Skip to content
2000
image of Fast Declining Prediction in Alzheimer's Disease from Early Clinical Assessment

Abstract

Intoduction

The heterogenicity in Alzheimer's Disease (AD) progression hinders individual prognosis. The present work is an observational 2-year longitudinal study in patients with mild cognitive impairment due to AD (n= 52, with positive CSF biomarkers). The aim of this study is to predict which patients are at risk of fast progression. For this, 3 neuropsychological tests based on different domains (clinical dementia, cognition, delayed memory) and the sum of them were used.

Methods

The tests were performed at diagnosis time (T1) and two years after the diagnosis time (T2). Then, the corresponding progression models were developed using each individual test and their sum as a variable response.

Results

As a result, the model based on cognition status to predict fast decline (differences in the Z score (T2-T1) <1.5 were considered fast declining) provided satisfactory performance (AUC 0.74, 83.3% of sensibility and 70.2% of specificity); the models based on clinical dementia and delayed memory to predict fast declining showed low AUC and sensitivity. Nevertheless, the model based on the sum of the 3 tests showed the highest AUC (0.79), low sensitivity (63.6%), and high specificity.

Conclusion

The developed progression models could provide useful information to clinicians and AD patients regarding their fast/normal decline in general or specific domains.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X332930240925095423
2024-10-28
2024-11-26
Loading full text...

Full text loading...

References

  1. Hodson R. Alzheimer’s disease. Nature 2018 559 7715 S1 S1 10.1038/d41586‑018‑05717‑6 30046078
    [Google Scholar]
  2. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015 11 3 332 384 10.1016/j.jalz.2015.02.003 25984581
    [Google Scholar]
  3. Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004 430 7000 631 639 10.1038/nature02621 15295589
    [Google Scholar]
  4. Hyman B.T. Phelps C.H. Beach T.G. Bigio E.H. Cairns N.J. Carrillo M.C. Dickson D.W. Duyckaerts C. Frosch M.P. Masliah E. Mirra S.S. Nelson P.T. Schneider J.A. Thal D.R. Thies B. Trojanowski J.Q. Vinters H.V. Mon-tine T.J. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012 8 1 1 13 10.1016/j.jalz.2011.10.007 22265587
    [Google Scholar]
  5. Long J.M. Holtzman D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019 179 2 312 339 10.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  6. Hanon O. Vidal J.S. Lehmann S. Bombois S. Allinquant B. Tréluyer J.M. Gelé P. Delmaire C. Blanc F. Mangin J.F. Buée L. Touchon J. Hugon J. Vellas B. Galbrun E. Benetos A. Berrut G. Paillaud E. Wallon D. Castelnovo G. Volpe-Gillot L. Paccalin M. Robert P.H. Godefroy O. Dantoine T. Camus V. Belmin J. Vandel P. Novella J.L. Duron E. Rigaud A.S. Schraen-Maschke S. Gabelle A. Plasma amyloid levels within the Alzheimer’s process and correlations with central biomarkers. Alzheimers Dement. 2018 14 7 858 868 10.1016/j.jalz.2018.01.004 29458036
    [Google Scholar]
  7. Park J.C. Han S.H. Yi D. Byun M.S. Lee J.H. Jang S. Ko K. Jeon S.Y. Lee Y.S. Kim Y.K. Lee D.Y. Mook-Jung I. Plasma tau/amyloid-β1–42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain 2019 142 3 771 786 10.1093/brain/awy347 30668647
    [Google Scholar]
  8. Jin M. Shepardson N. Yang T. Chen G. Walsh D. Selkoe D.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA 2011 108 14 5819 5824 10.1073/pnas.1017033108 21421841
    [Google Scholar]
