Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Psychotic disorders, characterized by altered brain function, significantly impair reality perception. The neurodevelopmental hypothesis suggests these disorders originate from early brain development disruptions. Glial-derived neurotrophic factor (GDNF) is crucial for neuronal survival and differentiation, especially in dopaminergic neurons, and shows promise in neurodegenerative and neuropsychiatric conditions.

Objectives

This scoping review aims to examine the role of GDNF in schizophrenia spectrum disorders and substance-induced psychoses, integrating knowledge on the neurobiological mechanisms and therapeutic potential of GDNF.

Methods

A comprehensive literature search was conducted using PubMed and Scopus databases from January 2001 onwards. Data extraction focused on GDNF levels, cognitive function, antipsychotic treatment effects, and genetic studies.

Results

The review included 25 studies (18 human, 7 animal). While some studies demonstrated inconsistent results regarding GDNF serum levels in schizophrenic patients, the majority reported correlations between GDNF levels and cognitive functions. Animal studies underscored GDNF's role in stress response, drug-induced neurotoxicity, and dopamine signaling abnormalities. Genetic studies revealed potential associations between GDNF gene polymorphisms and schizophrenia susceptibility, though findings were mixed.

Discussion

GDNF plays a significant role in cognitive functions and neuroprotection in schizophrenia. The variability in study results underscores the complexity of GDNF's involvement. The therapeutic potential of GDNF in psychotic disorders remains unclear, necessitating further research to clarify its efficacy and safety.

Conclusion

This review emphasizes the importance of integrated biomarker strategies, gene therapy approaches, and precision medicine in advancing the understanding and treatment of psychotic disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X340124241205095729
2024-12-13
2025-04-03
Loading full text...

Full text loading...

References

  1. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders.Washington, DC, USAAmerican Psychiatric Association Publishing2013
    [Google Scholar]
  2. ICD-11 for mortality and morbidity statistics 2024-01. Available from: https://icd.who.int/browse/2024-01/mms/en#405565289 (Accessed on: 29 October 2022)
  3. GaebelW. Status of psychotic disorders in ICD-11.Schizophr. Bull.201238589589810.1093/schbul/sbs10422987845
    [Google Scholar]
  4. Vila-BadiaR. ButjosaA. Del CachoN. Serra-ArumíC. Esteban-SanjustoM. OchoaS. UsallJ. Types, prevalence and gender differences of childhood trauma in first-episode psychosis. What is the evidence that childhood trauma is related to symptoms and functional outcomes in first episode psychosis? A systematic review.Schizophr. Res.202122815917910.1016/j.schres.2020.11.04733434728
    [Google Scholar]
  5. KleinH.C. GuestP.C. DobrowolnyH. SteinerJ. Inflammation and viral infection as disease modifiers in schizophrenia.Front. Psychiatry202314123175010.3389/fpsyt.2023.123175037850104
    [Google Scholar]
  6. OwenM.J. O’DonovanM.C. Schizophrenia and the neurodevelopmental continuum:evidence from genomics.World Psychiatry201716322723510.1002/wps.2044028941101
    [Google Scholar]
  7. MarkiewiczR. Markiewicz-GospodarekA. BorowskiB. TrubalskiM. ŁozaB. Reelin signaling and synaptic plasticity in schizophrenia.Brain Sci.20231312170410.3390/brainsci1312170438137152
