Skip to content
2000
  • ISSN: 1568-0118
  • E-ISSN: 1875-5968

Abstract

A fermentation directed product search for potential anticancer drugs conducted by Bristol-Myers in the 1970s and early 1980s resulted in the identification of a novel indolocarbazole (IC) rebeccamycin (RBM) as a potential drug development candidate. Subsequently, an analog program designed to impart distal site in vivo antitumor activity resulted in the discovery of diethylaminoethyl analog of RBM (DEAE-RBM), which is presently undergoing clinical evaluation as NSC 655649 and BMY-27557. Strong DNA intercalation is the primary mechanism of action of DEAE-RBM resulting in the potent catalytic inhibition of both topoisomerases I and II. Precursor feeding fermentation experiments with fluorine-substituted tryptophans yielded novel fluoroindolocarbazoles (FICs). These FICs were identified as targeting topoisomerase (topo) I in a mechanism-based screen and their action on topo I was confirmed by production of topo I-mediated single-strand breaks in DNA at sites essentially identical to those induced by camptothecin. Topo I dependent cytotoxicity was demonstrated for specific FICs using a P388 and camptothecin-resistant P388 / CPT45 pair of cell lines, the latter expresses little or no functional topo I. For example, topo I selectivity was greatest with 3,9-difluoro substituted FIC and was least significant and least cytotoxic with 4,8-difluoro substituted FIC. The review focuses on the discovery of the rebeccamycin class of compounds and their structure-activity relationships leading to the development of the clinical candidate BMY-27557 (NSC 655649), as well as the lead identification of the fluoroindolocarbazole class of compounds.

Loading

Article metrics loading...

/content/journals/cmcaca/10.2174/1568011023354218
2002-03-01
2025-08-20
Loading full text...

Full text loading...

/content/journals/cmcaca/10.2174/1568011023354218
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test