Skip to content
2000
image of Glial Derived Neurotrophic Factor and Schizophrenia Spectrum Disorders: A Scoping Review

Abstract

Background

Psychotic disorders, characterized by altered brain function, significantly impair reality perception. The neurodevelopmental hypothesis suggests these disorders originate from early brain development disruptions. Glial-derived neurotrophic factor (GDNF) is crucial for neuronal survival and differentiation, especially in dopaminergic neurons, and shows promise in neurodegenerative and neuropsychiatric conditions.

Objectives

This scoping review aims to examine the role of GDNF in schizophrenia spectrum disorders and substance-induced psychoses, integrating knowledge on the neurobiological mechanisms and therapeutic potential of GDNF.

Methods

A comprehensive literature search was conducted using PubMed and Scopus databases from January 2001 onwards. Data extraction focused on GDNF levels, cognitive function, antipsychotic treatment effects, and genetic studies.

Results

The review included 25 studies (18 human, 7 animal). While some studies demonstrated inconsistent results regarding GDNF serum levels in schizophrenic patients, the majority reported correlations between GDNF levels and cognitive functions. Animal studies underscored GDNF's role in stress response, drug-induced neurotoxicity, and dopamine signaling abnormalities. Genetic studies revealed potential associations between GDNF gene polymorphisms and schizophrenia susceptibility, though findings were mixed.

Discussion

GDNF plays a significant role in cognitive functions and neuroprotection in schizophrenia. The variability in study results underscores the complexity of GDNF's involvement. The therapeutic potential of GDNF in psychotic disorders remains unclear, necessitating further research to clarify its efficacy and safety.

Conclusion

This review emphasizes the importance of integrated biomarker strategies, gene therapy approaches, and precision medicine in advancing the understanding and treatment of psychotic disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X340124241205095729
2024-12-13
2025-01-09
Loading full text...

Full text loading...

