Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

In multiple sclerosis (MS), alongside the physical symptoms, individuals often grapple with anxiety and depressive symptoms as prevalent comorbidity. Mood disturbances, frequently undertreated in clinical practice, significantly impact the quality of life of individuals with MS, exacerbating disability and hindering overall well-being. Furthermore, traditional antidepressant therapies are often associated with adverse events, such as sexual side effect, weight gain, which could limit their use in these patients. Vortioxetine is one of the most innovative antidepressant drugs in the current pharmacopeia. Its pharmacological profile includes serotonin reuptake inhibition, antagonism for hydroxytryptamine (HT) receptors 5-HT3, 5-HT1D and 5-HT7, partial agonism for 5-HT1B, and agonism for 5-HT1A. It has been shown to have a beneficial effect on depression-related cognitive dysfunction, as well as on anxiety, depression, anhedonia and emotional blunting. Recently a potential anti-inflammatory action was also described. Limited clinical studies have specifically explored the efficacy of vortioxetine in treating depressive symptoms in MS. However, extrapolating from existing research in major depressive disorder, it is plausible that vortioxetine's multimodal mechanism could provide a favorable therapeutic approach. This position paper, which summarizes the output of annual clinical meeting held by the DMSTs in MS Italian Study Group, is focused on the possible role that vortioxetine could play as symptomatic treatment (ST) of depressed patients with MS, hypothesizing a direct impact on the clinical course of the disease.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X326862240909105845
2024-09-11
2025-03-27
Loading full text...

Full text loading...

References

  1. PloughmanM. WallackE.M. ChatterjeeT. KirklandM.C. CurtisM.E. Under-treated depression negatively impacts lifestyle behaviors, participation and health-related quality of life among older people with multiple sclerosis.Mult. Scler. Relat. Disord.2020404010191910.1016/j.msard.2019.10191931951860
    [Google Scholar]
  2. PattenS.B. MarrieR.A. CartaM.G. Depression in multiple sclerosis.Int. Rev. Psychiatry201729546347210.1080/09540261.2017.132255528681616
    [Google Scholar]
  3. MayoC.D. LaceyC. GawrylukJ.R. Differences in symptoms of depression between females and males with relapsing-remitting multiple sclerosis.Mult. Scler. Relat. Disord.20215110288410.1016/j.msard.2021.10288433799287
    [Google Scholar]
  4. ZorzonM. ZivadinovR. NasuelliD. UkmarM. BratinaA. TommasiM.A. MucelliR.P. Brnabic-RazmilicO. GropA. BonfigliL. CazzatoG. Depressive symptoms and MRI changes in multiple sclerosis.Eur. J. Neurol.20029549149610.1046/j.1468‑1331.2002.00442.x12220380
    [Google Scholar]
  5. SabatiniU. PozzilliC. PantanoP. KoudriavtsevaT. PadovaniA. MillefioriniE. BiasiC.D. GualdiG.F. SalvettiM. LenziG.L. Involvement of the limbic system in multiple sclerosis patients with depressive disorders.Biol. Psychiatry1996391197097510.1016/0006‑3223(95)00291‑X9162210
    [Google Scholar]
  6. PujolJ. BelloJ. DeusJ. Martí-VilaltaJ.L. CapdevilaA. Lesions in the left arcuate fasciculus region and depressive symptoms in multiple sclerosis.Neurology19974941105111010.1212/WNL.49.4.11059339697
