholar]
  64. DerenK.E. ForsythJ. AbdullahO. HsuE.W. KlingeP.M. SilverbergG.D. JohansonC.E. McAllisterJ.P.II Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus.Cerebrospinal Fluid Res.200961410.1186/1743‑8454‑6‑4 19470163
    [Google Scholar]
  65. LevitonA. KubanK.C. Van MarterL. PaganoM. AllredE.N. Antenatal corticosteroids appear to reduce the risk of postnatal germinal matrix hemorrhage in intubated low birth weight newborns.Pediatrics19939161083108810.1542/peds.91.6.1083 8502506
    [Google Scholar]
  66. MentL.R. VohrB.R. MakuchR.W. WesterveldM. KatzK.H. SchneiderK.C. DuncanC.C. EhrenkranzR. OhW. PhilipA.G.S. ScottD.T. AllanW.C. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants.J. Pediatr.2004145683283410.1016/j.jpeds.2004.07.035 15580211
    [Google Scholar]
  67. LiuJ. WangQ. ZhaoJ.H. ChenY.H. QinG.L. The combined antenatal corticosteroids and vitamin K therapy for preventing periventricular-intraventricular hemorrhage in premature newborns less than 35 weeks gestation.J. Trop. Pediatr.200652535535910.1093/tropej/fml028 16751657
    [Google Scholar]
  68. WhitelawA. EvansD. CarterM. ThoresenM. WroblewskaJ. ManderaM. SwietlinskiJ. SimpsonJ. HajivassiliouC. HuntL.P. PopleI. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid.Pediatrics20071195e1071e107810.1542/peds.2006‑2841 17403819
    [Google Scholar]
  69. WhitelawA. JaryS. KmitaG. WroblewskaJ. Musialik-SwietlinskaE. ManderaM. HuntL. CarterM. PopleI. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years.Pediatrics20101254e852e85810.1542/peds.2009‑1960 20211949
    [Google Scholar]
  70. LuytK. JaryS.L. LeaC.L. YoungG.J. OddD.E. MillerH.E. KmitaG. WilliamsC. BlairP.S. HollingworthW. MorganM. Smith-CollinsA.P. Walker-CoxS. AquilinaK. PopleI. WhitelawA.G. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial.Arch. Dis. Child. Fetal Neonatal Ed.2020105546647310.1136/archdischild‑2019‑318231 32623370
    [Google Scholar]
  71. de VriesL.S. GroenendaalF. LiemK.D. HeepA. BrouwerA.J. van ’t VerlaatE. Benavente-FernándezI. van StraatenH.L.M. van Wezel-MeijlerG. SmitB.J. GovaertP. WoerdemanP.A. WhitelawA. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial.Arch. Dis. Child. Fetal Neonatal Ed.20191041F70F7510.1136/archdischild‑2017‑314206 29440132
    [Google Scholar]
  72. AnwarM. KadamS. HiattI.M. HegyiT. Serial lumbar punctures in prevention of post-hemorrhagic hydrocephalus in preterm infants.J. Pediatr.1985107344645010.1016/S0022‑3476(85)80532‑1 3897499
    [Google Scholar]
  73. MüllerW. UrlesbergerB. MaurerU. Kuttnig-HaimM. ReitererF. MoradiG. PichlerG. Serial lumbar tapping to prevent posthaemorrhagic hydrocephalus after intracranial haemorrhage in preterm infants.Wien. Klin. Wochenschr.199811018631634 9816635
    [Google Scholar]
  74. MazzolaC.A. ChoudhriA.F. AugusteK.I. LimbrickD.D.Jr RogidoM. MitchellL. FlanneryA.M. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants.J. Neurosurg. Pediatr.201414Suppl. 182310.3171/2014.7.PEDS14322 25988778
    [Google Scholar]