References

  1. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. Washington, DC, USA American Psychiatric Association Publishing 2013
    [Google Scholar]
  2. ICD-11 for mortality and morbidity statistics 2024-01. Available from: https://icd.who.int/browse/2024-01/mms/en#405565289(Accessed on: 29 October 2022)
  3. Gaebel W. Status of psychotic disorders in ICD-11. Schizophr. Bull. 2012 38 5 895 898 10.1093/schbul/sbs104 22987845
    [Google Scholar]
  4. Vila-Badia R. Butjosa A. Del Cacho N. Serra-Arumí C. Esteban-Sanjusto M. Ochoa S. Usall J. Types, prevalence and gender differences of childhood trauma in first-episode psychosis. What is the evidence that childhood trauma is related to symptoms and functional outcomes in first episode psychosis? A systematic review. Schizophr. Res. 2021 228 159 179 10.1016/j.schres.2020.11.047 33434728
    [Google Scholar]
  5. Klein H.C. Guest P.C. Dobrowolny H. Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front. Psychiatry 2023 14 1231750 10.3389/fpsyt.2023.1231750 37850104
    [Google Scholar]
  6. Owen M.J. O’Donovan M.C. Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry 2017 16 3 227 235 10.1002/wps.20440 28941101
    [Google Scholar]
  7. Markiewicz R. Markiewicz-Gospodarek A. Borowski B. Trubalski M. Łoza B. Reelin signaling and synaptic plasticity in schizophrenia. Brain Sci. 2023 13 12 1704 10.3390/brainsci13121704 38137152
    [Google Scholar]
  8. Guardiola-Ripoll M. Fatjó-Vilas M. A systematic review of the human accelerated regions in schizophrenia and related disorders: Where the evolutionary and neurodevelopmental hypotheses converge. Int. J. Mol. Sci. 2023 24 4 3597 10.3390/ijms24043597 36835010
    [Google Scholar]
  9. Lee K.B. Kunugi H. Nanko S. Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: Polymorphism screening and association analysis. Psychiatry Res. 2001 104 1 11 17 10.1016/S0165‑1781(01)00294‑3 11600185
    [Google Scholar]
  10. Lin L.F.H. Doherty D.H. Lile J.D. Bektesh S. Collins F. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993 260 5111 1130 1132 10.1126/science.8493557 8493557
    [Google Scholar]
  11. Mendes-Oliveira J. Campos F.L. Ferreira S.A. Tomé D. Fonseca C.P. Baltazar G. Endogenous GDNF is unable to halt dopaminergic injury triggered by microglial activation. Cells 2023 13 1 74 10.3390/cells13010074 38201277
    [Google Scholar]
  12. Angelucci F. Mathé A.A. Aloe L. Neurotrophic factors and CNS disorders: Findings in rodent models of depression and schizophrenia. Prog. Brain Res. 2004 146 151 165 10.1016/S0079‑6123(03)46011‑1 14699963
    [Google Scholar]
  13. Angelucci F. Ricci V. Pomponi M. Conte G. Mathé A.A. Attilio Tonali P. Bria P. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. J. Psychopharmacol. 2007 21 8 820 825 10.1177/0269881107078491 17715210
    [Google Scholar]
  14. Ricci V. de Berardis D. Martinotti G. Maina G. Neurotrophic factors in cannabis-induced psychosis: An update. Curr. Top. Med. Chem. 2023 23 10.2174/1568026623666230829152150 37644743
    [Google Scholar]
  15. Buckley P.F. Pillai A. Howell K.R. Brain-derived neurotrophic factor: Findings in schizophrenia. Curr. Opin. Psychiatry 2011 24 2 122 127 10.1097/YCO.0b013e3283436eb7 21248641
    [Google Scholar]
  16. Favalli G. Li J. Belmonte-de-Abreu P. Wong A.H.C. Daskalakis Z.J. The role of BDNF in the pathophysiology and treatment of schizophrenia. J. Psychiatr. Res. 2012 46 1 1 11 10.1016/j.jpsychires.2011.09.022 22030467
    [Google Scholar]
  17. Green M.J. Matheson S.L. Shepherd A. Weickert C.S. Carr V.J. Brain-derived neurotrophic factor levels in schizophrenia: A systematic review with meta-analysis. Mol. Psychiatry 2011 16 9 960 972 10.1038/mp.2010.88 20733577
    [Google Scholar]