    [Google Scholar]
  7. BakshiR. CzarneckiD. ShaikhZ.A. PrioreR.L. JanardhanV. KaliszkyZ. KinkelP.R. Brain MRI lesions and atrophy are related to depression in multiple sclerosis.Neuroreport20001161153115810.1097/00001756‑200004270‑0000310817583
    [Google Scholar]
  8. FassbenderK. SchmidtR. MößnerR. KischkaU. KühnenJ. SchwartzA. HennericiM. Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: Association with cerebral inflammation.Arch. Neurol.1998551667210.1001/archneur.55.1.669443712
    [Google Scholar]
  9. BallerE.B. SweeneyE.M. CieslakM. Robert-FitzgeraldT. CovitzS.C. MartinM.L. SchindlerM.K. Bar-OrA. ElahiA. LarsenB.S. ManningA.R. MarkowitzC.E. PerroneC.M. RautmanV. SeitzM.M. DetreJ.A. FoxM.D. ShinoharaR.T. SatterthwaiteT.D. Mapping the relationship of white matter lesions to depression in multiple sclerosis.Biol. Psychiatry202495121072108037981178
    [Google Scholar]
  10. PucakM.L. CarrollK.A.L. KerrD.A. KaplinA.L. Neuropsychiatric manifestations of depression in multiple sclerosis: neuroinflammatory, neuroendocrine, and neurotrophic mechanisms in the pathogenesis of immune-mediated depression.Dialogues Clin. Neurosci.20079212513910.31887/DCNS.2007.9.2/mpucak17726912
    [Google Scholar]
  11. BrunoA. DolcettiE. RizzoF.R. FresegnaD. MusellaA. GentileA. De VitoF. CaioliS. GuadalupiL. BullittaS. VanniV. BallettaS. SannaK. ButtariF. StampanoniB.M. CentonzeD. MandolesiG. Inflammation-associated synaptic alterations as shared threads in depression and multiple sclerosis.Front. Cell. Neurosci.20201416910.3389/fncel.2020.00169
    [Google Scholar]
  12. MandolesiG. GentileA. MusellaA. FresegnaD. De VitoF. BullittaS. SepmanH. MarfiaG.A. CentonzeD. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis.Nat. Rev. Neurol.2015111271172410.1038/nrneurol.2015.22226585978
    [Google Scholar]
  13. Diaz-OlavarrietaC. CummingsJ.L. VelazquezJ. Garcia de al CadenaC. Neuropsychiatric manifestations of multiple sclerosis.J. Neuropsychiatry Clin. Neurosci.1999111515710.1176/jnp.11.1.519990556
    [Google Scholar]
  14. BoeschotenR.E. BraamseA.M.J. BeekmanA.T.F. CuijpersP. van OppenP. DekkerJ. UitdehaagB.M.J. Prevalence of depression and anxiety in multiple sclerosis: A systematic review and meta-analysis.J. Neurol. Sci.201737237233134110.1016/j.jns.2016.11.06728017241
    [Google Scholar]
  15. WhitehouseC.E. FiskJ.D. BernsteinC.N. BerriganL.I. BoltonJ.M. GraffL.A. HitchonC.A. MarriottJ.J. PeschkenC.A. SareenJ. WalkerJ.R. StewartS.H. MarrieR.A. KatzA. LixL.M. PattenS.B. SingerA. El-GabalawyR. ZarychanskiR. Comorbid anxiety, depression, and cognition in MS and other immune-mediated disorders.Neurology2019925e406e41710.1212/WNL.000000000000685430635487
    [Google Scholar]
  16. LonginettiE. FrisellT. EnglundS. ReutforsJ. FangF. PiehlF. Risk of depression in multiple sclerosis across disease-modifying therapies.Mult. Scler.202228463264110.1177/1352458521103112834264143
    [Google Scholar]
  17. RossiS. StuderV. MottaC. PolidoroS. PeruginiJ. MacchiaruloG. GiovannettiA.M. Pareja-GutierrezL. CalòA. ColonnaI. FurlanR. MartinoG. CentonzeD. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis.Neurology201789131338134710.1212/WNL.000000000000441128842450
    [Google Scholar]