  9. Price J.L. McKeel D.W. Jr Buckles V.D. Roe C.M. Xiong C. Grundman M. Hansen L.A. Petersen R.C. Pa-risi J.E. Dickson D.W. Smith C.D. Davis D.G. Schmitt F.A. Markesbery W.R. Kaye J. Kurlan R. Hulette C. Kurland B.F. Higdon R. Kukull W. Morris J.C. Neuropa-thology of nondemented aging: Presumptive evidence for pre-clinical Alzheimer disease. Neurobiol. Aging 2009 30 7 1026 1036 10.1016/j.neurobiolaging.2009.04.002 19376612
    [Google Scholar]
  10. Knopman D.S. Parisi J.E. Salviati A. Floriach-Robert M. Boeve B.F. Ivnik R.J. Smith G.E. Dickson D.W. John-son K.A. Petersen L.E. McDonald W.C. Braak H. Pe-tersen R.C. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 2003 62 11 1087 1095 10.1093/jnen/62.11.1087 14656067
    [Google Scholar]
  11. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  12. Olsson B. Lautner R. Andreasson U. Öhrfelt A. Porte-lius E. Bjerke M. Hölttä M. Rosén C. Olsson C. Strobel G. Wu E. Dakin K. Petzold M. Blennow K. Zetterberg H. CSF and blood biomarkers for the diagnosis of Alz-heimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016 15 7 673 684 10.1016/S1474‑4422(16)00070‑3 27068280
    [Google Scholar]
  13. Hansson O. Seibyl J. Stomrud E. Zetterberg H. Trojan-owski J.Q. Bittner T. Lifke V. Corradini V. Eichenlaub U. Batrla R. Buck K. Zink K. Rabe C. Blennow K. Shaw L.M. CSF biomarkers of Alzheimer’s disease concord with amyloid‐β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018 14 11 1470 1481 10.1016/j.jalz.2018.01.010 29499171
    [Google Scholar]
  14. Scheltens P. Blennow K. Breteler M.M.B. de Strooper B. Frisoni G.B. Salloway S. Van der Flier W.M. Alzheimer’s disease. Lancet 2016 388 10043 505 517 10.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  15. Karikari T.K. Pascoal T.A. Ashton N.J. Janelidze S. Benedet A.L. Rodriguez J.L. Chamoun M. Savard M. Kang M.S. Therriault J. Schöll M. Massarweh G. Soucy J.P. Höglund K. Brinkmalm G. Mattsson N. Palmqvist S. Gauthier S. Stomrud E. Zetterberg H. Hansson O. Rosa-Neto P. Blennow K. Blood phosphorylated tau 181 as a bi-omarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospec-tive cohorts. Lancet Neurol. 2020 19 5 422 433 10.1016/S1474‑4422(20)30071‑5 32333900
    [Google Scholar]
  16. Hardy J. Selkoe D.J. The amyloid hypothesis of Alz-heimer’s disease: Progress and problems on the road to ther-apeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  17. Selkoe D.J. Hardy J. The amyloid hypothesis of Alz-heimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  18. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Feldman H.H. Frisoni G.B. Hampel H. Jagust W.J. John-son K.A. Knopman D.S. Petersen R.C. Scheltens P. Sper-ling R.A. Dubois B. A/T/N: An unbiased descriptive classi-fication scheme for Alzheimer disease biomarkers. Neurology 2016 87 5 539 547 10.1212/WNL.0000000000002923 27371494
    [Google Scholar]
  19. Sperling R.A. Rentz D.M. Johnson K.A. Karlawish J. Donohue M. Salmon D.P. Aisen P. The A4 study: Stop-ping AD before symptoms begin? Sci. Transl. Med. 2014 6 228 228fs13 10.1126/scitranslmed.3007941 24648338
    [Google Scholar]
  20. Sperling R.A. Aisen P.S. Beckett L.A. Bennett D.A. Craft S. Fagan A.M. Iwatsubo T. Jack C.R. Jr Kaye J. Mon-tine T.J. Park D.C. Reiman E.M. Rowe C.C. Siemers E. Stern Y. Yaffe K. Carrillo M.C. Thies B. Morrison-Bogorad M. Wagster M.V. Phelps C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommenda-tions from the National Institute on Aging‐Alzheimer’s Asso-ciation workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 280 292 10.1016/j.jalz.2011.03.003 21514248
    [Google Scholar]
  21. Albert M.S. DeKosky S.T. Dickson D. Dubois B. Feld-man H.H. Fox N.C. Gamst A. Holtzman D.M. Jagust W.J. Petersen R.C. Snyder P.J. Carrillo M.C. Thies B. Phelps C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 270 279 10.1016/j.jalz.2011.03.008 21514249