  18. Niitsu T. Shirayama Y. Matsuzawa D. Shimizu E. Hashimoto K. Iyo M. Association between serum levels of glial cell-line derived neurotrophic factor and attention deficits in schizophrenia. Neurosci. Lett. 2014 575 37 41 10.1016/j.neulet.2014.05.034 24861509
    [Google Scholar]
  19. Szwajca M. Kazek G. Śmierciak N. Mizera J. Pomierny-Chamiolo L. Szwajca K. Biesaga B. Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front. Psychiatry 2024 15 1320650 10.3389/fpsyt.2024.1320650 38645418
    [Google Scholar]
  20. Eigenbrot C. Gerber N. X-ray structure of glial cell-derived neurotrophic factor at 1.9 Å resolution and implications for receptor binding. Nat. Struct. Biol. 1997 4 6 435 438 10.1038/nsb0697‑435 9187648
    [Google Scholar]
  21. Lindholm P. Saarma M. Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism. Mol. Psychiatry 2022 27 3 1310 1321 10.1038/s41380‑021‑01394‑6 34907395
    [Google Scholar]
  22. Treanor J.J.S. Goodman L. de Sauvage F. Stone D.M. Poulsen K.T. Beck C.D. Gray C. Armanini M.P. Pollock R.A. Hefti F. Phillips H.S. Goddard A. Moore M.W. Buj-Bello A. Davies A.M. Asai N. Takahashi M. Vandlen R. Henderson C.E. Rosenthal A. Characterization of a multicomponent receptor for GDNF. Nature 1996 382 6586 80 83 10.1038/382080a0 8657309
    [Google Scholar]
  23. Kakoty V. Sarathlal K.C. Kaur P. Wadhwa P. Vishwas S. Khan F.R. Alhazmi A.Y.M. Almasoudi H.H. Gupta G. Chellappan D.K. Paudel K.R. Kumar D. Dua K. Singh S.K. Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease. Neurol. Sci. 2024 45 4 1409 1418 10.1007/s10072‑023‑07253‑2 38082050
    [Google Scholar]
  24. Buj-Bello A. Adu J. Piñón L.G.P. Horton A. Thompson J. Rosenthal A. Chinchetru M. Buchman V.L. Davies A.M. Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 1997 387 6634 721 724 10.1038/42729 9192899
    [Google Scholar]
  25. Ferrini F. Salio C. Boggio E.M. Merighi A. Interplay of BDNF and GDNF in the mature spinal somatosensory system and its potential therapeutic relevance. Curr. Neuropharmacol. 2021 19 8 1225 1245 10.2174/1570159X18666201116143422 33200712
    [Google Scholar]
  26. Tomac A. Lindqvist E. Lin L.F.H. Ögren S.O. Young D. Hoffer B.J. Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995 373 6512 335 339 10.1038/373335a0 7830766
    [Google Scholar]
  27. Ge G. Sivasubramanian B.P. Geng B.D. Zhao S. Zhou Q. Huang G. O’Connor J.C. Clark R.A. Li S. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson’s disease. Gene Ther. 2024 31 5-6 324 334 10.1038/s41434‑024‑00451‑3 38627469
    [Google Scholar]
  28. Pichel J.G. Shen L. Sheng H.Z. Granholm A.C. Drago J. Grinberg A. Lee E.J. Huang S.P. Saarma M. Hoffer B.J. Sariola H. Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996 382 6586 73 76 10.1038/382073a0 8657307
    [Google Scholar]
  29. Houghton F.M. Adams S.E. Ríos A.S. Masino L. Purkiss A.G. Briggs D.C. Ledda F. McDonald N.Q. Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly. Nat. Commun. 2023 14 1 7551 10.1038/s41467‑023‑43148‑8 37985758
    [Google Scholar]
  30. Salvatore M.F. Dopamine signaling in substantia nigra and its impact on locomotor function-not a new concept, but neglected reality. Int. J. Mol. Sci. 2024 25 2 1131 10.3390/ijms25021131 38256204
    [Google Scholar]
  31. Hoffer B.J. Hoffman A. Bowenkamp K. Huettl P. Hudson J. Martin D. Lin L.F.H. Gerhardt G.A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 1994 182 1 107 111 10.1016/0304‑3940(94)90218‑6 7891873
    [Google Scholar]
  32. Olfat S. Mätlik K. Kopra J.J. Garton D.R. Iivanainen V.H. Bhattacharya D. Jakobsson J. Piepponen T.P. Andressoo J.O. Increased physiological GDNF levels have no effect on dopamine neuron protection and restoration in a proteasome inhibition mouse model of parkinson’s disease. eNeuro 2023 10 2 2023 10.1523/ENEURO.0097‑22.2023
    [Google Scholar]
