Skip to content
2000
Volume 11, Issue 3
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Glutamate receptors of the N-methyl-D-aspartate (NMDA) type are involved in many cognitive processes, including behavior, learning and synaptic plasticity. For a long time NMDA receptors were thought to be the privileged domain of neurons; however, discoveries of the last 25 years have demonstrated their active role in glial cells as well. Despite the large number of studies in the field, there are many unresolved questions connected with NMDA receptors in glia that are still a matter of debate. The main objective of this review is to shed light on these controversies by summarizing results from all relevant works concerning astrocytes, oligodendrocytes and polydendrocytes (also known as NG2 glial cells) in experimental animals, further extended by studies performed on human glia. The results are divided according to the study approach to enable a better comparison of how findings obtained at the mRNA level correspond with protein expression or functionality. Furthermore, special attention is focused on the NMDA receptor subunits present in the particular glial cell types, which give them special characteristics different from those of neurons – for example, the absence of Mg2+ block and decreased Ca2+ permeability. Since glial cells are implicated in important physiological and pathophysiological roles in the central nervous system (CNS), the last part of this review provides an overview of glial NMDA receptors with respect to ischemic brain injury.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X11311030002
2013-05-01
2025-07-13
Loading full text...

Full text loading...

/content/journals/cn/10.2174/1570159X11311030002
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test