Skip to content
2000
Volume 17, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Migraine, an extremely disabling neurological disorder, has a strong genetic component. Since monogenic migraines (resulting from mutations or changes in a single gene) may help researchers discover migraine pathophysiology, transgenic mice models harboring gene mutations identified in Familial Hemiplegic Migraine (FHM) patients have been generated. Studies in these FHM mutant mice models have shed light on the mechanisms of migraine and may aid in the identification of novel targets for treatment. More specifically, the studies shed light on how gene mutations, hormones, and other factors impact the pathophysiology of migraine. The models may also be of relevance to researchers outside the field of migraine as some of their aspects are relevant to pain in general. Additionally, because of the comorbidities associated with migraine, they share similarities with the mutant mouse models of epilepsy, stroke, and perhaps depression. Here, we review the experimental data obtained from these mutant mice and focus on how they can be used to investigate the pathophysiology of migraine, including synaptic plasticity, neuroinflammation, metabolite alterations, and molecular and behavioral mechanisms of pain.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X17666190513085013
2019-10-01
2025-07-14
Loading full text...

Full text loading...

/content/journals/cn/10.2174/1570159X17666190513085013
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test