  33. You J. Youssef M. Santos J. Lee J. Park J. Microglia and astrocytes in amyotrophic lateral sclerosis: Disease-associated states, pathological roles, and therapeutic potential. Biology (Basel) 2023 12 10 1307 10.3390/biology12101307 37887017
    [Google Scholar]
  34. Uchida S. Hara K. Kobayashi A. Otsuki K. Yamagata H. Hobara T. Suzuki T. Miyata N. Watanabe Y. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011 69 2 359 372 10.1016/j.neuron.2010.12.023 21262472
    [Google Scholar]
  35. Bian Y. Pan Z. Hou Z. Huang C. Li W. Zhao B. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress. Brain Res. Bull. 2012 88 5 471 476 10.1016/j.brainresbull.2012.04.008 22537595
    [Google Scholar]
  36. Sopova K. Gatsiou K. Stellos K. Laske C. Dysregulation of neurotrophic and haematopoietic growth factors in Alzheimer’s disease: From pathophysiology to novel treatment strategies. Curr. Alzheimer Res. 2014 11 1 27 39 10.2174/1567205010666131120100743 24251394
    [Google Scholar]
  37. Mickiewicz A.L. Kordower J.H. GDNF family ligands: A potential future for Parkinson’s disease therapy. CNS Neurol. Disord. Drug Targets 2011 10 6 703 711 10.2174/187152711797247876 21838676
    [Google Scholar]
  38. Ghitza U.E. Zhai H. Wu P. Airavaara M. Shaham Y. Lu L. Role of BDNF and GDNF in drug reward and relapse: A review. Neurosci. Biobehav. Rev. 2010 35 2 157 171 10.1016/j.neubiorev.2009.11.009 19914287
    [Google Scholar]
  39. Ma X. Chen C. Zhu F. Jia W. Gao C. Association of the GDNF gene with depression and heroin dependence, but not schizophrenia, in a Chinese population. Psychiatry Res. 2013 210 3 1296 1298 10.1016/j.psychres.2013.08.025 24022000
    [Google Scholar]
  40. Takebayashi M. Hisaoka K. Nishida A. Tsuchioka M. Miyoshi I. Kozuru T. Hikasa S. Okamoto Y. Shinno H. Morinobu S. Yamawaki S. Decreased levels of whole blood glial cell line-derived neurotrophic factor (GDNF) in remitted patients with mood disorders. Int. J. Neuropsychopharmacol. 2006 9 5 607 612 10.1017/S1461145705006085 16191208
    [Google Scholar]
  41. Liu Y. Zhou X. Xue K. Sun R. Tang Y. Tang C. Reviving: restoring depression-like behaviour through glial cell-derived neurotrophic factor treatment in the medial prefrontal cortex. J. Psychiatry Neurosci. 2024 49 1 E23 E34 10.1503/jpn.230079 38302136
    [Google Scholar]
  42. Liu Q. Zhu H.Y. Li B. Wang Y.Q. Yu J. Wu G.C. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression. J. Affect. Disord. 2012 141 2-3 367 372 10.1016/j.jad.2012.03.018 22658339
    [Google Scholar]
  43. Lin P.Y. Tseng P.T. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: A meta-analytic study. J. Psychiatr. Res. 2015 63 20 27 10.1016/j.jpsychires.2015.02.004 25726496
    [Google Scholar]
  44. Amidfar M. Réus G.Z. de Moura A.B. Quevedo J. Kim Y.K. The role of neurotrophic factors in pathophysiology of major depressive disorder. Adv. Exp. Med. Biol. 2021 1305 257 272 10.1007/978‑981‑33‑6044‑0_14 33834404
    [Google Scholar]
  45. Michel T.M. Frangou S. Camara S. Thiemeyer D. Jecel J. Tatschner T. Zoechling R. Grünblatt E. Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: A comparative post-mortem study. Eur. Psychiatry 2008 23 6 413 420 10.1016/j.eurpsy.2008.06.001 18760907
    [Google Scholar]
  46. Pedrotti Moreira F. Wiener C.D. Jansen K. Portela L.V. Lara D.R. Souza L.D.M. da Silva R.A. Oses J.P. Serum GDNF levels and anxiety disorders in a population-based study of young adults. Clin. Chim. Acta 2018 485 21 25 10.1016/j.cca.2018.06.017 29906418
    [Google Scholar]
  47. Barbosa I.G. Huguet R.B. Sousa L.P. Abreu M.N.S. Rocha N.P. Bauer M.E. Carvalho L.A. Teixeira A.L. Circulating levels of GDNF in bipolar disorder. Neurosci. Lett. 2011 502 2 103 106 10.1016/j.neulet.2011.07.031 21820487
    [Google Scholar]