    [Google Scholar]
  22. Davis M. O’Connell T. Johnson S. Cline S. Merikle E. Martenyi F. Simpson K. Estimating Alzheimer’s disease progression rates from normal cognition through mild cogni-tive impairment and stages of dementia. Curr. Alzheimer Res. 2018 15 8 777 788 10.2174/1567205015666180119092427 29357799
    [Google Scholar]
  23. Hampel H. Frank R. Broich K. Teipel S.J. Katz R.G. Hardy J. Herholz K. Bokde A.L.W. Jessen F. Hoessler Y.C. Sanhai W.R. Zetterberg H. Woodcock J. Blennow K. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 2010 9 7 560 574 10.1038/nrd3115 20592748
    [Google Scholar]
  24. Mattsson N. Cullen N.C. Andreasson U. Zetterberg H. Blennow K. Association between longitudinal plasma neuro-filament light and neurodegeneration in patients with Alz-heimer disease. JAMA Neurol. 2019 76 7 791 799 10.1001/jamaneurol.2019.0765 31009028
    [Google Scholar]
  25. Soldan A. Pettigrew C. Cai Q. Wang M.C. Moghekar A.R. O’Brien R.J. Selnes O.A. Albert M.S. Hypothetical preclinical Alzheimer disease groups and longitudinal cogni-tive change. JAMA Neurol. 2016 73 6 698 705 10.1001/jamaneurol.2016.0194 27064267
    [Google Scholar]
  26. Rentz D.M. Parra Rodriguez M.A. Amariglio R. Stern Y. Sperling R. Ferris S. Promising developments in neuropsy-chological approaches for the detection of preclinical Alz-heimer’s disease: A selective review. Alzheimers Res. Ther. 2013 5 6 58 10.1186/alzrt222 24257331
    [Google Scholar]
  27. Parnetti L. Chipi E. Salvadori N. D’Andrea K. Eusebi P. Prevalence and risk of progression of preclinical Alzheimer’s disease stages: A systematic review and meta-analysis. Alzheimers Res. Ther. 2019 11 1 7 10.1186/s13195‑018‑0459‑7 30646955
    [Google Scholar]
  28. Amariglio R.E. Becker J.A. Carmasin J. Wadsworth L.P. Lorius N. Sullivan C. Maye J.E. Gidicsin C. Pepin L.C. Sperling R.A. Johnson K.A. Rentz D.M. Subjective cogni-tive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 2012 50 12 2880 2886 10.1016/j.neuropsychologia.2012.08.011 22940426
    [Google Scholar]
  29. Langbaum J.B. Hendrix S.B. Ayutyanont N. Chen K. Fleisher A.S. Shah R.C. Barnes L.L. Bennett D.A. Tariot P.N. Reiman E.M. An empirically derived composite cogni-tive test score with improved power to track and evaluate treatments for preclinical Alzheimer’s disease. Alzheimers Dement. 2014 10 6 666 674 10.1016/j.jalz.2014.02.002 24751827
    [Google Scholar]
  30. Morris J.C. Edland S. Clark C. Galasko D. Koss E. Mohs R. van Belle G. Fillenbaum G. Heyman A. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part IV. Rates of cognitive change in the longitudi-nal assessment of probable Alzheimer’s disease. Neurology 1993 43 12 2457 2465 10.1212/WNL.43.12.2457 8255439
    [Google Scholar]
  31. Heyman A. Peterson B. Fillenbaum G. Pieper C. Predic-tors of time to institutionalization of patients with Alzheimer’s disease. Neurology 1997 48 5 1304 1309 10.1212/WNL.48.5.1304 9153462
    [Google Scholar]
  32. Brodaty H. Connors M.H. Xu J. Woodward M. Ames D. Predictors of institutionalization in dementia: A three year longitudinal study. J. Alzheimers Dis. 2014 40 1 221 226 10.3233/JAD‑131850 24448780
    [Google Scholar]
  33. Carcaillon L. Pérès K. Péré J.J. Helmer C. Orgogozo J.M. Dartigues J.F. Fast cognitive decline at the time of de-mentia diagnosis: a major prognostic factor for survival in the community. Dement. Geriatr. Cogn. Disord. 2007 23 6 439 445 10.1159/000102017 17476100
    [Google Scholar]
  34. Barocco F. Spallazzi M. Concari L. Gardini S. Pelosi A. Caffarra P. The progression of Alzheimer’s disease: Are fast decliners really fast? A four-year follow-up. J. Alzheimers Dis. 2017 57 3 775 786 10.3233/JAD‑161264 28304306
