Skip to content
2000
  • ISSN: 1568-0118
  • E-ISSN: 1875-5968

Abstract

Chartreusin and elsamicin A are structurally related antibiotics that bind to GCrich tracts in DNA, with a clear preference for B-DNA over Z-DNA. They inhibit RNA synthesis and cause single-strand scission of DNA via the formation of free radicals. Elsamicin A can also be regarded as the most potent inhibitor of topoisomerase II reported so far. It can inhibit the formation of several DNA-protein complexes. Elsamicin A binding to the P1 and P2 promoter regions of the c-myc oncogene inhibits the binding of the Sp1 transcription factor, thus inhibiting transcription. Despite the pharmacological interest in chartreusin, elsamicin A and their derivatives, there is no experimental data on the structure of their complexes with DNA. This shortcoming has been partially solved by a theoretical approach, which provided some details about the DNAelsamicin A interaction, and the thermodynamic characterization of the binding of chartreusin and elsamicin A to DNA. Elsamicin A but not chartreusin is being developed clinically as an anti-cancer agent. IST-622 (6-O-(3- ethoxypropylonyl)-3',4'-O-exo-benzylidene-chartreusin), a novel semi-synthetic derivative of chartreusin, which has shown a promising anti-cancer activity in a phase II study, appears to be a pro-drug with a more suitable pharmacokinetic profile than chartreusin.

Loading

Article metrics loading...

/content/journals/cmcaca/10.2174/1568011033482215
2003-11-01
2025-09-10
Loading full text...

Full text loading...

/content/journals/cmcaca/10.2174/1568011033482215
Loading

  • Article Type:
    Review Article
Keyword(s): chartreusin; dna-binding drugs; elsamicin a; intercalation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test