  18. HildebrandtH. ElingP. A longitudinal study on fatigue, depression, and their relation to neurocognition in multiple sclerosis.J. Clin. Exp. Neuropsychol.201436441041710.1080/13803395.2014.90390024702275
    [Google Scholar]
  19. PeresD. S. RodriguesP. VieroF. T. FrareJ. M. KudsiS. Q. MeiraG. M. TrevisanG. Prevalence of depression and anxiety in the different clinical forms of multiple sclerosis and associations with disability: A systematic review and meta-analysis.Brain Behav Immun. Health.20222410048410.1016/j.bbih.2022.100484
    [Google Scholar]
  20. PearceE.F. MurphyJ.A. Vortioxetine for the treatment of depression.Ann. Pharmacother.201448675876510.1177/106002801452830524676550
    [Google Scholar]
  21. SanchezC. AsinK.E. ArtigasF. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data.Pharmacol. Ther.2015145435710.1016/j.pharmthera.2014.07.00125016186
    [Google Scholar]
  22. SerrettiA. Anhedonia and depressive disorders.Clin. Psychopharmacol. Neurosci.202321340140910.9758/cpn.23.108637424409
    [Google Scholar]
  23. VinckierF. GourionD. MouchabacS. Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners.Eur. Psychiatry2017441810.1016/j.eurpsy.2017.02.48528535406
    [Google Scholar]
  24. di GiannantonioM. MontemitroC. SepedeG. BrunettiM. BaroniG. CorboM. AndersM. TavčarR. MartinottiG. ManzoliL. Agomelatine effectiveness, tolerability, and impact on anhedonia in major depression.J. Clin. Psychopharmacol.201939328829010.1097/JCP.000000000000103830932949
    [Google Scholar]
  25. MartinottiG. PettorrusoM. De BerardisD. VarasanoP.A. Lucidi PressantiG. De RemigisV. ValcheraA. RicciV. Di NicolaM. JaniriL. BiggioG. Di GiannantonioM. Agomelatine increases BDNF serum levels in depressed patients in correlation with the improvement of depressive symptoms.Int. J. Neuropsychopharmacol.2016195pyw00310.1093/ijnp/pyw00326775293
    [Google Scholar]
  26. GargoloffP.D. CorralR. HerbstL. MarquezM. MartinottiG. GargoloffP.R. Effectiveness of agomelatine on anhedonia in depressed patients: An outpatient, open-label, real-world study.Hum. Psychopharmacol.201631641241810.1002/hup.255727859669
    [Google Scholar]
  27. De BerardisD. FornaroM. OrsoliniL. IasevoliF. TomasettiC. de BartolomeisA. SerroniN. De LauretisI. GirinelliG. MazzaM. ValcheraA. CaranoA. VellanteF. MatarazzoI. PernaG. MartinottiG. Di GiannantonioM. Effect of agomelatine treatment on C-reactive protein levels in patients with major depressive disorder: an exploratory study in “real-world,” everyday clinical practice.CNS Spectr.201722434234710.1017/S109285291600057227702411
    [Google Scholar]
  28. BallardE.D. WillsK. LallyN. RichardsE.M. LuckenbaughD.A. WallsT. AmeliR. NiciuM.J. BrutscheN.E. ParkL. ZarateC.A.Jr Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials.J. Affect. Disord.201721819520010.1016/j.jad.2017.04.05728477497
    [Google Scholar]
  29. LallyN. NugentA.C. LuckenbaughD.A. AmeliR. RoiserJ.P. ZarateC.A. Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression.Transl. Psychiatry2014410e469e46910.1038/tp.2014.10525313512
    [Google Scholar]
  30. SansoneR.A.S.L.A. Emotional hyper-reactivity in borderline personality disorder.Psychiatry (Edgmont)201071620
    [Google Scholar]
  31. BlierP. Rational site-directed pharmacotherapy for major depressive disorder.Int. J. Neuropsychopharmacol.2014177997100810.1017/S146114571300040023745670