    [Google Scholar]
  35. Peña-Bautista C. Álvarez-Sánchez L. Pascual R. Moreno M.J. Baquero M. Cháfer-Pericás C. Clinical usefulness of cerebrospinal fluid biomarkers in Alzheimer’s disease. Eur. J. Clin. Invest. 2023 53 3 e13910 10.1111/eci.13910 36401799
    [Google Scholar]
  36. O’Bryant S.E. Lacritz L.H. Hall J. Waring S.C. Chan W. Khodr Z.G. Massman P.J. Hobson V. Cullum C.M. Vali-dation of the new interpretive guidelines for the clinical de-mentia rating scale sum of boxes score in the national Alz-heimer’s coordinating center database. Arch. Neurol. 2010 67 6 746 749 10.1001/archneurol.2010.115 20558394
    [Google Scholar]
  37. Huang H.C. Tseng Y.M. Chen Y.C. Chen P.Y. Chiu H.Y. Diagnostic accuracy of the Clinical Dementia Rating Scale for detecting mild cognitive impairment and dementia: A bivariate meta‐analysis. Int. J. Geriatr. Psychiatry 2021 36 2 239 251 10.1002/gps.5436 32955146
    [Google Scholar]
  38. Li Y. Xiong C. Aschenbrenner A.J. Chang C.H. Weiner M.W. Nosheny R.L. Mungas D. Bateman R.J. Hassen-stab J. Moulder K.L. Morris J.C. Item response theory analysis of the clinical dementia rating. Alzheimers Dement. 2021 17 3 534 542 10.1002/alz.12210 33215873
    [Google Scholar]
  39. Tsoi K.K.F. Chan J.Y.C. Hirai H.W. Wong S.Y.S. Kwok T.C.Y. Cognitive tests to detect dementia. JAMA Intern. Med. 2015 175 9 1450 1458 10.1001/jamainternmed.2015.2152 26052687
    [Google Scholar]
  40. Mitchell A.J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J. Psychiatr. Res. 2009 43 4 411 431 10.1016/j.jpsychires.2008.04.014 18579155
    [Google Scholar]
  41. Muntal Encinas S. Gramunt-Fombuena N. Badenes Guia D. Casas Hernanz L. Aguilar Barbera M. Spanish transla-tion and adaptation of the repeatable battery for the assess-ment of neuropsychological status (RBANS) Form A in a pilot sample. Neurologia 2012 27 9 531 546 10.1016/j.nrl.2011.07.006 21906852
    [Google Scholar]
  42. Freilich B.M. Hyer L.A. Relation of the repeatable battery for assessment of neuropsychological status to measures of daily functioning in dementia. Psychol. Rep. 2007 101 1 119 129 10.2466/pr0.101.1.119‑129 17958116
    [Google Scholar]
  43. Duff K. Humphreysclark J. Obryant S. Mold J. Schiffer R. Sutker P. Utility of the RBANS in detecting cognitive im-pairment associated with Alzheimer’s disease: Sensitivity, specificity, and positive and negative predictive powers. Arch. Clin. Neuropsychol. 2008 23 5 603 612 10.1016/j.acn.2008.06.004 18639437
    [Google Scholar]
  44. Yin L. Ren Y. Wang X. Li Y. Hou T. Liu K. Cong L. Zhang Q. Wang Y. Jiang Z. Du Y. The power of the func-tional activities questionnaire for screening dementia in rural‐dwelling older adults at high‐risk of cognitive impairment. Psychogeriatrics 2020 20 4 427 436 10.1111/psyg.12524 32092787
    [Google Scholar]
  45. Potashman M. Pang M. Tahir M. Shahraz S. Dichter S. Perneczky R. Nolte S. Psychometric properties of the Alz-heimer’s disease cooperative study - activities of daily living for mild cognitive impairment (ADCS-MCI-ADL) scale: A post hoc analysis of the ADCS ADC-008 trial. BMC Geriatr. 2023 23 1 124 10.1186/s12877‑022‑03527‑0 36879199
    [Google Scholar]
  46. Parmelee P.A. Katz I.R. Geriatric Depression Scale; To the editor J Am Geriatr Soc 1990 38 12 1379 10.1111/j.1532‑5415.1990.tb03461.x
    [Google Scholar]
  47. Reitz C. Mayeux R. Alzheimer disease: Epidemiology, diag-nostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014 88 4 640 651 10.1016/j.bcp.2013.12.024 24398425
    [Google Scholar]
