Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Bronchiolitis is an acute viral infection of the lower respiratory tract, typical of infants in their first year of life and causing hypoxia in the most serious cases. Bronchiolitis recognizes various demographic risk factors that are associated with greater clinical severity; however, no laboratory factors are yet able to correlate with the clinical severity. Neurotrophins as Brain-Derived Neurotrophic Factor (BDNF) are mediators of neuronal plasticity. BDNF is constitutively expressed in smooth muscle cells and epithelium of the lower respiratory tract, and as it is released during inflammatory conditions, serum levels may have a relevant role in the prognosis of infants with bronchiolitis.

Objective

In the present pilot study, we aimed to disclose the presence of serum BDNF in infants hospitalized with bronchiolitis at discharge as a disease severity indicator.

Methods and Results

Serum BDNF, measured at hospital discharge, was significantly lower in severe bronchiolitis (expressed as O-supplemented infants). Furthermore, no changes were disclosed for the Tropomyosin receptor kinase B, the main BDNF receptor and neurofilament light chain, a biomarker of neuronal degeneration.

Conclusion

Low serum BDNF in infants with severe bronchiolitis could be associated with a higher utilization by lung cells or with an altered production by lung cells. Therefore, further research is required to study if a decreased production or increased consumption of this biomarker is at the base of the above-mentioned findings.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22999240223153901
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MidullaF. PetrarcaL. FrassanitoA. Di MattiaG. ZicariA.M. NennaR. Bronchiolitis clinics and medical treatment.Minerva Pediatr.201870660061110.23736/S0026‑4946.18.05334‑3 30334624
    [Google Scholar]
  2. ShiT. McAllisterD.A. O’BrienK.L. SimoesE.A.F. MadhiS.A. GessnerB.D. PolackF.P. BalsellsE. AcacioS. AguayoC. AlassaniI. AliA. AntonioM. AwasthiS. AworiJ.O. Azziz-BaumgartnerE. BaggettH.C. BaillieV.L. BalmasedaA. BarahonaA. BasnetS. BassatQ. BasualdoW. BigogoG. BontL. BreimanR.F. BrooksW.A. BroorS. BruceN. BrudenD. BuchyP. CampbellS. Carosone-LinkP. ChadhaM. ChipetaJ. ChouM. ClaraW. CohenC. de CuellarE. DangD.A. Dash-yandagB. Deloria-KnollM. DheraniM. EapT. EbrukeB.E. EchavarriaM. de FreitasL.E.C.C. FasceR.A. FeikinD.R. FengL. GentileA. GordonA. GoswamiD. GoyetS. GroomeM. HalasaN. HirveS. HomairaN. HowieS.R.C. JaraJ. JroundiI. KartasasmitaC.B. Khuri-BulosN. KotloffK.L. KrishnanA. LibsterR. LopezO. LuceroM.G. LucionF. LupisanS.P. MarconeD.N. McCrackenJ.P. MejiaM. MoisiJ.C. MontgomeryJ.M. MooreD.P. MoraledaC. MoyesJ. MunywokiP. MutyaraK. NicolM.P. NokesD.J. NymadawaP. da Costa OliveiraM.T. OshitaniH. PandeyN. Paranhos-BaccalàG. PhillipsL.N. PicotV.S. RahmanM. Rakoto-AndrianariveloM. RasmussenZ.A. RathB.A. RobinsonA. RomeroC. RussomandoG. SalimiV. SawatwongP. ScheltemaN. SchweigerB. ScottJ.A.G. SeidenbergP. ShenK. SingletonR. SotomayorV. StrandT.A. SutantoA. SyllaM. TapiaM.D. ThamthitiwatS. ThomasE.D. TokarzR. TurnerC. VenterM. WaicharoenS. WangJ. WatthanaworawitW. YoshidaL.M. YuH. ZarH.J. CampbellH. NairH. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study.Lancet20173901009894695810.1016/S0140‑6736(17)30938‑8 28689664