    [Google Scholar]
  32. FagioliniA. FloreaI. LoftH. ChristensenM.C. Effectiveness of vortioxetine on emotional blunting in patients with major depressive disorder with inadequate response to SSRI/SNRI treatment.J. Affect. Disord.202128347247910.1016/j.jad.2020.11.10633516560
    [Google Scholar]
  33. McIntyreR.S. LophavenS. OlsenC.K. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults.Int. J. Neuropsychopharmacol.201417101557156710.1017/S146114571400054624787143
    [Google Scholar]
  34. MahableshwarkarA.R. ZajeckaJ. JacobsonW. ChenY. KeefeR.S.E. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder.Neuropsychopharmacology20154082025203710.1038/npp.2015.5225687662
    [Google Scholar]
  35. KatonaC. HansenT. OlsenC.K. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder.Int. Clin. Psychopharmacol.201227421522310.1097/YIC.0b013e328354245722572889
    [Google Scholar]
  36. De FilippisS. PuglieseA. ChristensenM.C. RossoG. Di NicolaM. SimonsenK. RenH. Effectiveness of vortioxetine in patients with major depressive disorder in real-world clinical practice in italy: results from the RELIEVE study.Neuropsychiatr. Dis. Treat.2022181665167710.2147/NDT.S37529435971416
    [Google Scholar]
  37. ChokkaP. TvistholmA.H. BougieJ. ClerziusG. EttrupA. Improvements in workplace productivity in working patients with major depressive disorder.J. Occup. Environ. Med.2020623e94e10110.1097/JOM.000000000000180531895735
    [Google Scholar]
  38. BauneB.T. BrignoneM. LarsenK.G. A network meta-analysis comparing effects of various antidepressant classes on the digit symbol substitution test (DSST) as a measure of cognitive dysfunction in patients with major depressive disorder.Int. J. Neuropsychopharmacol.20182129710710.1093/ijnp/pyx07029053849
    [Google Scholar]
  39. BaldwinD.S. ChronesL. FloreaI. NielsenR. NomikosG.G. PaloW. ReinesE. The safety and tolerability of vortioxetine: Analysis of data from randomized placebo-controlled trials and open-label extension studies.J. Psychopharmacol.201630324225210.1177/026988111662844026864543
    [Google Scholar]
  40. AdamoD. CalabriaE. CoppolaN. PecoraroG. MignognaM.D. Vortioxetine as a new frontier in the treatment of chronic neuropathic pain: A review and update.Ther. Adv. Psychopharmacol.202111eCollection.10.1177/2045125321103432034497709
    [Google Scholar]
  41. ZuenaA.R. MafteiD. AlemàG.S. Dal MoroF. LattanziR. CasoliniP. NicolettiF. Multimodal antidepressant vortioxetine causes analgesia in a mouse model of chronic neuropathic pain.Mol. Pain201814eCollection.10.1177/174480691880898730289053
    [Google Scholar]
  42. MicovA.M. TomićM.A. TodorovićM.B. VukovićM.J. PecikozaU.B. JasnicN.I. DjordjevicJ.D. Stepanović-PetrovićR.M. Vortioxetine reduces pain hypersensitivity and associated depression-like behavior in mice with oxaliplatin-induced neuropathy.Prog. Neuropsychopharmacol. Biol. Psychiatry202010310997510.1016/j.pnpbp.2020.10997532464241
    [Google Scholar]
  43. Turan YücelN. KandemirÜ. ÜçelU.İ. Demir ÖzkayÜ. CanÖ.D. Catecholaminergic and cholinergic systems mediate beneficial effect of vortioxetine on diabetes-induced neuropathic pain.Biomedicines2023114113710.3390/biomedicines1104113737189755
    [Google Scholar]