  48. Fontenelle L.F. Guimarães Barbosa I. Victor Luna J. Pessoa Rocha N. Silva Miranda A. Lucio Teixeira A. Neurotrophic factors in obsessive-compulsive disorder. Psychiatry Res. 2012 199 3 195 200 10.1016/j.psychres.2012.03.034 22494702
    [Google Scholar]
  49. Marenco S. Weinberger D.R. The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave. Dev. Psychopathol. 2000 12 3 501 527 10.1017/S0954579400003138 11014750
    [Google Scholar]
  50. Kinros J. Reichenberg A. Frangou S. The neurodevelopmental theory of schizophrenia: Evidence from studies of early onset cases. Isr. J. Psychiatry Relat. Sci. 2010 47 2 110 117 20733253
    [Google Scholar]
  51. Huang E.J. Reichardt L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001 24 1 677 736 10.1146/annurev.neuro.24.1.677 11520916
    [Google Scholar]
  52. Virachit S. Mathews K.J. Cottam V. Werry E. Galli E. Rappou E. Lindholm P. Saarma M. Halliday G.M. Shannon Weickert C. Double K.L. Levels of glial cell line‐derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease. Brain Pathol. 2019 29 6 813 825 10.1111/bpa.12730 31033033
    [Google Scholar]
  53. Xiao W. Ye F. Ma L. Tang X. Li J. Dong H. Sha W. Zhang X. Atypical antipsychotic treatment increases glial cell line-derived neurotrophic factor serum levels in drug-free schizophrenic patients along with improvement of psychotic symptoms and therapeutic effects. Psychiatry Res. 2016 246 617 622 10.1016/j.psychres.2016.11.001 27836239
    [Google Scholar]
  54. Hidese S. Hattori K. Sasayama D. Tsumagari T. Miyakawa T. Matsumura R. Yokota Y. Ishida I. Matsuo J. Yoshida S. Ota M. Kunugi H. Cerebrospinal fluid neuroplasticity-associated protein levels in patients with psychiatric disorders: A multiplex immunoassay study. Transl. Psychiatry 2020 10 1 161 10.1038/s41398‑020‑0843‑5 32439851
    [Google Scholar]
  55. Neugebauer K. Hammans C. Wensing T. Kumar V. Grodd W. Mevissen L. Sternkopf M.A. Novakovic A. Abel T. Habel U. Nickl-Jockschat T. Nerve growth factor serum levels are associated with regional gray matter volume differences in schizophrenia patients. Front. Psychiatry 2019 10 275 10.3389/fpsyt.2019.00275 31105606
    [Google Scholar]
  56. Xiao W. Ye F. Liu C. Tang X. Li J. Dong H. Sha W. Zhang X. Cognitive impairment in first-episode drug-naïve patients with schizophrenia: Relationships with serum concentrations of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 76 163 168 10.1016/j.pnpbp.2017.03.013 28342945
    [Google Scholar]
  57. Levac D. Colquhoun H. O’Brien K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010 5 1 69 10.1186/1748‑5908‑5‑69 20854677
    [Google Scholar]
  58. Tricco A.C. Lillie E. Zarin W. O’Brien K.K. Colquhoun H. Levac D. Moher D. Peters M.D.J. Horsley T. Weeks L. Hempel S. Akl E.A. Chang C. McGowan J. Stewart L. Hartling L. Aldcroft A. Wilson M.G. Garritty C. Lewin S. PRISMA extension for scoping reviews (PRISMA-ScR). Ann. Intern. Med. 2018 169 7 467 473 10.7326/M18‑0850 30178033
    [Google Scholar]
  59. Skibinska M. Kapelski P. Pawlak J. Rajewska-Rager A. Dmitrzak-Weglarz M. Szczepankiewicz A. Czerski P. Twarowska-Hauser J. Glial cell line-derived neurotrophic factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters. Psychiatry Res. 2017 256 396 402 10.1016/j.psychres.2017.07.014 28689143
    [Google Scholar]
  60. Chu C.S. Chu C.L. Wu C.C. Lu T. Serum nerve growth factor beta, brain- and glial-derived neurotrophic factor levels and psychopathology in unmedicated patients with schizophrenia. J. Chin. Med. Assoc. 2018 81 6 577 581 10.1016/j.jcma.2017.11.010 29366645
    [Google Scholar]
  61. Tang X. Zhou C. Gao J. Duan W. Yu M. Xiao W. Zhang X. Dong H. Wang X. Zhang X. Serum BDNF and GDNF in Chinese male patients with deficit schizophrenia and their relationships with neurocognitive dysfunction. BMC Psychiatry 2019 19 1 254 10.1186/s12888‑019‑2231‑3 31420036