  48. Kunkle B.W. Grenier-Boley B. Sims R. Bis J.C. Damotte V. Naj A.C. Boland A. Vronskaya M. van der Lee S.J. Amlie-Wolf A. Bellenguez C. Frizatti A. Chouraki V. Martin E.R. Sleegers K. Badarinarayan N. Jakobsdottir J. Hamilton-Nelson K.L. Moreno-Grau S. Olaso R. Ray-bould R. Chen Y. Kuzma A.B. Hiltunen M. Morgan T. Ahmad S. Vardarajan B.N. Epelbaum J. Hoffmann P. Boada M. Beecham G.W. Garnier J.G. Harold D. Fitzpat-rick A.L. Valladares O. Moutet M.L. Gerrish A. Smith A.V. Qu L. Bacq D. Denning N. Jian X. Zhao Y. Del Zompo M. Fox N.C. Choi S.H. Mateo I. Hughes J.T. Adams H.H. Malamon J. Sanchez-Garcia F. Patel Y. Brody J.A. Dombroski B.A. Naranjo M.C.D. Daniilidou M. Eiriksdottir G. Mukherjee S. Wallon D. Uphill J. Aspelund T. Cantwell L.B. Garzia F. Galimberti D. Ho-fer E. Butkiewicz M. Fin B. Scarpini E. Sarnowski C. Bush W.S. Meslage S. Kornhuber J. White C.C. Song Y. Barber R.C. Engelborghs S. Sordon S. Voijnovic D. Ad-ams P.M. Vandenberghe R. Mayhaus M. Cupples L.A. Albert M.S. De Deyn P.P. Gu W. Himali J.J. Beekly D. Squassina A. Hartmann A.M. Orellana A. Blacker D. Rodriguez-Rodriguez E. Lovestone S. Garcia M.E. Doody R.S. Munoz-Fernadez C. Sussams R. Lin H. Fairchild T.J. Benito Y.A. Holmes C. Karamujić-Čomić H. Frosch M.P. Thonberg H. Maier W. Roshchupkin G. Ghetti B. Giedraitis V. Kawalia A. Li S. Huebinger R.M. Kilander L. Moebus S. Hernández I. Kamboh M.I. Brundin R. Turton J. Yang Q. Katz M.J. Concari L. Lord J. Beiser A.S. Keene C.D. Helisalmi S. Kloszewska I. Kukull W.A. Koivisto A.M. Lynch A. Tarraga L. Larson E.B. Haapasalo A. Lawlor B. Mosley T.H. Lipton R.B. Sol-frizzi V. Gill M. Longstreth W.T. Jr Montine T.J. Frisar-di V. Diez-Fairen M. Rivadeneira F. Petersen R.C. Dera-mecourt V. Alvarez I. Salani F. Ciaramella A. Boerwin-kle E. Reiman E.M. Fievet N. Rotter J.I. Reisch J.S. Hanon O. Cupidi C. Andre Uitterlinden A.G. Royall D.R. Dufouil C. Maletta R.G. de Rojas I. Sano M. Brice A. Cecchetti R. George-Hyslop P.S. Ritchie K. Tsolaki M. Tsuang D.W. Dubois B. Craig D. Wu C.K. Soininen H. Avramidou D. Albin R.L. Fratiglioni L. Germanou A. Apostolova L.G. Keller L. Koutroumani M. Arnold S.E. Panza F. Gkatzima O. Asthana S. Hannequin D. White-head P. Atwood C.S. Caffarra P. Hampel H. Quintela I. Carracedo Á. Lannfelt L. Rubinsztein D.C. Barnes L.L. Pasquier F. Frölich L. Barral S. McGuinness B. Beach T.G. Johnston J.A. Becker J.T. Passmore P. Bigio E.H. Schott J.M. Bird T.D. Warren J.D. Boeve B.F. Lupton M.K. Bowen J.D. Proitsi P. Boxer A. Powell J.F. Burke J.R. Kauwe J.S.K. Burns J.M. Mancuso M. Buxbaum J.D. Bonuccelli U. Cairns N.J. McQuillin A. Cao C. Liv-ingston G. Carlson C.S. Bass N.J. Carlsson C.M. Hardy J. Carney R.M. Bras J. Carrasquillo M.M. Guerreiro R. Allen M. Chui H.C. Fisher E. Masullo C. Crocco E.A. DeCarli C. Bisceglio G. Dick M. Ma L. Duara R. Graff-Radford N.R. Evans D.A. Hodges A. Faber K.M. Scher-er M. Fallon K.B. Riemenschneider M. Fardo D.W. Heun R. Farlow M.R. Kölsch H. Ferris S. Leber M. Foroud T.M. Heuser I. Galasko D.R. Giegling I. Gearing M. Hüll M. Geschwind D.H. Gilbert J.R. Morris J. Green R.C. Mayo K. Growdon J.H. Feulner T. Hamilton R.L. Harrell L.E. Drichel D. Honig L.S. Cushion T.D. Huentelman M.J. Hollingworth P. Hulette C.M. Hyman B.T. Marshall R. Jarvik G.P. Meggy A. Abner E. Men-zies G.E. Jin L.W. Leonenko G. Real L.M. Jun G.R. Baldwin C.T. Grozeva D. Karydas A. Russo G. Kaye J.A. Kim R. Jessen F. Kowall N.W. Vellas B. Kramer J.H. Vardy E. LaFerla F.M. Jöckel K.H. Lah J.J. Dichgans M. Leverenz J.B. Mann D. Levey A.I. Picker-ing-Brown, S.; Lieberman, A.P.; Klopp, N.; Lunetta, K.L.; Wichmann, H.E.; Lyketsos, C.G.; Morgan, K.; Marson, D.C.; Brown, K.; Martiniuk, F.; Medway, C.; Mash, D.C.; Nöthen, M.M.; Masliah, E.; Hooper, N.M.; McCormick, W.C.; Daniele, A.; McCurry, S.M.; Bayer, A.; McDavid, A.N.; Gallacher, J.; McKee, A.C.; van