  44. LuY. HoC.S. McIntyreR.S. WangW. HoR.C. Effects of vortioxetine and fluoxetine on the level of brain derived neurotrophic factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats.Brain Res. Bull.20181421710.1016/j.brainresbull.2018.06.00729933036
    [Google Scholar]
  45. WallerJ.A. ChenF. SánchezC. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures.Neuropharmacology201610314315410.1016/j.neuropharm.2015.12.01226702943
    [Google Scholar]
  46. CuomoA. AgugliaA. De BerardisD. VentriglioA. GesiC. FagioliniA. Individualized strategies for depression: Narrative review of clinical profiles responsive to vortioxetine.Ann. Gen. Psychiatry20242312010.1186/s12991‑024‑00505‑138755657
    [Google Scholar]
  47. De BerardisD. FornaroM. AnastasiaA. VellanteF. OlivieriL. RapiniG. SerroniN. OrsoliniL. ValcheraA. CaranoA. TomasettiC. VentriglioA. BustiniM. PompiliM. SerafiniG. PernaG. IasevoliF. MartinottiG. Di GiannantonioM. Adjunctive vortioxetine for SSRI-resistant major depressive disorder: A “real-world” chart review study.Br. J. Psychiatry202042331732110.1590/1516‑4446‑2019‑069032159712
    [Google Scholar]
  48. TalmonM. RossiS. PastoreA. CattaneoC.I. BrunelleschiS. FresuL.G. Vortioxetine exerts anti‐inflammatory and immunomodulatory effects on human monocytes/macrophages.Br. J. Pharmacol.2018175111312410.1111/bph.1407429057467
    [Google Scholar]
  49. TalmonM. ChaudhariR.D. SuryavanshiH. ChowdhuryN. QuaregnaM. PinA. BagchiA. BiswasG. FresuL.G. Design, synthesis and biological evaluation of vortioxetine derivatives as new COX-1/2 inhibitors in human monocytes.Bioorg. Med. Chem.2020282311576010.1016/j.bmc.2020.11576032992247
    [Google Scholar]
  50. SantosG.D. AlonsoL.M.G. CimasH.I. CaboL.I. YáñezB.R. AlonsoR.R. PazG.J.M. CoresB.C. FealP.M.J. ÍñiguezA.M.C. LabandeiraC. GarcíaD.I. Vortioxetine improves depressive symptoms and cognition in Parkinson’s disease patients with major depression: An open-label prospective study.Brain Sci.20221211146610.3390/brainsci1211146636358393
    [Google Scholar]
  51. JeongH.W. YoonK.H. LeeC.H. MoonY.S. KimD.H. Vortioxetine treatment for depression in Alzheimer’s disease: A randomized, double-blind, placebo-controlled study.Clin. Psychopharmacol. Neurosci.202220231131910.9758/cpn.2022.20.2.31135466102
    [Google Scholar]
  52. De MeoE. PortaccioE. GiorgioA. RuanoL. GorettiB. NiccolaiC. PattiF. ChisariC.G. GalloP. GrossiP. GhezziA. RoscioM. MattioliF. StampatoriC. SimoneM. ViterboR.G. BonacchiR. RoccaM.A. De StefanoN. FilippiM. AmatoM.P. Identifying the distinct cognitive phenotypes in multiple sclerosis.JAMA Neurol.202178441442510.1001/jamaneurol.2020.492033393981
    [Google Scholar]
  53. BenedictR.H.B. AmatoM.P. DeLucaJ. GeurtsJ.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues.Lancet Neurol.2020191086087110.1016/S1474‑4422(20)30277‑532949546
    [Google Scholar]
  54. ChristensenM.C. SchmidtS. GrandeI. Effectiveness of vortioxetine in patients with major depressive disorder comorbid with generalized anxiety disorder: Results of the RECONNECT study.J. Psychopharmacol.202236556657710.1177/0269881122109062735499104
    [Google Scholar]
  55. PadovaniA. AntoniniA. BaroneP. BellelliG. FagioliniA. Ferini StrambiL. SorbiS. StocchiF. Exploring depression in Alzheimer’s disease: An Italian Delphi consensus on phenomenology, diagnosis, and management.Neurol. Sci.202344124323433210.1007/s10072‑023‑06891‑w37402937