    [Google Scholar]
  8. Guardiola-RipollM. Fatjó-VilasM. A systematic review of the human accelerated regions in schizophrenia and related disorders: Where the evolutionary and neurodevelopmental hypotheses converge.Int. J. Mol. Sci.2023244359710.3390/ijms2404359736835010
    [Google Scholar]
  9. LeeK.B. KunugiH. NankoS. Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: Polymorphism screening and association analysis.Psychiatry Res.20011041111710.1016/S0165‑1781(01)00294‑311600185
    [Google Scholar]
  10. LinL.F.H. DohertyD.H. LileJ.D. BekteshS. CollinsF. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science199326051111130113210.1126/science.84935578493557
    [Google Scholar]
  11. Mendes-OliveiraJ. CamposF.L. FerreiraS.A. ToméD. FonsecaC.P. BaltazarG. Endogenous GDNF is unable to halt dopaminergic injury triggered by microglial activation.Cells20231317410.3390/cells1301007438201277
    [Google Scholar]
  12. AngelucciF. MathéA.A. AloeL. Neurotrophic factors and CNS disorders: Findings in rodent models of depression and schizophrenia.Prog. Brain Res.200414615116510.1016/S0079‑6123(03)46011‑114699963
    [Google Scholar]
  13. AngelucciF. RicciV. PomponiM. ConteG. MathéA.A. Attilio TonaliP. BriaP. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor.J. Psychopharmacol.200721882082510.1177/026988110707849117715210
    [Google Scholar]
  14. RicciV. de BerardisD. MartinottiG. MainaG. Neurotrophic factors in cannabis-induced psychosis: An update.Curr. Top. Med. Chem.20232310.2174/156802662366623082915215037644743
    [Google Scholar]
  15. BuckleyP.F. PillaiA. HowellK.R. Brain-derived neurotrophic factor: Findings in schizophrenia.Curr. Opin. Psychiatry201124212212710.1097/YCO.0b013e3283436eb721248641
    [Google Scholar]
  16. FavalliG. LiJ. Belmonte-de-AbreuP. WongA.H.C. DaskalakisZ.J. The role of BDNF in the pathophysiology and treatment of schizophrenia.J. Psychiatr. Res.201246111110.1016/j.jpsychires.2011.09.02222030467
    [Google Scholar]
  17. GreenM.J. MathesonS.L. ShepherdA. WeickertC.S. CarrV.J. Brain-derived neurotrophic factor levels in schizophrenia: A systematic review with meta-analysis.Mol. Psychiatry201116996097210.1038/mp.2010.8820733577
    [Google Scholar]
  18. NiitsuT. ShirayamaY. MatsuzawaD. ShimizuE. HashimotoK. IyoM. Association between serum levels of glial cell-line derived neurotrophic factor and attention deficits in schizophrenia.Neurosci. Lett.2014575374110.1016/j.neulet.2014.05.03424861509
    [Google Scholar]
  19. SzwajcaM. KazekG. ŚmierciakN. MizeraJ. Pomierny-ChamioloL. SzwajcaK. BiesagaB. PileckiM. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors.Front. Psychiatry202415132065010.3389/fpsyt.2024.132065038645418
    [Google Scholar]
  20. EigenbrotC. GerberN. X-ray structure of glial cell-derived neurotrophic factor at 1.9 Å resolution and implications for receptor binding.Nat. Struct. Biol.19974643543810.1038/nsb0697‑4359187648
    [Google Scholar]
  21. LindholmP. SaarmaM. Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism.Mol. Psychiatry20222731310132110.1038/s41380‑021‑01394‑634907395
    [Google Scholar]
  22. TreanorJ.J.S. GoodmanL. de SauvageF. StoneD.M. PoulsenK.T. BeckC.D. GrayC. ArmaniniM.P. PollockR.A. HeftiF. PhillipsH.S. GoddardA. MooreM.W. Buj-BelloA. DaviesA.M. AsaiN. TakahashiM. VandlenR. HendersonC.E. RosenthalA. Characterization of a multicomponent receptor for GDNF.Nature19963826586808310.1038/382080a08657309