    [Google Scholar]
  3. MantiS. StaianoA. OrfeoL. MidullaF. MarsegliaG.L. GhizziC. ZampognaS. CarnielliV.P. FavilliS. RuggieriM. PerriD. Di MauroG. GattinaraG.C. D’AvinoA. BecherucciP. PreteA. ZampinoG. LanariM. BibanP. ManzoniP. EspositoS. CorselloG. BaraldiE. UPDATE - 2022 Italian guidelines on the management of bronchiolitis in infants.Ital. J. Pediatr.20234911910.1186/s13052‑022‑01392‑6 36765418
    [Google Scholar]
  4. ØymarK. SkjervenH.O. MikalsenI.B. Acute bronchiolitis in infants, a review.Scand. J. Trauma Resusc. Emerg. Med.20142212310.1186/1757‑7241‑22‑23 24694087
    [Google Scholar]
  5. BukiyaA.N. Fetal cerebral artery mitochondrion as target of prenatal alcohol exposure.Int. J. Environ. Res. Public Health2019169158610.3390/ijerph16091586 31067632
    [Google Scholar]
  6. de SonnavilleE.S.V. OosterlaanJ. GhiassiS.A. van LeijdenO. van EwijkH. KnoesterH. van WoenselJ.B.M. KӧnigsM. Long-term neurocognitive outcomes after pediatric intensive care: Exploring the role of drug exposure.Pediatr. Res.202394260361010.1038/s41390‑022‑02460‑7 36694029
    [Google Scholar]
  7. SheinS.L. SlainK.N. ClaytonJ.A. McKeeB. RottaA.T. Wilson-CostelloD. Neurologic and functional morbidity in critically ill children with bronchiolitis.Pediatr. Crit. Care Med.201718121106111310.1097/PCC.0000000000001337 28930814
    [Google Scholar]
  8. AndradeC.A. KalergisA.M. BohmwaldK. Potential neurocognitive symptoms due to respiratory syncytial virus infection.Pathogens20211114710.3390/pathogens11010047 35055995
    [Google Scholar]
  9. NennaR. CutreraR. FrassanitoA. AlessandroniC. NicolaiA. CangianoG. PetrarcaL. ArimaS. CaggianoS. UllmannN. PapoffP. BonciE. MorettiC. MidullaF. Modifiable risk factors associated with bronchiolitis.Ther. Adv. Respir. Dis.2017111039340110.1177/1753465817725722 28812472
    [Google Scholar]
  10. Di MattiaG. NennaR. MancinoE. RizzoV. PierangeliA. VillaniA. MidullaF. During the COVID‐19 pandemic where has respiratory syncytial virus gone?Pediatr. Pulmonol.202156103106310910.1002/ppul.25582 34273135
    [Google Scholar]
  11. NennaR. EvangelistiM. FrassanitoA. ScagnolariC. PierangeliA. AntonelliG. NicolaiA. ArimaS. MorettiC. PapoffP. VillaM.P. MidullaF. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study.Environ. Res.201715818819310.1016/j.envres.2017.06.014 28647513
    [Google Scholar]
  12. PanickarJ.R. DoddS.R. SmythR.L. CourielJ.M. Trends in deaths from respiratory illness in children in England and Wales from 1968 to 2000.Thorax200560121035103810.1136/thx.2005.044750 16143582
    [Google Scholar]
  13. Be’erM. BushmitzS. CahalM. SadotE. YochpazS. BesorO. AmiravI. LavieM. Asthma risk after a pediatric intensive care unit admission for respiratory syncytial virus bronchiolitis.Pediatr. Pulmonol.20225771677168310.1002/ppul.25953 35579122
    [Google Scholar]
  14. JarttiT. MäkeläM.J. VantoT. RuuskanenO. The link between bronchiolitis and asthma.Infect. Dis. Clin. North Am.200519366768910.1016/j.idc.2005.05.010 16102655
    [Google Scholar]
  15. NennaR. FerraraM. NicolaiA. PierangeliA. ScagnolariC. PapoffP. AntonelliG. MorettiC. MidullaF. Viral load in infants hospitalized for respiratory syncytial virus bronchiolitis correlates with recurrent wheezing at thirty-six-month follow-up.Pediatr. Infect. Dis. J.201534101131113210.1097/INF.0000000000000825 26132826