den Bussche, H.; Mesulam, M.; Brayne, C.; Miller, B.L.; Riedel-Heller, S.; Miller, C.A.; Miller, J.W.; Al-Chalabi, A.; Morris, J.C.; Shaw, C.E.; Myers, A.J.; Wiltfang, J.; O’Bryant, S.; Olichney, J.M.; Alvarez, V.; Parisi, J.E.; Sin-gleton, A.B.; Paulson, H.L.; Collinge, J.; Perry, W.R.; Mead, S.; Peskind, E.; Cribbs, D.H.; Rossor, M.; Pierce, A.; Ryan, N.S.; Poon, W.W.; Nacmias, B.; Potter, H.; Sorbi, S.; Quinn, J.F.; Sacchinelli, E.; Raj, A.; Spalletta, G.; Raskind, M.; Caltagirone, C.; Bossù, P.; Orfei, M.D.; Reisberg, B.; Clarke, R.; Reitz, C.; Smith, A.D.; Ringman, J.M.; Warden, D.; Rob-erson, E.D.; Wilcock, G.; Rogaeva, E.; Bruni, A.C.; Rosen, H.J.; Gallo, M.; Rosenberg, R.N.; Ben-Shlomo, Y.; Sager, M.A.; Mecocci, P.; Saykin, A.J.; Pastor, P.; Cuccaro, M.L.; Vance, J.M.; Schneider, J.A.; Schneider, L.S.; Slifer, S.; See-ley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tang, M.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C.E.; Yu, L.; Saba, Y.; Pilotto, A.; Bullido, M.J.; Peters, O.; Crane, P.K.; Bennett, D.; Bosco, P.; Coto, E.; Boccardi, V.; De Jager, P.L.; Lleo, A.; Warner, N.; Lopez, O.L.; Ingelsson, M.; Deloukas, P.; Cruchaga, C.; Graff, C.; Gwilliam, R.; Fornage, M.; Goate, A.M.; Sanchez-Juan, P.; Kehoe, P.G.; Amin, N.; Ertekin-Taner, N.; Berr, C.; Debette, S.; Love, S.; Launer, L.J.; Younkin, S.G.; Dartigues, J.F.; Cor-coran, C.; Ikram, M.A.; Dickson, D.W.; Nicolas, G.; Campion, D.; Tschanz, J.; Schmidt, H.; Hakonarson, H.; Clarimon, J.; Munger, R.; Schmidt, R.; Farrer, L.A.; Van Broeckhoven, C.; C O’Donovan, M.; DeStefano, A.L.; Jones, L.; Haines, J.L.; Deleuze, J.F.; Owen, M.J.; Gudnason, V.; Mayeux, R.; Escott-Price, V.; Psaty, B.M.; Ramirez, A.; Wang, L.S.; Ruiz, A.; van Duijn, C.M.; Holmans, P.A.; Seshadri, S.; Williams, J.; Amouyel, P.; Schellenberg, G.D.; Lambert, J.C.; Pericak-Vance, M.A. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, im-munity and lipid processing. Nat. Genet. 2019 51 3 414 430 10.1038/s41588‑019‑0358‑2 30820047
    [Google Scholar]
  49. Hamelin L. Lagarde J. Dorothée G. Potier M.C. Corlier F. Kuhnast B. Caillé F. Dubois B. Fillon L. Chupin M. Bottlaender M. Sarazin M. Distinct dynamic profiles of mi-croglial activation are associated with progression of Alz-heimer’s disease. Brain 2018 141 6 1855 1870 10.1093/brain/awy079 29608645
    [Google Scholar]
  50. Monsell S.E. Mock C. Fardo D.W. Bertelsen S. Cairns N.J. Roe C.M. Ellingson S.R. Morris J.C. Goate A.M. Kukull W.A. Genetic comparison of symptomatic and asymptomatic persons with Alzheimer disease neuropatholo-gy. Alzheimer Dis. Assoc. Disord. 2017 31 3 232 238 10.1097/WAD.0000000000000179 27849641
    [Google Scholar]
  51. Medina M. Khachaturian Z.S. Rossor M. Avila J. Ce-dazo-Minguez A. Toward common mechanisms for risk fac-tors in Alzheimer’s syndrome. Alzheimers Dement. (N. Y.) 2017 3 4 571 578 10.1016/j.trci.2017.08.009 29124116
    [Google Scholar]
  52. Vlassenko A.G. McCue L. Jasielec M.S. Su Y. Gordon B.A. Xiong C. Holtzman D.M. Benzinger T.L.S. Morris J.C. Fagan A.M. Imaging and cerebrospinal fluid biomarkers in early preclinical alzheimer disease. Ann. Neurol. 2016 80 3 379 387 10.1002/ana.24719 27398953
    [Google Scholar]
  53. Hanseeuw B.J. Betensky R.A. Jacobs H.I.L. Schultz A.P. Sepulcre J. Becker J.A. Cosio D.M.O. Farrell M. Quiroz Y.T. Mormino E.C. Buckley R.F. Papp K.V. Amariglio R.A. Dewachter I. Ivanoiu A. Huijbers W. Hedden T. Marshall G.A. Chhatwal J.P. Rentz D.M. Sperling R.A. Johnson K. Association of amyloid and tau with cognition in preclinical Alzheimer disease. JAMA Neurol. 2019 76 8 915 924 10.1001/jamaneurol.2019.1424 31157827