    [Google Scholar]
  23. KakotyV. SarathlalK.C. KaurP. WadhwaP. VishwasS. KhanF.R. AlhazmiA.Y.M. AlmasoudiH.H. GuptaG. ChellappanD.K. PaudelK.R. KumarD. DuaK. SinghS.K. Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease.Neurol. Sci.20244541409141810.1007/s10072‑023‑07253‑238082050
    [Google Scholar]
  24. Buj-BelloA. AduJ. PiñónL.G.P. HortonA. ThompsonJ. RosenthalA. ChinchetruM. BuchmanV.L. DaviesA.M. Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase.Nature1997387663472172410.1038/427299192899
    [Google Scholar]
  25. FerriniF. SalioC. BoggioE.M. MerighiA. Interplay of BDNF and GDNF in the mature spinal somatosensory system and its potential therapeutic relevance.Curr. Neuropharmacol.20211981225124510.2174/1570159X1866620111614342233200712
    [Google Scholar]
  26. TomacA. LindqvistE. LinL.F.H. ÖgrenS.O. YoungD. HofferB.J. OlsonL. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo.Nature1995373651233533910.1038/373335a07830766
    [Google Scholar]
  27. GeG. SivasubramanianB.P. GengB.D. ZhaoS. ZhouQ. HuangG. O’ConnorJ.C. ClarkR.A. LiS. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson’s disease.Gene Ther.2024315-632433410.1038/s41434‑024‑00451‑338627469
    [Google Scholar]
  28. PichelJ.G. ShenL. ShengH.Z. GranholmA.C. DragoJ. GrinbergA. LeeE.J. HuangS.P. SaarmaM. HofferB.J. SariolaH. WestphalH. Defects in enteric innervation and kidney development in mice lacking GDNF.Nature19963826586737610.1038/382073a08657307
    [Google Scholar]
  29. HoughtonF.M. AdamsS.E. RíosA.S. MasinoL. PurkissA.G. BriggsD.C. LeddaF. McDonaldN.Q. Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly.Nat. Commun.2023141755110.1038/s41467‑023‑43148‑837985758
    [Google Scholar]
  30. SalvatoreM.F. Dopamine signaling in substantia nigra and its impact on locomotor function-not a new concept, but neglected reality.Int. J. Mol. Sci.2024252113110.3390/ijms2502113138256204
    [Google Scholar]
  31. HofferB.J. HoffmanA. BowenkampK. HuettlP. HudsonJ. MartinD. LinL.F.H. GerhardtG.A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo.Neurosci. Lett.1994182110711110.1016/0304‑3940(94)90218‑67891873
    [Google Scholar]
  32. OlfatS. MätlikK. KopraJ.J. GartonD.R. IivanainenV.H. BhattacharyaD. JakobssonJ. PiepponenT.P. AndressooJ.O. Increased physiological GDNF levels have no effect on dopamine neuron protection and restoration in a proteasome inhibition mouse model of parkinson’s disease.eNeuro2023102202310.1523/ENEURO.0097‑22.2023
    [Google Scholar]
  33. YouJ. YoussefM. SantosJ. LeeJ. ParkJ. Microglia and astrocytes in amyotrophic lateral sclerosis: Disease-associated states, pathological roles, and therapeutic potential.Biology (Basel)20231210130710.3390/biology1210130737887017
    [Google Scholar]
  34. UchidaS. HaraK. KobayashiA. OtsukiK. YamagataH. HobaraT. SuzukiT. MiyataN. WatanabeY. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events.Neuron201169235937210.1016/j.neuron.2010.12.02321262472
    [Google Scholar]
  35. BianY. PanZ. HouZ. HuangC. LiW. ZhaoB. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress.Brain Res. Bull.201288547147610.1016/j.brainresbull.2012.04.00822537595
    [Google Scholar]
  36. SopovaK. GatsiouK. StellosK. LaskeC. Dysregulation of neurotrophic and haematopoietic growth factors in Alzheimer’s disease: From pathophysiology to novel treatment strategies.Curr. Alzheimer Res.2014111273910.2174/156720501066613112010074324251394