    [Google Scholar]
  56. CumboE. AdairM. ÅstromD.O. ChristensenM.C. Effectiveness of vortioxetine in patients with major depressive disorder and comorbid Alzheimer’s disease in routine clinical practice: An analysis of a post-marketing surveillance study in South Korea.Front. Aging Neurosci.202314103781610.3389/fnagi.2022.103781636698860
    [Google Scholar]
  57. Gil-SanchezA. CanudesM. ValchevaP. NoguerasL. González-MingotC. HervásJ.V. PeraltaS. SolanaM. BrievaL. Effects of vortioxetine on cognition and fatigue in patients with multiple sclerosis and depression: A case series study.CNS Neurol. Disord. Drug Targets202423339540110.2174/187152732266623032109313336944623
    [Google Scholar]
  58. GilioL. FresegnaD. GentileA. GuadalupiL. SannaK. De VitoF. BallettaS. CaioliS. RizzoF.R. MusellaA. IezziE. MoscatelliA. GalifiG. FantozziR. BellantonioP. FurlanR. FinardiA. VanniV. DolcettiE. BrunoA. ButtariF. MandolesiG. CentonzeD. StampanoniB.M. Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis.Neurobiol. Dis.202217210581710.1016/j.nbd.2022.10581735835361
    [Google Scholar]
  59. MusellaA. FresegnaD. MandolesiG. Vortioxetine for the treatment of inflammation-driven mood alterations in experimental Multiple Sclerosis.Deep Brain Congress in Rome2023
    [Google Scholar]
  60. ChenF. DanladiJ. ArdalanM. NyengaardJ.R. SanchezC. WegenerG. The rat hippocampal gliovascular system following one week vortioxetine and fluoxetine.Eur. Neuropsychopharmacol.202142455610.1016/j.euroneuro.2020.11.00833199100
    [Google Scholar]
  61. AlboniS. BenattiC. CollivaC. RadighieriG. BlomJ.M.C. BrunelloN. TasceddaF. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory cascade.Front. Pharmacol.20211160397910.3389/fphar.2020.60397933613281
    [Google Scholar]
  62. de SouzaA.G. LopesI.S. FilhoA.J.M.C. CavalcanteT.M.B. OliveiraJ.V.S. de CarvalhoM.A.J. de LimaK.A. JucáP.M. MendonçaS.S. MottinM. AndradeC.H. de SousaF.C.F. MacedoD.S. de França FontelesM.M. Neuroprotective effects of dimethyl fumarate against depression-like behaviors via astrocytes and microglia modulation in mice: Possible involvement of the HCAR2/Nrf2 signaling pathway.Naunyn Schmiedebergs Arch. Pharmacol.202239591029104510.1007/s00210‑022‑02247‑x35665831
    [Google Scholar]
  63. HoffmannF.S. HofereiterJ. RübsamenH. MelmsJ. SchwarzS. FaberH. WeberP. PützB. LoleitV. WeberF. HohlfeldR. MeinlE. KrumbholzM. Fingolimod induces neuroprotective factors in human astrocytes.J. Neuroinflammation201512118410.1186/s12974‑015‑0393‑626419927
    [Google Scholar]
  64. ColomboE. BassaniC. De AngelisA. RuffiniF. OttoboniL. ComiG. MartinoG. FarinaC. Siponimod (BAF312) activates Nrf2 while hampering nfκb in human astrocytes, and protects from astrocyte-induced neurodegeneration.Front. Immunol.20201163510.3389/fimmu.2020.00635
    [Google Scholar]
  65. SelkirkJ.V. YanY.G. ChingN. PagetK. HargreavesR. In vitro assessment of the binding and functional responses of ozanimod and its plasma metabolites across human sphingosine 1-phosphate receptors.Eur. J. Pharmacol.202394117544210.1016/j.ejphar.2022.17544236470447
    [Google Scholar]
  66. du JardinK.G. MüllerH.K. SanchezC. WegenerG. ElfvingB. A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex.Eur. J. Pharmacol.2016786293510.1016/j.ejphar.2016.05.02927235984