  75. GurtnerP. BassT. GudemanS.K. PenixJ.O. PhilputC.B. SchincoF.P. Surgical management of posthemorrhagic hydrocephalus in 22 low-birth-weight infants.Childs Nerv. Syst.19928419820210.1007/BF00262844 1394250
    [Google Scholar]
  76. MohamedM. MedirattaS. ChariA. da CostaC.S. JamesG. DawesW. AquilinaK. Post-haemorrhagic hydrocephalus is associated with poorer surgical and neurodevelopmental sequelae than other causes of infant hydrocephalus.Childs Nerv. Syst.202137113385339610.1007/s00381‑021‑05226‑4 34148130
    [Google Scholar]
  77. KumarN. Al-FaiadhW. TailorJ. MallucciC. ChandlerC. BassiS. PettoriniB. ZebianB. Neonatal post-haemorrhagic hydrocephalus in the UK: a survey of current practice.Br. J. Neurosurg.201731330731110.1080/02688697.2016.1226260 27687144
    [Google Scholar]
  78. LaiG.Y. Chu-KwanW. WestcottA.B. KulkarniA.V. DrakeJ.M. LamS.K. Timing of temporizing neurosurgical treatment in relation to shunting and neurodevelopmental outcomes in posthemorrhagic ventricular dilatation of prematurity: A Meta-analysis.J. Pediatr.20212345464.e2010.1016/j.jpeds.2021.01.030 33484696
    [Google Scholar]
  79. FulkersonD.H. VachhrajaniS. BohnstedtB.N. PatelN.B. PatelA.J. FoxB.D. JeaA. BoazJ.C. Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus.J. Neurosurg. Pediatr.20117214715110.3171/2010.11.PEDS10244 21284459
    [Google Scholar]
  80. MallucciC.L. JenkinsonM.D. ConroyE.J. HartleyJ.C. BrownM. DaltonJ. KearnsT. MoittT. GriffithsM.J. CuledduG. SolomonT. HughesD. GambleC. PettoriniB. ParksC. SinhaA. van TonderL. FosterM.T. McMahonC. BuxtonN. ChavredakisE. BrodbeltA.R. LawsonD.D.A. EldridgeP.R. FarahJ.O. ZakariaR. GeraintS. SolankiG. RodriguesD. EdwardsR. WilliamsA. GarnettM. KoliasA. HutchinsonP.J.A. CaldwellK. TarantinoS. LeachP. ZabenM. ZilaniG. ShastinD. MerolaJ. HussainR. VemarajuR. SeleznevaL. RadfordG. LloydN. CrimminsD. CairdJ. SayarM.N. O’MahoneyN. ThompsonD. AquilinaK. JamesG. StrachanR. MukerjiN. ZebainB. ThakurB. DicksonH. NsirimE. AdebayoA. GooddenJ. DenizK. ClarkeJ. KambafwileM. AndersonI. Chave-CoxR. SheikA. MathewR. RichardsO. MukherjeeS. ChumasP. TyagiA. SikakumarG. TomaA. D’AntonaL. WatkinsL. ThorneL. CravenC. BassenV. HollimanD. CoulterI. MacarthurD. CartmillM. HowarthS. SmithS. JavedS. KamalyI. RamirezR. KingA. NadigA. ThorneJ. UshewokunzeS. SinhaS. ZakiH. McMullanJ. BultersD. WatersR. ZilidisG. RoachJ. SadekA. HoltonP. ZolnourianA. ChakrabortyA. KandasamyJ. HughesM. BrennanP.M. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): a multicentre, single-blinded, randomised trial and economic evaluation.Lancet2019394102081530153910.1016/S0140‑6736(19)31603‑4 31522843
    [Google Scholar]
  81. SciubbaD.M. NoggleJ.C. CarsonB.S. JalloG.I. Antibiotic-impregnated shunt catheters for the treatment of infantile hydrocephalus.Pediatr. Neurosurg.2008442919610.1159/000113109 18230921
    [Google Scholar]
  82. ElgamalE.A. El-DawlatlyA.A. MurshidW.R. El-WatidyS.M.F. JamjoomZ.A.A.B. Endoscopic third ventriculostomy for hydrocephalus in children younger than 1 year of age.Childs Nerv. Syst.201127111111610.1007/s00381‑010‑1254‑3 20694557
    [Google Scholar]