    [Google Scholar]
  37. MickiewiczA.L. KordowerJ.H. GDNF family ligands: A potential future for Parkinson’s disease therapy.CNS Neurol. Disord. Drug Targets201110670371110.2174/18715271179724787621838676
    [Google Scholar]
  38. GhitzaU.E. ZhaiH. WuP. AiravaaraM. ShahamY. LuL. Role of BDNF and GDNF in drug reward and relapse: A review.Neurosci. Biobehav. Rev.201035215717110.1016/j.neubiorev.2009.11.00919914287
    [Google Scholar]
  39. MaX. ChenC. ZhuF. JiaW. GaoC. Association of the GDNF gene with depression and heroin dependence, but not schizophrenia, in a Chinese population.Psychiatry Res.201321031296129810.1016/j.psychres.2013.08.02524022000
    [Google Scholar]
  40. TakebayashiM. HisaokaK. NishidaA. TsuchiokaM. MiyoshiI. KozuruT. HikasaS. OkamotoY. ShinnoH. MorinobuS. YamawakiS. Decreased levels of whole blood glial cell line-derived neurotrophic factor (GDNF) in remitted patients with mood disorders.Int. J. Neuropsychopharmacol.20069560761210.1017/S146114570500608516191208
    [Google Scholar]
  41. LiuY. ZhouX. XueK. SunR. TangY. TangC. Reviving: restoring depression-like behaviour through glial cell-derived neurotrophic factor treatment in the medial prefrontal cortex.J. Psychiatry Neurosci.2024491E23E3410.1503/jpn.23007938302136
    [Google Scholar]
  42. LiuQ. ZhuH.Y. LiB. WangY.Q. YuJ. WuG.C. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression.J. Affect. Disord.20121412-336737210.1016/j.jad.2012.03.01822658339
    [Google Scholar]
  43. LinP.Y. TsengP.T. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: A meta-analytic study.J. Psychiatr. Res.201563202710.1016/j.jpsychires.2015.02.00425726496
    [Google Scholar]
  44. AmidfarM. RéusG.Z. de MouraA.B. QuevedoJ. KimY.K. The role of neurotrophic factors in pathophysiology of major depressive disorder.Adv. Exp. Med. Biol.2021130525727210.1007/978‑981‑33‑6044‑0_1433834404
    [Google Scholar]
  45. MichelT.M. FrangouS. CamaraS. ThiemeyerD. JecelJ. TatschnerT. ZoechlingR. GrünblattE. Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: A comparative post-mortem study.Eur. Psychiatry200823641342010.1016/j.eurpsy.2008.06.00118760907
    [Google Scholar]
  46. Pedrotti MoreiraF. WienerC.D. JansenK. PortelaL.V. LaraD.R. SouzaL.D.M. da SilvaR.A. OsesJ.P. Serum GDNF levels and anxiety disorders in a population-based study of young adults.Clin. Chim. Acta2018485212510.1016/j.cca.2018.06.01729906418
    [Google Scholar]
  47. BarbosaI.G. HuguetR.B. SousaL.P. AbreuM.N.S. RochaN.P. BauerM.E. CarvalhoL.A. TeixeiraA.L. Circulating levels of GDNF in bipolar disorder.Neurosci. Lett.2011502210310610.1016/j.neulet.2011.07.03121820487
    [Google Scholar]
  48. FontenelleL.F. GuimarãesB.I. VictorL.J. PessoaR.N. SilvaM.A. LucioT.A. Neurotrophic factors in obsessive-compulsive disorder.Psychiatry Res.2012199319520010.1016/j.psychres.2012.03.03422494702
    [Google Scholar]
  49. MarencoS. WeinbergerD.R. The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave.Dev. Psychopathol.200012350152710.1017/S095457940000313811014750
    [Google Scholar]
  50. KinrosJ. ReichenbergA. FrangouS. The neurodevelopmental theory of schizophrenia: Evidence from studies of early onset cases.Isr. J. Psychiatry Relat. Sci.201047211011720733253
    [Google Scholar]
  51. HuangE.J. ReichardtL.F. Neurotrophins: Roles in neuronal development and function.Annu. Rev. Neurosci.200124167773610.1146/annurev.neuro.24.1.67711520916