    [Google Scholar]
  62. Turkmen B.A. Yazici E. Erdogan D.G. Suda M.A. Yazici A.B. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry 2021 21 1 562 10.1186/s12888‑021‑03578‑4 34763683
    [Google Scholar]
  63. Tunca Z. Kıvırcık Akdede B. Özerdem A. Alkın T. Polat S. Ceylan D. Bayın M. Cengizçetin Kocuk N. Şimşek S. Resmi H. Akan P. Diverse glial cell line-derived neurotrophic factor (GDNF) support between mania and schizophrenia: A comparative study in four major psychiatric disorders. Eur. Psychiatry 2015 30 2 198 204 10.1016/j.eurpsy.2014.11.003 25543333
    [Google Scholar]
  64. Krivoy A. Hochman E. Sendt K.V. Hollander S. Vilner Y. Selakovic M. Weizman A. Taler M. Association between serum levels of glutamate and neurotrophic factors and response to clozapine treatment. Schizophr. Res. 2018 192 226 231 10.1016/j.schres.2017.05.040 28599751
    [Google Scholar]
  65. Ye F. Zhan Q. Xiao W. Sha W. Zhang X. Altered serum levels of glial cell line‐derived neurotrophic factor in male chronic schizophrenia patients with tardive dyskinesia. Int. J. Methods Psychiatr. Res. 2018 27 4 e1727 10.1002/mpr.1727 29901253
    [Google Scholar]
  66. Tikir B. Asan O. Uzdoğan A. Sahiner S.Y. Göka E. Association of glial cell-line derived neurotrophic factor and nerve growth factor with duration of untreated psychosis and clinical symptoms in drug-naive schizophrenia. Psych. Clin. Psychophamacol. 2021 31 3 252 260 10.5152/pcp.2021.21715 38765938
    [Google Scholar]
  67. Ermakov E. Melamud M. Boiko A. Kamaeva D. Ivanova S. Nevinsky G. Buneva V. Association of peripheral inflammatory biomarkers and growth factors levels with sex, therapy and other clinical factors in schizophrenia and patient stratification based on these data. Brain Sci. 2023 13 5 836 10.3390/brainsci13050836 37239308
    [Google Scholar]
  68. Akkus M. Kalelioglu T. Kan H. Karamustafalioglu N. Ilnem M.C. Investigation of the effect of electroconvulsive treatment on serum glial cell line-derived neurotrophic factor levels in patients with schizophrenia and bipolar disorder. Dusunen Adam 2022 35 2 86 92 10.14744/DAJPNS.2022.00179
    [Google Scholar]
  69. Michelato A. Bonvicini C. Ventriglia M. Scassellati C. Randazzo R. Bignotti S. Beneduce R. Riva M.A. Gennarelli M. 3′ UTR (AGG)n repeat of glial cell line-derived neurotrophic factor (GDNF) gene polymorphism in schizophrenia. Neurosci. Lett. 2004 357 3 235 237 10.1016/j.neulet.2003.12.089 15003293
    [Google Scholar]
  70. Williams H.J. Norton N. Peirce T. Dwyer S. Williams N.M. Moskvina V. Owen M.J. O’Donovan M.C. Association analysis of the glial cell line-derived neurotrophic factor (GDNF) gene in schizophrenia. Schizophr. Res. 2007 97 1-3 271 276 10.1016/j.schres.2007.09.004 17897812
    [Google Scholar]
  71. Souza R.P. Romano-Silva M.A. Lieberman J.A. Meltzer H.Y. MacNeil L.T. Culotti J.G. Kennedy J.L. Wong A.H.C. Genetic association of the GDNF alpha-receptor genes with schizophrenia and clozapine response. J. Psychiatr. Res. 2010 44 11 700 706 10.1016/j.jpsychires.2010.01.002 20116071
    [Google Scholar]
  72. Souza R.P. de Luca V. Remington G. Lieberman J.A. Meltzer H.Y. Kennedy J.L. Wong A.H.C. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia. Psychopharmacology (Berl.) 2010 210 3 347 354 10.1007/s00213‑010‑1829‑4 20369355
    [Google Scholar]
  73. Buhusi M. Brown C.K. Buhusi C.V. Impaired latent inhibition in gdnf-deficient mice exposed to chronic stress. Front. Behav. Neurosci. 2017 11 177 10.3389/fnbeh.2017.00177 29066960
    [Google Scholar]
  74. Brown R.W. Schlitt M.A. Owens A.S. DePreter C.C. Cummins E.D. Kirby S.L. Gill W.D. Burgess K.C. Effects of environmental enrichment on nicotine sensitization in rats neonatally treated with quinpirole: Analyses of glial cell line-derived neurotrophic factor and implications towards schizophrenia. Dev. Neurosci. 2018 40 1 64 72 10.1159/000486391 29444518