    [Google Scholar]
  54. Fagan A.M. Roe C.M. Xiong C. Mintun M.A. Morris J.C. Holtzman D.M. Cerebrospinal fluid tau/β-amyloid(42) ratio as a prediction of cognitive decline in nondemented old-er adults. Arch. Neurol. 2007 64 3 343 349 10.1001/archneur.64.3.noc60123 17210801
    [Google Scholar]
  55. Roe C.M. Ances B.M. Head D. Babulal G.M. Stout S.H. Grant E.A. Hassenstab J. Xiong C. Holtzman D.M. Ben-zinger T.L.S. Schindler S.E. Fagan A.M. Morris J.C. Inci-dent cognitive impairment: Longitudinal changes in molecular, structural and cognitive biomarkers. Brain 2018 141 11 3233 3248 10.1093/brain/awy244 30304397
    [Google Scholar]
  56. Varesi A. Carrara A. Pires V.G. Floris V. Pierella E. Savioli G. Prasad S. Esposito C. Ricevuti G. Chirumbolo S. Pascale A. Blood-based biomarkers for Alzheimer’s dis-ease diagnosis and progression: An overview. Cells 2022 11 8 1367 10.3390/cells11081367 35456047
    [Google Scholar]
  57. Bai B. Wang X. Li Y. Chen P.C. Yu K. Dey K.K. Yar-bro J.M. Han X. Lutz B.M. Rao S. Jiao Y. Sifford J.M. Han J. Wang M. Tan H. Shaw T.I. Cho J.H. Zhou S. Wang H. Niu M. Mancieri A. Messler K.A. Sun X. Wu Z. Pagala V. High A.A. Bi W. Zhang H. Chi H. Haroutunian V. Zhang B. Beach T.G. Yu G. Peng J. Deep multilayer brain proteomics identifies molecular net-works in Alzheimer’s disease progression. Neuron 2020 105 6 975 991.e7 10.1016/j.neuron.2019.12.015 31926610
    [Google Scholar]
  58. Teunissen C.E. Verberk I.M.W. Thijssen E.H. Vermunt L. Hansson O. Zetterberg H. van der Flier W.M. Mielke M.M. del Campo M. Blood-based biomarkers for Alz-heimer’s disease: Towards clinical implementation. Lancet Neurol. 2022 21 1 66 77 10.1016/S1474‑4422(21)00361‑6 34838239
    [Google Scholar]
  59. Haaksma M.L. Calderón-Larrañaga A. Olde Rikkert M.G.M. Melis R.J.F. Leoutsakos J.M.S. Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int. J. Geriatr. Psychiatry 2018 33 8 1057 1064 10.1002/gps.4893 29761569
    [Google Scholar]
  60. McKhann G. Drachman D. Folstein M. Katzman R. Price D. Stadlan E.M. Clinical diagnosis of Alzheimer’s dis-ease. Neurology 1984 34 7 939 944 10.1212/WNL.34.7.939 6610841
    [Google Scholar]
  61. Eldholm R.S. Barca M.L. Persson K. Knapskog A.B. Kersten H. Engedal K. Selbæk G. Brækhus A. Skovlund E. Saltvedt I. Progression of Alzheimer’s disease: A longitu-dinal study in norwegian memory clinics. J. Alzheimers Dis. 2018 61 3 1221 1232 10.3233/JAD‑170436 29254085
    [Google Scholar]
  62. Wilkosz P.A. Seltman H.J. Devlin B. Weamer E.A. Lopez O.L. DeKosky S.T. Sweet R.A. Trajectories of cog-nitive decline in Alzheimer’s disease. Int. Psychogeriatr. 2010 22 2 281 290 10.1017/S1041610209991001 19781112
    [Google Scholar]
  63. Han L. Cole M. Bellavance F. McCusker J. Primeau F. Tracking cognitive decline in Alzheimer’s disease using the mini-mental state examination: A meta-analysis. Int. Psychogeriatr. 2000 12 2 231 247 10.1017/S1041610200006359 10937543
    [Google Scholar]
  64. Tombaugh T.N. McIntyre N.J. The mini-mental state exam-ination: A comprehensive review. J. Am. Geriatr. Soc. 1992 40 9 922 935 10.1111/j.1532‑5415.1992.tb01992.x 1512391
    [Google Scholar]
  65. Crum R.M. Anthony J.C. Bassett S.S. Folstein M.F. Popu-lation-based norms for the Mini-Mental State Examination by age and educational level. JAMA 1993 269 18 2386 2391 10.1001/jama.1993.03500180078038 8479064
    [Google Scholar]
  66. Mann U.M. Mohr E. Gearing M. Chase T.N. Heterogenei-ty in Alzheimer’s disease: Progression rate segregated by dis-tinct neuropsychological and cerebral metabolic profiles. J. Neurol. Neurosurg. Psychiatry 1992 55 10 956 959 10.1136/jnnp.55.10.956 1431960