    [Google Scholar]
  52. VirachitS. MathewsK.J. CottamV. WerryE. GalliE. RappouE. LindholmP. SaarmaM. HallidayG.M. Shannon WeickertC. DoubleK.L. Levels of glial cell line‐derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease.Brain Pathol.201929681382510.1111/bpa.1273031033033
    [Google Scholar]
  53. XiaoW. YeF. MaL. TangX. LiJ. DongH. ShaW. ZhangX. Atypical antipsychotic treatment increases glial cell line-derived neurotrophic factor serum levels in drug-free schizophrenic patients along with improvement of psychotic symptoms and therapeutic effects.Psychiatry Res.201624661762210.1016/j.psychres.2016.11.00127836239
    [Google Scholar]
  54. HideseS. HattoriK. SasayamaD. TsumagariT. MiyakawaT. MatsumuraR. YokotaY. IshidaI. MatsuoJ. YoshidaS. OtaM. KunugiH. Cerebrospinal fluid neuroplasticity-associated protein levels in patients with psychiatric disorders: A multiplex immunoassay study.Transl. Psychiatry202010116110.1038/s41398‑020‑0843‑532439851
    [Google Scholar]
  55. NeugebauerK. HammansC. WensingT. KumarV. GroddW. MevissenL. SternkopfM.A. NovakovicA. AbelT. HabelU. Nickl-JockschatT. Nerve growth factor serum levels are associated with regional gray matter volume differences in schizophrenia patients.Front. Psychiatry20191027510.3389/fpsyt.2019.0027531105606
    [Google Scholar]
  56. XiaoW. YeF. LiuC. TangX. LiJ. DongH. ShaW. ZhangX. Cognitive impairment in first-episode drug-naïve patients with schizophrenia: Relationships with serum concentrations of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor.Prog. Neuropsychopharmacol. Biol. Psychiatry20177616316810.1016/j.pnpbp.2017.03.01328342945
    [Google Scholar]
  57. LevacD. ColquhounH. O’BrienK.K. Scoping studies: Advancing the methodology.Implement. Sci.2010516910.1186/1748‑5908‑5‑6920854677
    [Google Scholar]
  58. TriccoA.C. LillieE. ZarinW. O’BrienK.K. ColquhounH. LevacD. MoherD. PetersM.D.J. HorsleyT. WeeksL. HempelS. AklE.A. ChangC. McGowanJ. StewartL. HartlingL. AldcroftA. WilsonM.G. GarrittyC. LewinS. PRISMA extension for scoping reviews (PRISMA-ScR).Ann. Intern. Med.2018169746747310.7326/M18‑085030178033
    [Google Scholar]
  59. SkibinskaM. KapelskiP. PawlakJ. Rajewska-RagerA. Dmitrzak-WeglarzM. SzczepankiewiczA. CzerskiP. Twarowska-HauserJ. Glial cell line-derived neurotrophic factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters.Psychiatry Res.201725639640210.1016/j.psychres.2017.07.01428689143
    [Google Scholar]
  60. ChuC.S. ChuC.L. WuC.C. LuT. Serum nerve growth factor beta, brain- and glial-derived neurotrophic factor levels and psychopathology in unmedicated patients with schizophrenia.J. Chin. Med. Assoc.201881657758110.1016/j.jcma.2017.11.01029366645
    [Google Scholar]
  61. TangX. ZhouC. GaoJ. DuanW. YuM. XiaoW. ZhangX. DongH. WangX. ZhangX. Serum BDNF and GDNF in Chinese male patients with deficit schizophrenia and their relationships with neurocognitive dysfunction.BMC Psychiatry201919125410.1186/s12888‑019‑2231‑331420036
    [Google Scholar]
  62. TurkmenB.A. YaziciE. ErdoganD.G. SudaM.A. YaziciA.B. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia.BMC Psychiatry202121156210.1186/s12888‑021‑03578‑434763683
    [Google Scholar]
  63. TuncaZ. Kıvırcık AkdedeB. ÖzerdemA. AlkınT. PolatS. CeylanD. BayınM. Cengizçetin KocukN. ŞimşekS. ResmiH. AkanP. Diverse glial cell line-derived neurotrophic factor (GDNF) support between mania and schizophrenia: A comparative study in four major psychiatric disorders.Eur. Psychiatry201530219820410.1016/j.eurpsy.2014.11.00325543333