  83. KulkarniA.V. Riva-CambrinJ. RozzelleC.J. NaftelR.P. AlveyJ.S. ReederR.W. HolubkovR. BrowdS.R. CochraneD.D. LimbrickD.D. SimonT.D. TamberM. WellonsJ.C. WhiteheadW.E. KestleJ.R.W. Endoscopic third ventriculostomy and choroid plexus cauterization in infant hydrocephalus: a prospective study by the Hydrocephalus Clinical Research Network.J. Neurosurg. Pediatr.201821321422310.3171/2017.8.PEDS17217 29243972
    [Google Scholar]
  84. ParodiA. GovaertP. HorschS. BravoM.C. RamenghiL.A. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome.Pediatr. Res.202087S1Suppl. 1132410.1038/s41390‑020‑0780‑2 32218535
    [Google Scholar]
  85. BrouwerM.J. de VriesL.S. GroenendaalF. KoopmanC. PistoriusL.R. MulderE.J.H. BendersM.J.N.L. New reference values for the neonatal cerebral ventricles.Radiology2012262122423310.1148/radiol.11110334 22084208
    [Google Scholar]
  86. LeijserL.M. MillerS.P. van Wezel-MeijlerG. BrouwerA.J. TraubiciJ. van HaastertI.C. WhyteH.E. GroenendaalF. KulkarniA.V. HanK.S. WoerdemanP.A. ChurchP.T. KellyE.N. van StraatenH.L.M. LyL.G. de VriesL.S. Posthemorrhagic ventricular dilatation in preterm infants.Neurology2018908e698e70610.1212/WNL.0000000000004984 29367448
    [Google Scholar]
  87. LucianoR. VelardiF. RomagnoliC. PapacciP. StefanoV.D. TortoroloG. Failure of fibrinolytic endoventricular treatment to prevent neonatal post-haemorrhagic hydrocephalus.Childs Nerv. Syst.1997132737610.1007/s003810050045 9105740
    [Google Scholar]
  88. YapıcıoğluH. NarlıN. SatarM. SoyupakS. AltunbaşakŞ. Intraventricular streptokinase for the treatment of posthaemorrhagic hydrocephalus of preterm.J. Clin. Neurosci.200310329729910.1016/S0967‑5868(03)00028‑6 12763331
    [Google Scholar]
  89. WhitelawA. ChristieS. PopleI. Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus?Pediatr. Res.199946557658010.1203/00006450‑199911000‑00014 10541321
    [Google Scholar]
  90. International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy.Lancet1998352912643344010.1016/S0140‑6736(97)12390‑X 9708751
    [Google Scholar]
  91. TanseyF.A. ZhangH. CammerW. Expression of carbonic anhydrase II mRNA and protein in oligodendrocytes during toxic demyelination in the young adult mouse.Neurochem. Res.199621441141610.1007/BF02527704 8734433
    [Google Scholar]
  92. TangJ. TaoY. JiangB. ChenQ. HuaF. ZhangJ. ZhuG. ChenZ. Pharmacological preventions of brain injury following experimental germinal matrix hemorrhage: An up-to-date review.Transl. Stroke Res.201671203210.1007/s12975‑015‑0432‑8 26561051
    [Google Scholar]
  93. FloresJ.J. DingY. SherchanP. ZhangJ.H. TangJ. Annexin A1 upregulates hematoma resolution via the FPR2/p-ERK(1/2)/DUSP1/CD36 signaling pathway after germinal matrix hemorrhage.Exp. Neurol.202335911425710.1016/j.expneurol.2022.114257 36279933
    [Google Scholar]
  94. LanX. HanX. LiQ. YangQ.W. WangJ. Modulators of microglial activation and polarization after intracerebral haemorrhage.Nat. Rev. Neurol.201713742043310.1038/nrneurol.2017.69 28524175
    [Google Scholar]