    [Google Scholar]
  75. Casserly L. Garton D.R. Montaño-Rodriguez A. Andressoo J.O. Analysis of acute and chronic methamphetamine treatment in mice on gdnf system expression reveals a potential mechanism of schizophrenia susceptibility. Biomolecules 2023 13 9 1428 10.3390/biom13091428 37759827
    [Google Scholar]
  76. Gill W.D. Shelton H.W. Burgess K.C. Brown R.W. Effects of an adenosine A 2A agonist on the rewarding associative properties of nicotine and neural plasticity in a rodent model of schizophrenia. J. Psychopharmacol. 2020 34 1 137 144 10.1177/0269881119885917 31694445
    [Google Scholar]
  77. Mätlik K. Garton D.R. Montaño-Rodríguez A.R. Olfat S. Eren F. Casserly L. Damdimopoulos A. Panhelainen A. Porokuokka L.L. Kopra J.J. Turconi G. Schweizer N. Bereczki E. Piehl F. Engberg G. Cervenka S. Piepponen T.P. Zhang F.P. Sipilä P. Jakobsson J. Sellgren C.M. Erhardt S. Andressoo J.O. Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol. Psychiatry 2022 27 8 3247 3261 10.1038/s41380‑022‑01554‑2 35618883
    [Google Scholar]
  78. Semba J. Akanuma N. Wakuta M. Tanaka N. Suhara T. Alterations in the expressions of mRNA for GDNF and its receptors in the ventral midbrain of rats exposed to subchronic phencyclidine. Brain Res. Mol. Brain Res. 2004 124 1 88 95 10.1016/j.molbrainres.2004.02.011 15093689
    [Google Scholar]
  79. Valvassori S.S. da Rosa R.T. Dal-Pont G.C. Varela R.B. Mastella G.A. Daminelli T. Fries G.R. Quevedo J. Zugno A.I. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine. Int. J. Dev. Neurosci. 2023 83 8 691 702 10.1002/jdn.10296 37635268
    [Google Scholar]
  80. Leverenz J.B. Stennis Watson G. Shofer J. Zabetian C.P. Zhang J. Montine T.J. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2011 17 1 61 64 10.1016/j.parkreldis.2010.10.003 21044858
    [Google Scholar]
  81. Lim S.Y. Lang A.E. The nonmotor symptoms of Parkinson’s disease-An overview. Mov. Disord. 2010 25 S1 S123 S130 10.1002/mds.22786 20187234
    [Google Scholar]
  82. Wang G. van der Walt J.M. Mayhew G. Li Y.J. Züchner S. Scott W.K. Martin E.R. Vance J.M. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am. J. Hum. Genet. 2008 82 2 283 289 10.1016/j.ajhg.2007.09.021 18252210
    [Google Scholar]
  83. Sun S. Li F. Gao X. Zhu Y. Chen J. Zhu X. Yuan H. Gao D. Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway. Neuroscience 2011 199 359 367 10.1016/j.neuroscience.2011.09.054 22020319
    [Google Scholar]
  84. Yu Z.Q. Zha J.H. Liu H.M. Ding Y.X. Wang Y.Q. Wang H.J. Gao D.S. Effect of intranigral injection of GDNF and EGF on the survival and possible differentiation fate of progenitors and immature neurons in 6-OHDA-lesioned rats. Neurochem. Res. 2009 34 12 2089 2101 10.1007/s11064‑009‑9995‑7 19472051
    [Google Scholar]
  85. Cao J.P. Wang H.J. Yu J.K. Yang H. Xiao C.H. Gao D.S. Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons. Neurosci. Res. 2008 61 4 390 397 10.1016/j.neures.2008.04.008 18524405
    [Google Scholar]
  86. Forlenza O.V. Miranda A.S. Guimar I. Talib L.L. Diniz B.S. Gattaz W.F. Teixeira A.L. Decreased neurotrophic support is associated with cognitive decline in non-demented subjects. J. Alzheimers Dis. 2015 46 2 423 429 10.3233/JAD‑150172 25737042
    [Google Scholar]
  87. Kim E.J. Pellman B. Kim J.J. Stress effects on the hippocampus: A critical review. Learn. Mem. 2015 22 9 411 416 10.1101/lm.037291.114 26286651
    [Google Scholar]
  88. Kastin A.J. Pan W. Maness L.M. Banks W.A. Peptides crossing the blood–brain barrier: Some unusual observations. Brain Res. 1999 848 1-2 96 100 10.1016/S0006‑8993(99)01961‑7 10612701
    [Google Scholar]