    [Google Scholar]
  16. KneyberM.C.J. SteyerbergE.W. de GrootR. MollH.A. Long‐term effects of respiratory syncytial virus (RSV) bronchiolitis in infants and young children: A quantitative review.Acta Paediatr.200089665466010.1111/j.1651‑2227.2000.tb00359.x 10914957
    [Google Scholar]
  17. VankerA. GieR.P. ZarH.J. The association between environmental tobacco smoke exposure and childhood respiratory disease: A review.Expert Rev. Respir. Med.201711866167310.1080/17476348.2017.1338949 28580865
    [Google Scholar]
  18. FrassanitoA. NennaR. ArimaS. PetrarcaL. PierangeliA. ScagnolariC. Di MattiaG. MancinoE. MateraL. PortaD. RusconiF. MidullaF. Modifiable environmental factors predispose term infants to bronchiolitis but bronchiolitis itself predisposes to respiratory sequelae.Pediatr. Pulmonol.202257364064710.1002/ppul.25794 34918490
    [Google Scholar]
  19. BrownP.M. SchneebergerD.L. PiedimonteG. Biomarkers of respiratory syncytial virus (RSV) infection: specific neutrophil and cytokine levels provide increased accuracy in predicting disease severity.Paediatr. Respir. Rev.201516423224010.1016/j.prrv.2015.05.005 26074450
    [Google Scholar]
  20. FioreM. TriacaV. AmendolaT. TirassaP. AloeL. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice.Physiol. Behav.2002772-343744310.1016/S0031‑9384(02)00875‑2 12419420
    [Google Scholar]
  21. CaritoV. CeccantiM. FerragutiG. CoccurelloR. CiafrèS. TirassaP. FioreM. NGF and BDNF alterations by prenatal alcohol exposure.Curr. Neuropharmacol.201917430831710.2174/1570159X15666170825101308 28847297
    [Google Scholar]
  22. RicciA. FeliciL. MariottaS. ManninoF. SchmidG. TerzanoC. CardilloG. AmentaF. BronzettiE. Neurotrophin and neurotrophin receptor protein expression in the human lung.Am. J. Respir. Cell Mol. Biol.2004301121910.1165/rcmb.2002‑0110OC 12791675
    [Google Scholar]
  23. RicciA. GrazianoP. BronzettiE. SaltiniC. SciacchitanoS. CherubiniE. RenzoniE. Du BoisR.M. GruttersJ.C. MariottaS. Increased pulmonary neurotrophin protein expression in idiopathic interstitial pneumonias.Sarcoidosis Vasc. Diffuse Lung Dis.20072411323 18069415
    [Google Scholar]
  24. StollP. WuertembergerU. BratkeK. ZinglerC. VirchowC.J. LommatzschM. Stage-dependent association of BDNF and TGF-β1 with lung function in stable COPD.Respir. Res.201213111610.1186/1465‑9921‑13‑116 23245944
    [Google Scholar]
  25. BraunA. LommatzschM. Neuhaus-SteinmetzU. QuarcooD. GlaabT. McGregorG.P. FischerA. RenzH. Brain‐derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation.Br. J. Pharmacol.2004141343144010.1038/sj.bjp.0705638 14718253
    [Google Scholar]
  26. RochlitzerS. NassensteinC. BraunA. The contribution of neurotrophins to the pathogenesis of allergic asthma.Biochem. Soc. Trans.200634459459910.1042/BST0340594 16856870
    [Google Scholar]
  27. JoachimR.A. NogaO. SagachV. HanfG. FliegeH. KocaleventR.D. PetersE.M. KlappB.F. Correlation between immune and neuronal parameters and stress perception in allergic asthmatics.Clin. Exp. Allergy200838228329010.1111/j.1365‑2222.2007.02899.x 18070153
    [Google Scholar]