    [Google Scholar]
  64. KrivoyA. HochmanE. SendtK.V. HollanderS. VilnerY. SelakovicM. WeizmanA. TalerM. Association between serum levels of glutamate and neurotrophic factors and response to clozapine treatment.Schizophr. Res.201819222623110.1016/j.schres.2017.05.04028599751
    [Google Scholar]
  65. YeF. ZhanQ. XiaoW. ShaW. ZhangX. Altered serum levels of glial cell line‐derived neurotrophic factor in male chronic schizophrenia patients with tardive dyskinesia.Int. J. Methods Psychiatr. Res.2018274e172710.1002/mpr.172729901253
    [Google Scholar]
  66. TikirB. AsanO. UzdoğanA. SahinerS.Y. GökaE. Association of glial cell-line derived neurotrophic factor and nerve growth factor with duration of untreated psychosis and clinical symptoms in drug-naive schizophrenia.Psych. Clin. Psychophamacol.202131325226010.5152/pcp.2021.2171538765938
    [Google Scholar]
  67. ErmakovE. MelamudM. BoikoA. KamaevaD. IvanovaS. NevinskyG. BunevaV. Association of peripheral inflammatory biomarkers and growth factors levels with sex, therapy and other clinical factors in schizophrenia and patient stratification based on these data.Brain Sci.202313583610.3390/brainsci1305083637239308
    [Google Scholar]
  68. AkkusM. KaleliogluT. KanH. KaramustafaliogluN. IlnemM.C. Investigation of the effect of electroconvulsive treatment on serum glial cell line-derived neurotrophic factor levels in patients with schizophrenia and bipolar disorder.Dusunen Adam2022352869210.14744/DAJPNS.2022.00179
    [Google Scholar]
  69. MichelatoA. BonviciniC. VentrigliaM. ScassellatiC. RandazzoR. BignottiS. BeneduceR. RivaM.A. GennarelliM. 3′ UTR (AGG)n repeat of glial cell line-derived neurotrophic factor (GDNF) gene polymorphism in schizophrenia.Neurosci. Lett.2004357323523710.1016/j.neulet.2003.12.08915003293
    [Google Scholar]
  70. WilliamsH.J. NortonN. PeirceT. DwyerS. WilliamsN.M. MoskvinaV. OwenM.J. O’DonovanM.C. Association analysis of the glial cell line-derived neurotrophic factor (GDNF) gene in schizophrenia.Schizophr. Res.2007971-327127610.1016/j.schres.2007.09.00417897812
    [Google Scholar]
  71. SouzaR.P. Romano-SilvaM.A. LiebermanJ.A. MeltzerH.Y. MacNeilL.T. CulottiJ.G. KennedyJ.L. WongA.H.C. Genetic association of the GDNF alpha-receptor genes with schizophrenia and clozapine response.J. Psychiatr. Res.2010441170070610.1016/j.jpsychires.2010.01.00220116071
    [Google Scholar]
  72. SouzaR.P. de LucaV. RemingtonG. LiebermanJ.A. MeltzerH.Y. KennedyJ.L. WongA.H.C. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia.Psychopharmacology (Berl.)2010210334735410.1007/s00213‑010‑1829‑420369355
    [Google Scholar]
  73. BuhusiM. BrownC.K. BuhusiC.V. Impaired latent inhibition in gdnf-deficient mice exposed to chronic stress.Front. Behav. Neurosci.20171117710.3389/fnbeh.2017.0017729066960
    [Google Scholar]
  74. BrownR.W. SchlittM.A. OwensA.S. DePreterC.C. CumminsE.D. KirbyS.L. GillW.D. BurgessK.C. Effects of environmental enrichment on nicotine sensitization in rats neonatally treated with quinpirole: Analyses of glial cell line-derived neurotrophic factor and implications towards schizophrenia.Dev. Neurosci.2018401647210.1159/00048639129444518
    [Google Scholar]
  75. CasserlyL. GartonD.R. Montaño-RodriguezA. AndressooJ.O. Analysis of acute and chronic methamphetamine treatment in mice on gdnf system expression reveals a potential mechanism of schizophrenia susceptibility.Biomolecules2023139142810.3390/biom1309142837759827
