Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background: The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules. Methods: In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed. Results: Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function. Conclusion: These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X15666171109124839
2018-05-01
2025-09-01
Loading full text...

Full text loading...

/content/journals/cn/10.2174/1570159X15666171109124839
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test