  28. LommatzschM. NiewerthA. KlotzJ. Schulte-HerbrüggenO. ZinglerC. Schuff-WernerP. VirchowJ.C. Platelet and plasma BDNF in lower respiratory tract infections of the adult.Respir. Med.200710171493149910.1016/j.rmed.2007.01.003 17317133
    [Google Scholar]
  29. TortoroloL. LangerA. PolidoriG. VentoG. StampachiacchereB. AloeL. PiedimonteG. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection.Am. J. Respir. Crit. Care Med.2005172223323710.1164/rccm.200412‑1693OC 15879412
    [Google Scholar]
  30. ChmielewskaN. SzyndlerJ. MakowskaK. WojtynaD. MaciejakP. PłaźnikA. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders.Neurol. Neurochir. Pol.201852331832510.1016/j.pjnns.2018.02.002 29478670
    [Google Scholar]
  31. GiovannoniG. Peripheral blood neurofilament light chain levels: The neurologist’s C-reactive protein?Brain201814182235223710.1093/brain/awy200 30060019
    [Google Scholar]
  32. NayaniK. NaeemR. MunirO. NaseerN. FerozeA. BrownN. MianA.I. The clinical respiratory score predicts paediatric critical care disposition in children with respiratory distress presenting to the emergency department.BMC Pediatr.201818133910.1186/s12887‑018‑1317‑2 30376827
    [Google Scholar]
  33. DestinoL. WeisgerberM.C. SoungP. BakalarskiD. YanK. RehborgR. WagnerD.R. GorelickM.H. SimpsonP. Validity of respiratory scores in bronchiolitis.Hosp. Pediatr.20122420220910.1542/hpeds.2012‑0013 24313026
    [Google Scholar]
  34. NennaR. FedeleG. FrassanitoA. PetrarcaL. Di MattiaG. PierangeliA. ScagnolariC. PapoffP. SchiavoniI. LeoneP. MorettiC. MidullaF. Increased T-helper Cell 2 response in infants with respiratory syncytial virus bronchiolitis hospitalized outside epidemic peak.Pediatr. Infect. Dis. J.2020391616710.1097/INF.0000000000002505 31815840
    [Google Scholar]
  35. ToreF. TonchevA. FioreM. TuncelN. AtanassovaP. AloeL. ChaldakovG. From adipose tissue protein secretion to adipopharmacology of disease.Immunol. Endocr. Metab. Agents Med. Chem.20077214915510.2174/187152207780363712
    [Google Scholar]
  36. YanoH. ChaoM.V. Neurotrophin receptor structure and interactions.Pharm. Acta Helv.2000742-325326010.1016/S0031‑6865(99)00036‑9 10812966
    [Google Scholar]
  37. PramanikS. SulistioY.A. HeeseK. Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy.Mol. Neurobiol.20175497401745910.1007/s12035‑016‑0214‑7 27815842
    [Google Scholar]
  38. EbadiM. BashirR.M. HeidrickM.L. HamadaF.M. El RefaeyE. HamedA. HelalG. BaxiM.D. CerutisD.R. LassiN.K. Neurotrophins and their receptors in nerve injury and repair.Neurochem. Int.1997304-534737410.1016/S0197‑0186(96)00071‑X 9106250
    [Google Scholar]
  39. PrakashY.S. MartinR.J. Brain-derived neurotrophic factor in the airways.Pharmacol. Ther.20141431748610.1016/j.pharmthera.2014.02.006 24560686
    [Google Scholar]
  40. ZingaropoliM.A. PasculliP. BarbatoC. PetrellaC. FioreM. DominelliF. LatronicoT. CicconeF. AntonacciM. LiuzziG.M. TalaricoG. BrunoG. GalardoG. PuglieseF. LichtnerM. MastroianniC.M. MinniA. CiardiM.R. Biomarkers of neurological damage: From acute stage to post-acute sequelae of COVID-19.Cells20231218227010.3390/cells12182270 37759493
    [Google Scholar]
  41. PetrellaC. NennaR. PetrarcaL. TaraniF. PaparellaR. MancinoE. Di MattiaG. ContiM.G. MateraL. BonciE. CeciF.M. FerragutiG. GabanellaF. BarbatoC. Di CertoM.G. CavalcantiL. MinniA. MidullaF. TaraniL. FioreM. Serum NGF and BDNF in Long-COVID-19 adolescents: A pilot study.Diagnostics2022125116210.3390/diagnostics12051162 35626317