    [Google Scholar]
  76. GillW.D. SheltonH.W. BurgessK.C. BrownR.W. Effects of an adenosine A 2A agonist on the rewarding associative properties of nicotine and neural plasticity in a rodent model of schizophrenia.J. Psychopharmacol.202034113714410.1177/026988111988591731694445
    [Google Scholar]
  77. MätlikK. GartonD.R. Montaño-RodríguezA.R. OlfatS. ErenF. CasserlyL. DamdimopoulosA. PanhelainenA. PorokuokkaL.L. KopraJ.J. TurconiG. SchweizerN. BereczkiE. PiehlF. EngbergG. CervenkaS. PiepponenT.P. ZhangF.P. SipiläP. JakobssonJ. SellgrenC.M. ErhardtS. AndressooJ.O. Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.Mol. Psychiatry20222783247326110.1038/s41380‑022‑01554‑235618883
    [Google Scholar]
  78. SembaJ. AkanumaN. WakutaM. TanakaN. SuharaT. Alterations in the expressions of mRNA for GDNF and its receptors in the ventral midbrain of rats exposed to subchronic phencyclidine.Brain Res. Mol. Brain Res.20041241889510.1016/j.molbrainres.2004.02.01115093689
    [Google Scholar]
  79. ValvassoriS.S. da RosaR.T. Dal-PontG.C. VarelaR.B. MastellaG.A. DaminelliT. FriesG.R. QuevedoJ. ZugnoA.I. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine.Int. J. Dev. Neurosci.202383869170210.1002/jdn.1029637635268
    [Google Scholar]
  80. LeverenzJ.B. Stennis WatsonG. ShoferJ. ZabetianC.P. ZhangJ. MontineT.J. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease.Parkinsonism Relat. Disord.2011171616410.1016/j.parkreldis.2010.10.00321044858
    [Google Scholar]
  81. LimS.Y. LangA.E. The nonmotor symptoms of Parkinson’s disease-An overview.Mov. Disord.201025S1S123S13010.1002/mds.2278620187234
    [Google Scholar]
  82. WangG. van der WaltJ.M. MayhewG. LiY.J. ZüchnerS. ScottW.K. MartinE.R. VanceJ.M. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein.Am. J. Hum. Genet.200882228328910.1016/j.ajhg.2007.09.02118252210
    [Google Scholar]
  83. SunS. LiF. GaoX. ZhuY. ChenJ. ZhuX. YuanH. GaoD. Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway.Neuroscience201119935936710.1016/j.neuroscience.2011.09.05422020319
    [Google Scholar]
  84. YuZ.Q. ZhaJ.H. LiuH.M. DingY.X. WangY.Q. WangH.J. GaoD.S. Effect of intranigral injection of GDNF and EGF on the survival and possible differentiation fate of progenitors and immature neurons in 6-OHDA-lesioned rats.Neurochem. Res.200934122089210110.1007/s11064‑009‑9995‑719472051
    [Google Scholar]
  85. CaoJ.P. WangH.J. YuJ.K. YangH. XiaoC.H. GaoD.S. Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons.Neurosci. Res.200861439039710.1016/j.neures.2008.04.00818524405
    [Google Scholar]
  86. ForlenzaO.V. MirandaA.S. GuimarI. TalibL.L. DinizB.S. GattazW.F. TeixeiraA.L. Decreased neurotrophic support is associated with cognitive decline in non-demented subjects.J. Alzheimers Dis.201546242342910.3233/JAD‑15017225737042
    [Google Scholar]
  87. KimE.J. PellmanB. KimJ.J. Stress effects on the hippocampus: A critical review.Learn. Mem.201522941141610.1101/lm.037291.11426286651
    [Google Scholar]
  88. KastinA.J. PanW. ManessL.M. BanksW.A. Peptides crossing the blood–brain barrier: Some unusual observations.Brain Res.19998481-29610010.1016/S0006‑8993(99)01961‑710612701
    [Google Scholar]
  89. PanW. BanksW.A. FasoldM.B. BluthJ. KastinA.J. Transport of brain-derived neurotrophic factor across the blood–brain barrier.Neuropharmacology199837121553156110.1016/S0028‑3908(98)00141‑59886678