    [Google Scholar]
  67. Thalhauser C.J. Komarova N.L. Alzheimer’s disease: Rapid and slow progression. J. R. Soc. Interface 2012 9 66 119 126 10.1098/rsif.2011.0134 21653567
    [Google Scholar]
  68. Sämgård K. Zetterberg H. Blennow K. Hansson O. Minthon L. Londos E. Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int. J. Geriatr. Psychiatry 2010 25 4 403 410 10.1002/gps.2353 19650161
    [Google Scholar]
  69. Degerman Gunnarsson M. Lannfelt L. Ingelsson M. Basun H. Kilander L. High tau levels in cerebrospinal fluid predict rapid decline and increased dementia mortality in Alz-heimer’s disease. Dement. Geriatr. Cogn. Disord. 2014 37 3-4 196 206 10.1159/000355556 24157938
    [Google Scholar]
  70. Degerman Gunnarsson M. Ingelsson M. Blennow K. Basun H. Lannfelt L. Kilander L. High tau levels in cere-brospinal fluid predict nursing home placement and rapid progression in Alzheimer’s disease. Alzheimers Res. Ther. 2016 8 1 22 10.1186/s13195‑016‑0191‑0 27263933
    [Google Scholar]
  71. López-Cuevas R. Baquero-Toledo M. Cuevas-Jiménez A. Martín-Ibáñez N. Pascual-Costa R. Moreno-Monedero M.J. Cañada-Martínez A. Peña-Bautista C. Ferrer-Cairols I. Álvarez-Sánchez L. Cháfer-Pericás C. Prognostic value of cerebrospinal fluid biomarkers in mild cognitive impairment due to Alzheimer disease. Neurologia (English Edition) 2023 38 4 262 269
    [Google Scholar]
  72. Kester M.I. van der Vlies A.E. Blankenstein M.A. Pijnen-burg Y.A.L. van Elk E.J. Scheltens P. van der Flier W.M. CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 2009 73 17 1353 1358 10.1212/WNL.0b013e3181bd8271 19858456
    [Google Scholar]
  73. Wallin Å.K. Blennow K. Zetterberg H. Londos E. Minthon L. Hansson O. CSF biomarkers predict a more ma-lignant outcome in Alzheimer disease. Neurology 2010 74 19 1531 1537 10.1212/WNL.0b013e3181dd4dd8 20458070
    [Google Scholar]
  74. Qian J. Zhang Y. Betensky R.A. Hyman B.T. Serrano-Pozo A. Neuropathology-independent association between APOE genotype and cognitive decline rate in the normal ag-ing-early Alzheimer continuum. Neurol. Genet. 2023 9 1 e200055 10.1212/NXG.0000000000200055 36698453
    [Google Scholar]
  75. Devanand D.P. Pelton G.H. Zamora D. Liu X. Tabert M.H. Goodkind M. Scarmeas N. Braun I. Stern Y. Ma-yeux R. Predictive utility of apolipoprotein E genotype for Alzheimer disease in outpatients with mild cognitive impair-ment. Arch. Neurol. 2005 62 6 975 980 10.1001/archneur.62.6.975 15956169
    [Google Scholar]
  76. Li G. Shofer J.B. Petrie E.C. Yu C.E. Wilkinson C.W. Figlewicz D.P. Shutes-David A. Zhang J. Montine T.J. Raskind M.A. Quinn J.F. Galasko D.R. Peskind E.R. Cer-ebrospinal fluid biomarkers for Alzheimer’s and vascular disease vary by age, gender, and APOE genotype in cognitive-ly normal adults. Alzheimers Res. Ther. 2017 9 1 48 10.1186/s13195‑017‑0271‑9 28673336
    [Google Scholar]
  77. Blom E.S. Giedraitis V. Zetterberg H. Fukumoto H. Blennow K. Hyman B.T. Irizarry M.C. Wahlund L.O. Lannfelt L. Ingelsson M. Rapid progression from mild cog-nitive impairment to Alzheimer’s disease in subjects with ele-vated levels of tau in cerebrospinal fluid and the APOE epsi-lon4/epsilon4 genotype. Dement. Geriatr. Cogn. Disord. 2009 27 458 464 10.1159/000216841 19420940
    [Google Scholar]
/content/journals/cn/10.2174/011570159X332930240925095423
Loading
/content/journals/cn/10.2174/011570159X332930240925095423
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: follow-up ; neuropsychology ; Alzheimer's disease ; prognostic ; biomarker ; early assessment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test