    [Google Scholar]
  42. PetrellaC. ZingaropoliM.A. CeciF.M. PasculliP. LatronicoT. LiuzziG.M. CiardiM.R. AngeloniA. EttorreE. MenghiM. BarbatoC. FerragutiG. MinniA. FioreM. COVID-19 affects serum brain-derived neurotrophic factor and neurofilament light chain in aged men: Implications for morbidity and mortality.Cells202312465510.3390/cells12040655 36831321
    [Google Scholar]
  43. Serafim JuniorV. FernandesG.M.M. Oliveira-CucoloJ.G. PavarinoE.C. Goloni-BertolloE.M. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer.Cytokine202013615527010.1016/j.cyto.2020.155270
    [Google Scholar]
  44. HangP.Z. GeF.Q. LiP.F. LiuJ. ZhuH. ZhaoJ. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis.Histol. Histopathol.202136111133114310.14670/HH‑18‑368 34327702
    [Google Scholar]
  45. MateraL. NennaR. FrassanitoA. PetrarcaL. MancinoE. RizzoV. Di MattiaG. La ReginaD.P. PierangeliA. MidullaF. Low lymphocyte count: A clinical severity marker in infants with bronchiolitis.Pediatr. Pulmonol.20225771770177510.1002/ppul.25919 35411598
    [Google Scholar]
  46. BinnsE. TuckermanJ. LicciardiP.V. WurzelD. Respiratory syncytial virus, recurrent wheeze and asthma: A narrative review of pathophysiology, prevention and future directions.J. Paediatr. Child Health202258101741174610.1111/jpc.16197 36073299
    [Google Scholar]
  47. Nievas-SorianoB.J. Martín-LatorreM.M. Martín-GonzálezM. Manzano-AgugliaroF. Castro-LunaG. Worldwide research trends on bronchiolitis in pediatrics.Pediatr. Pulmonol.20235882189220310.1002/ppul.26453 37154529
    [Google Scholar]
  48. ZangN. LiS. LiW. XieX. RenL. LongX. XieJ. DengY. FuZ. XuF. LiuE. Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice.Int. Immunopharmacol.201528112112810.1016/j.intimp.2015.05.031 26044349
    [Google Scholar]
  49. KyoM. ZhuZ. NanishiM. ShibataR. OokaT. FreishtatR.J. MansbachJ.M. CamargoC.A.Jr HasegawaK. Association of nasopharyngeal and serum glutathione metabolism with bronchiolitis severity and asthma risk: A prospective multicenter cohort study.Metabolites202212867410.3390/metabo12080674 35893241
    [Google Scholar]
  50. ZhuY. FanQ. ChengL. ChenB. Diagnostic errors in initial misdiagnosis of foreign body aspiration in children: A retrospective observational study in a tertiary care hospital in China.Front Pediatr.2021969421110.3389/fped.2021.694211 34722414
    [Google Scholar]
  51. ZhuZ. CamargoC.A.Jr RaitaY. FujiogiM. LiangL. RheeE.P. WoodruffP.G. HasegawaK. Metabolome subtyping of severe bronchiolitis in infancy and risk of childhood asthma.J. Allergy Clin. Immunol.2022149110211210.1016/j.jaci.2021.05.036 34119532
    [Google Scholar]
  52. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  53. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  54. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis.Biofactors200935214616010.1002/biof.22 19449442
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22999240223153901
Loading
/content/journals/cn/10.2174/1570159X22999240223153901
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BDNF; bronchiolitis; Neurotrophin; Nfl; O2 supplementation; RSV; TrkB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test