    [Google Scholar]
  90. Gama MarquesJ. BentoA. Schizophrenia: The great imitated by many great imitators and small imitators.J. Clin. Neurosci.2020807910.1016/j.jocn.2020.08.00233099372
    [Google Scholar]
  91. Gama MarquesJ. Still regarding schizophrenia, secondary schizophrenia, pseudo-schizophrenia, and schizophrenia-like psychosis.Acta Med. Port.202235650710.20344/amp.1820935523150
    [Google Scholar]
  92. TorreyE.F. YolkenR.H. Schizophrenia as a pseudogenetic disease: A call for more gene-environmental studies.Psychiatry Res.201927814615010.1016/j.psychres.2019.06.00631200193
    [Google Scholar]
  93. TorreyE.F. Did the human genome project affect research on Schizophrenia?Psychiatry Res.202433311569110.1016/j.psychres.2023.11569138219345
    [Google Scholar]
  94. HermannD. SartoriusA. WelzelH. WalterS. SkoppG. EndeG. MannK. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users.Biol. Psychiatry200761111281128910.1016/j.biopsych.2006.08.02717239356
    [Google Scholar]
  95. MatochikJ.A. EldrethD.A. CadetJ.L. BollaK.I. Altered brain tissue composition in heavy marijuana users.Drug Alcohol Depend.2005771233010.1016/j.drugalcdep.2004.06.01115607838
    [Google Scholar]
  96. YoshiokaM. TanakaK. MiyazakiI. FujitaN. HigashiY. AsanumaM. OgawaN. The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals.Neurosci. Res.200243325926710.1016/S0168‑0102(02)00040‑812103444
    [Google Scholar]
  97. JuarezB. HanM.H. Diversity of dopaminergic neural circuits in response to drug exposure.Neuropsychopharmacology201641102424244610.1038/npp.2016.3226934955
    [Google Scholar]
  98. MerlioJ.P. ErnforsP. KokaiaZ. MiddlemasD.S. BengzonJ. KokaiaM. SmithM.L. SiesjöB.K. HunterT. LindvallO. PerssonH. Increased production of the TrkB protein tyrosine kinase receptor after brain insults.Neuron199310215116410.1016/0896‑6273(93)90307‑D8439408
    [Google Scholar]
  99. LinP.H. KuoL.T. LuhH.T. The roles of neurotrophins in traumatic brain injury.Life (Basel)20211212610.3390/life1201002635054419
    [Google Scholar]
  100. HymanC. HoferM. BardeY.A. JuhaszM. YancopoulosG.D. SquintoS.P. LindsayR.M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra.Nature1991350631523023210.1038/350230a02005978
    [Google Scholar]
  101. ZhuY. ChenX. LiuZ. PengY.P. QiuY.H. Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures.Int. J. Mol. Sci.20151712510.3390/ijms1701002526729090
    [Google Scholar]
  102. FordM.M. GeorgeB.E. Van LaarV.S. HolleranK.M. NaidooJ. HadaczekP. VanderhooftL.E. PeckE.G. DawesM.H. OhnoK. BringasJ. McBrideJ.L. SamaranchL. ForsayethJ.R. JonesS.R. GrantK.A. BankiewiczK.S. GDNF gene therapy for alcohol use disorder in male non-human primates.Nat. Med.20232982030204010.1038/s41591‑023‑02463‑937580533
    [Google Scholar]
  103. VillegasS.N. NjaineB. LindenR. CarriN.G. Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways.Brain Res. Bull.2006711-311612610.1016/j.brainresbull.2006.08.01417113937
    [Google Scholar]
  104. TripathiR.K. GoyalL. SinghS. Potential therapeutic approach using aromatic l-amino acid decarboxylase and glial-derived neurotrophic factor therapy targeting putamen in parkinson’s disease.Curr. Gene Ther.202424427829110.2174/011566523228384224010207300238310455
    [Google Scholar]
/content/journals/cn/10.2174/011570159X340124241205095729
Loading
/content/journals/cn/10.2174/011570159X340124241205095729
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test