  95. XuN. LiX. WengJ. WeiC. HeZ. DoychevaD.M. LenahanC. TangW. ZhouJ. LiuY. XuQ. LiuY. HeX. TangJ. ZhangJ.H. DuanC. Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization Via AdipoR1/APPL1/AMPK/PPARγ signaling pathway in neonatal rats.Front. Immunol.20221387338210.3389/fimmu.2022.873382 35720361
    [Google Scholar]
  96. FloresJ.J. KlebeD. TangJ. ZhangJ.H. A comprehensive review of therapeutic targets that induce microglia/macrophage‐mediated hematoma resolution after germinal matrix hemorrhage.J. Neurosci. Res.202098112112810.1002/jnr.24388 30667078
    [Google Scholar]
  97. WangG. WangL. SunX. TangJ. Haematoma scavenging in intracerebral haemorrhage: from mechanisms to the clinic.J. Cell. Mol. Med.201822276877710.1111/jcmm.13441 29278306
    [Google Scholar]
  98. BrennanM.S. MatosM.F. LiB. HronowskiX. GaoB. JuhaszP. RhodesK.J. ScannevinR.H. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro.PLoS One2015103e012025410.1371/journal.pone.0120254 25793262
    [Google Scholar]
  99. LeeB.H. HsuW.H. HuangT. ChangY.Y. HsuY.W. PanT.M. Effects of monascin on anti-inflammation mediated by Nrf2 activation in advanced glycation end product-treated THP-1 monocytes and methylglyoxal-treated wistar rats.J. Agric. Food Chem.20136161288129810.1021/jf305067n 23331247
    [Google Scholar]
  100. SävmanK. BlennowM. HagbergH. TarkowskiE. ThoresenM. WhitelawA. Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation.Acta Paediatr.200291121357136310.1111/j.1651‑2227.2002.tb02834.x 12578295
    [Google Scholar]
  101. TangJ. ChenQ. GuoJ. YangL. TaoY. LiL. MiaoH. FengH. ChenZ. ZhuG. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2.Mol. Neurobiol.20165331935194810.1007/s12035‑015‑9154‑x 25833102
    [Google Scholar]
  102. LiP. ZhaoG. ChenF. DingY. WangT. LiuS. LuW. XuW. FloresJ. OcakU. ZhangT. ZhangJ.H. TangJ. Rh-relaxin-2 attenuates degranulation of mast cells by inhibiting NF-κB through PI3K-AKT/TNFAIP3 pathway in an experimental germinal matrix hemorrhage rat model.J. Neuroinflammation202017125010.1186/s12974‑020‑01926‑x 32859236
    [Google Scholar]
  103. CherianS. WhitelawA. ThoresenM. LoveS. The pathogenesis of neonatal post-hemorrhagic hydrocephalus.Brain Pathol.200414330531110.1111/j.1750‑3639.2004.tb00069.x 15446586
    [Google Scholar]
  104. GomesF.C.A. SousaV.O. RomãoL. Emerging roles for TGF‐β1 in nervous system development.Int. J. Dev. Neurosci.200523541342410.1016/j.ijdevneu.2005.04.001 15936920
    [Google Scholar]
  105. SofroniewM.V. Molecular dissection of reactive astrogliosis and glial scar formation.Trends Neurosci.2009321263864710.1016/j.tins.2009.08.002 19782411
    [Google Scholar]
  106. BozkayaD. CeranB. OzmenE. OkmanE. DizdarE.A. OguzS.S. BozkayaI.O. A new hope in the treatment of intraventricular haemorrhage in preterm infants: mesenchymal stem cells.Turk Neurosurg.2022322344346 34936069
    [Google Scholar]
  107. ChungJ.W. ChangW.H. BangO.Y. MoonG.J. KimS.J. KimS.K. LeeJ.S. SohnS.I. KimY.H. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke.Neurology2021967e1012e102310.1212/WNL.0000000000011440 33472925
    [Google Scholar]