  89. Pan W. Banks W.A. Fasold M.B. Bluth J. Kastin A.J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 1998 37 12 1553 1561 10.1016/S0028‑3908(98)00141‑5 9886678
    [Google Scholar]
  90. Gama Marques J. Bento A. Schizophrenia: The great imitated (by many great imitators and small imitators). J. Clin. Neurosci. 2020 80 79 10.1016/j.jocn.2020.08.002 33099372
    [Google Scholar]
  91. Gama Marques J. Still regarding schizophrenia, secondary schizophrenia, pseudo-schizophrenia, and schizophrenia-like psychosis. Acta Med. Port. 2022 35 6 507 10.20344/amp.18209 35523150
    [Google Scholar]
  92. Torrey E.F. Yolken R.H. Schizophrenia as a pseudogenetic disease: A call for more gene-environmental studies. Psychiatry Res. 2019 278 146 150 10.1016/j.psychres.2019.06.006 31200193
    [Google Scholar]
  93. Torrey E.F. Did the human genome project affect research on Schizophrenia? Psychiatry Res. 2024 333 115691 10.1016/j.psychres.2023.115691 38219345
    [Google Scholar]
  94. Hermann D. Sartorius A. Welzel H. Walter S. Skopp G. Ende G. Mann K. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol. Psychiatry 2007 61 11 1281 1289 10.1016/j.biopsych.2006.08.027 17239356
    [Google Scholar]
  95. Matochik J.A. Eldreth D.A. Cadet J.L. Bolla K.I. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend. 2005 77 1 23 30 10.1016/j.drugalcdep.2004.06.011 15607838
    [Google Scholar]
  96. Yoshioka M. Tanaka K. Miyazaki I. Fujita N. Higashi Y. Asanuma M. Ogawa N. The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. Neurosci. Res. 2002 43 3 259 267 10.1016/S0168‑0102(02)00040‑8 12103444
    [Google Scholar]
  97. Juarez B. Han M.H. Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology 2016 41 10 2424 2446 10.1038/npp.2016.32 26934955
    [Google Scholar]
  98. Merlio J.P. Ernfors P. Kokaia Z. Middlemas D.S. Bengzon J. Kokaia M. Smith M.L. Siesjö B.K. Hunter T. Lindvall O. Persson H. Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 1993 10 2 151 164 10.1016/0896‑6273(93)90307‑D 8439408
    [Google Scholar]
  99. Lin P.H. Kuo L.T. Luh H.T. The roles of neurotrophins in traumatic brain injury. Life (Basel) 2021 12 1 26 10.3390/life12010026 35054419
    [Google Scholar]
  100. Hyman C. Hofer M. Barde Y.A. Juhasz M. Yancopoulos G.D. Squinto S.P. Lindsay R.M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991 350 6315 230 232 10.1038/350230a0 2005978
    [Google Scholar]
  101. Zhu Y. Chen X. Liu Z. Peng Y.P. Qiu Y.H. Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures. Int. J. Mol. Sci. 2015 17 1 25 10.3390/ijms17010025 26729090
    [Google Scholar]
  102. Ford M.M. George B.E. Van Laar V.S. Holleran K.M. Naidoo J. Hadaczek P. Vanderhooft L.E. Peck E.G. Dawes M.H. Ohno K. Bringas J. McBride J.L. Samaranch L. Forsayeth J.R. Jones S.R. Grant K.A. Bankiewicz K.S. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat. Med. 2023 29 8 2030 2040 10.1038/s41591‑023‑02463‑9 37580533
    [Google Scholar]
  103. Villegas S.N. Njaine B. Linden R. Carri N.G. Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Res. Bull. 2006 71 1-3 116 126 10.1016/j.brainresbull.2006.08.014 17113937
    [Google Scholar]
  104. Tripathi R.K. Goyal L. Singh S. Potential therapeutic approach using aromatic l-amino acid decarboxylase and glial-derived neurotrophic factor therapy targeting putamen in parkinson’s disease. Curr. Gene Ther. 2024 24 4 278 291 10.2174/0115665232283842240102073002 38310455
    [Google Scholar]
/content/journals/cn/10.2174/011570159X340124241205095729
Loading
/content/journals/cn/10.2174/011570159X340124241205095729
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: neurotrophic factors ; cognitivity ; schizophrenia ; psychosis ; GDNF ; substance-induced psychosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test