    [Google Scholar]
  67. ChenF. du JardinK.G. WallerJ.A. SanchezC. NyengaardJ.R. WegenerG. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.Eur. Neuropsychopharmacol.201626223424510.1016/j.euroneuro.2015.12.01826711685
    [Google Scholar]
  68. DolcettiE. BrunoA. AzzoliniF. GilioL. MoscatelliA. De VitoF. PavoneL. IezziE. GambardellaS. GiardinaE. FereseR. ButtariF. RizzoF.R. FurlanR. FinardiA. MusellaA. MandolesiG. GuadalupiL. CentonzeD. StampanoniB.M. The BDNF Val66Met polymorphism (rs6265) modulates inflammation and neurodegeneration in the early phases of multiple sclerosis.Genes (Basel)202213233210.3390/genes1302033235205376
    [Google Scholar]
  69. MoriF. RossiS. SancesarioG. CodecàC. MataluniG. MonteleoneF. ButtariF. KusayanagiH. CastelliM. MottaC. StuderV. BernardiG. KochG. BernardiniS. CentonzeD. Cognitive and cortical plasticity deficits correlate with altered amyloid-β CSF levels in multiple sclerosis.Neuropsychopharmacology201136355956810.1038/npp.2010.18720944553
    [Google Scholar]
  70. ÜnalG. Ö. ErkılınçG. ÖztürkK. H. DoguçD. K. ÖzmenÖ. The beneficial effects of vortioxetine on BDNF, CREB, S100B, β amyloid, and glutamate NR2b receptors in chronic unpredictable mild stress model of depression.Psychopharmacology (Berl).2023240122499251310.1007/s00213‑023‑06445‑0.
    [Google Scholar]
  71. DvojkovicA. NikolacP.M. SagudM. NedicE.G. MihaljevicP.A. SvobS.D. VuksanC.B. TudorL. KusevicZ. KonjevodM. ZivkovicM. JevtovicS. PivacN. Effect of vortioxetine vs. escitalopram on plasma BDNF and platelet serotonin in depressed patients.Prog. Neuropsychopharmacol. Biol. Psychiatry202110511001610.1016/j.pnpbp.2020.11001632534176
    [Google Scholar]
  72. SagudM. PerkovicM.N. DvojkovicA. JaksicN. Vuksan-CusaB. ZivkovicM. KusevicZ. Mihaljevic-PelesA. Pivac, N. Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram.Psychopharmacology (Berl.)202123861575158410.1007/s00213‑021‑05790‑233560444
    [Google Scholar]
  73. Stampanoni BassiM. IezziE. ButtariF. GilioL. SimonelliI. CarboneF. MicilloT. De RosaV. SicaF. FurlanR. FinardiA. FantozziR. StortoM. BellantonioP. PirolloP. Di LemmeS. MusellaA. MandolesiG. CentonzeD. MatareseG. Obesity worsens central inflammation and disability in multiple sclerosis.Mult. Scler.202026101237124610.1177/1352458519853473
    [Google Scholar]
  74. DaganA. GringouzI. KliersI. SegalG. Disability progression in multiple sclerosis is affected by the emergence of comorbid arterial hypertension.J. Clin. Neurol.201612334535010.3988/jcn.2016.12.3.34527273922
    [Google Scholar]
  75. ElsayedO.H. ErcisM. PahwaM. SinghB. Treatment-resistant bipolar depression: Therapeutic trends, challenges and future directions.Neuropsychiatr. Dis. Treat.2022182927294310.2147/NDT.S27350336561896
    [Google Scholar]
  76. KongW. DengH. WanJ. ZhouY. ZhouY. SongB. WangX. Comparative remission rates and tolerability of drugs for generalised anxiety disorder: A systematic review and network meta-analysis of double-blind randomized controlled trials.Front. Pharmacol.20201158085810.3389/fphar.2020.58085833343351
    [Google Scholar]
/content/journals/cn/10.2174/011570159X326862240909105845
Loading
/content/journals/cn/10.2174/011570159X326862240909105845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test