Skip to content
2000
Volume 9, Issue 4
  • ISSN: 1573-3955
  • E-ISSN: 1875-631X

Abstract

The molecular basis for obtaining novel anti-malarial vaccine candidates depends on a considered selection of antigenic peptides, mainly derived from Plasmodium antigens’ non-polymorphic regions. Since such targeted-molecules are poorly immunogenic when tested as vaccine components, they usually have to be modified to overcome their immunological phenotype. Transition state theory, explaining how peptidases catalyse a given peptide bond breakage, thus led to reduced amide pseudopeptides being proposed as possible mimetics for a transition-state. Stabilising such high-energy molecular stages could become a strategy for inducing antibodies potentially harbouring catalytic properties. Hence, isostere-bond peptido-mimetics represented a rational choice as potential abzyme-inducers and site-directed designed reduced amide pseudopeptides for obtaining peptide-analogues from selected malarial high-binding motifs. This novel family of vaccine candidates has proved to be an efficient functional antibody-inducer, the latter acting as efficient blockers of Plasmodium infection of human and mouse RBCs.

Loading

Article metrics loading...

/content/journals/cir/10.2174/1573395510666140401180738
2013-11-01
2025-10-12
Loading full text...

Full text loading...

/content/journals/cir/10.2174/1573395510666140401180738
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test