  108. Jafarzadeh BejargafsheM. HedayatiM. ZahabiasliS. TahmasbpourE. RahmanzadehS. Nejad-MoghaddamA. Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis.Stem Cell Investig.201964410.21037/sci.2019.10.06 32039266
    [Google Scholar]
  109. ParkW.S. SungS.I. AhnS.Y. SungD.K. ImG.H. YooH.S. ChoiS.J. ChangY.S. Optimal timing of mesenchymal stem cell therapy for neonatal intraventricular hemorrhage.Cell Transplant.20162561131114410.3727/096368915X689640 26440762
    [Google Scholar]
  110. AhnS.Y. ChangY.S. SungS.I. ParkW.S. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase i dose-escalation clinical trial.Stem Cells Transl. Med.201871284785610.1002/sctm.17‑0219 30133179
    [Google Scholar]
  111. ThomiG. Joerger-MesserliM. HaeslerV. MuriL. SurbekD. SchoeberleinA. Intranasally administered exosomes from umbilical cord stem cells have preventive neuroprotective effects and contribute to functional recovery after perinatal brain injury.Cells20198885510.3390/cells8080855 31398924
    [Google Scholar]
  112. JiG. LiuM. ZhaoX.F. LiuX.Y. GuoQ.L. GuanZ.F. ZhouH.G. GuoJ.C. NF‐κB Signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic-ischemic encephalopathy.CNS Neurosci. Ther.2015211292693510.1111/cns.12441 26255634
    [Google Scholar]
  113. RomantsikO. MoreiraA. ThébaudB. ÅdénU. LeyD. BruschettiniM. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants.Cochrane Database Syst. Rev.202322CD013201 36790019
    [Google Scholar]
  114. LimbrickD.D.Jr de VriesL.S. New insights into the management of post-hemorrhagic hydrocephalus.Semin. Perinatol.202246515159710.1016/j.semperi.2022.151597 35461702
    [Google Scholar]
  115. WhitelawA. Lee-KellandR. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage.Cochrane Libr.201720174CD00021610.1002/14651858.CD000216.pub2 28384379
    [Google Scholar]
  116. BassanH. EshelR. GolanI. KoheletD. Ben SiraL. MandelD. LeviL. ConstantiniS. Beni-AdaniL. Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus.Eur. J. Paediatr. Neurol.201216666267010.1016/j.ejpn.2012.04.002 22591810
    [Google Scholar]
  117. ReinprechtA. DietrichW. BergerA. BavinzskiG. WeningerM. CzechT. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications.Childs Nerv. Syst.2001171166366910.1007/s00381‑001‑0519‑2 11734984
    [Google Scholar]
  118. KormanikK. PracaJ. GartonH.J.L. SarkarS. Repeated tapping of ventricular reservoir in preterm infants with post-hemorrhagic ventricular dilatation does not increase the risk of reservoir infection.J. Perinatol.201030321822110.1038/jp.2009.154 19812582
    [Google Scholar]
  119. FulmerB.B. GrabbP.A. OakesW.J. MapstoneT.B. Neonatal ventriculosubgaleal shunts.Neurosurgery20004718083 10917350
    [Google Scholar]
  120. WillisB.K. KumarC.R. WylenE.L. NandaA. Ventriculosubgaleal shunts for posthemorrhagic hydrocephalus in premature infants.Pediatr. Neurosurg.200541417818510.1159/000086558 16088252
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666240906115817
Loading
/content/journals/cn/10.2174/1570159X23666240906115817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test