Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (, γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (, voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230810110901
2024-02-01
2025-01-27
Loading full text...

Full text loading...

/content/journals/cn/10.2174/1570159X21666230810110901
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test