Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Background

Suppression of the body's immune system can cause high blood pressure. Also, many people with COVID-19 have underlying diseases, including high blood pressure.

Aim

This study was conducted to investigate the effect of COVID-19 infection on blood pressure caused by pregnancy in women referred to Kashani Hospital in Jiroft City.

Methods

This study was a case-control study with a census sampling method on 266 pregnant women referring to Kashani Hospital in Jiroft City in 2021-2022. Pregnant women were divided into two control groups (pregnant women without COVID-19) and intervention (pregnant women with COVID-19). SPSS software version 22 was analyzed.

Results

266 pregnant women participating in the study were divided into two equal control (133) and intervention (133) groups. The average age of pregnant women was 29 ± 6.8 years. The average systolic and diastolic blood pressure in the intervention group was 112.6 and 70, and in the control group, it was 107.8 and 66.6, which was not statistically significant (_Value>0.05). Also, the results showed that there was a difference between home blood pressure during pregnancy and there is a statistically significant relationship between the age of pregnant women (_Value<0.05). While there is no significant statistical relationship between gestational age and body mass index (_Value>0.05).

Conclusion

According to the results of this study, COVID-19 affects blood pressure caused by pregnancy, and gestational age is an important factor in the prevalence of high blood pressure in women with COVID-19.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021319741240905163734
2024-09-12
2025-06-20
Loading full text...

Full text loading...

References

  1. SavoiaC. VolpeM. KreutzR. Hypertension, a moving target in COVID-19: current views and perspectives.Circ. Res.202112871062107910.1161/CIRCRESAHA.121.31805433793331
    [Google Scholar]
  2. BauerA.Z. GoreR. SamaS.R. RosielloR. GarberL. SundaresanD. McDonaldA. ArrudaP. KriebelD. Hypertension, medications, and risk of severe COVID-19: A Massachusetts community-based observational study.J. Clin. Hypertens. (Greenwich)2021231212710.1111/jch.1410133220171
    [Google Scholar]
  3. GrasselliG. GrecoM. ZanellaA. AlbanoG. AntonelliM. BellaniG. BonanomiE. CabriniL. CarlessoE. CastelliG. CattaneoS. CeredaD. ColomboS. ColuccelloA. CresciniG. Forastieri MolinariA. FotiG. FumagalliR. IottiG.A. LangerT. LatronicoN. LoriniF.L. MojoliF. NataliniG. PessinaC.M. RanieriV.M. RechR. ScudellerL. RosanoA. StortiE. ThompsonB.T. TiraniM. VillaniP.G. PesentiA. CecconiM. AgosteoE. AlbanoG. AlbertinA. AlborghettiA. AldegheriG. AntoniniB. BarbaraE. BardelloniG. BasilicoS. BelgiornoN. BellaniG. BerettaE. BerselliA. BianciardiL. BonanomiE. BonazziS. BorelliM. BottinoN. BronziniN. BrusatoriS. CabriniL. CapraC. CarnevaleL. CastelliG. CatenaE. CattaneoS. CecconiM. CelottiS. CeruttiS. ChiumelloD. CirriS. CiterioG. ColomboS. ColuccelloA. CoppiniD. CoronaA. CortellazziP. CostantiniE. CovelloR.D. CresciniG. De FilippiG. Dei PoliM. DughiP. FieniF. FlorioG. Forastieri MolinariA. FotiG. FumagalliR. GallettiM. GallioliG.A. GayH. GemmaM. GnesinP. GrasselliG. GrecoS. GrecoM. GrossoP. GuatteriL. GuzzonD. IottiG.A. KeimR. LangerT. LatronicoN. LombardoA. LoriniF.L. MamprinF. MarinoG. MarinoF. MerliG. MicucciA. MilitanoC.R. MojoliF. MontiG. MuttiniS. NadalinS. NataliniG. PerazzoP. PeregoG.B. PerottiL. PesentiA. PessinaC.M. PetrucciN. PezziA. PivaS. PortellaG. ProttiA. RacagniM. RadrizzaniD. RaimondiM. RanucciM. RechR. RiccioM. RosanoA. RuggeriP. SalaG. SalviL. SebastianoP. SevergniniP. SigurtàD. StocchettiN. StortiE. SubertM. TavolaM. TodaroS. TorrigliaF. TubioloD. ValsecchiR. VillaniP.G. ViolaU. VitaleG. ZambonM. ZanellaA. ZoiaE. COVID-19 Lombardy ICU Network Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy.JAMA Intern. Med.2020180101345135510.1001/jamainternmed.2020.353932667669
    [Google Scholar]
  4. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature.20205797798270273
    [Google Scholar]
  5. KeidarS. KaplanM. GamliellazarovichA. ACE2 of the heart: From angiotensin I to angiotensin (1–7).Cardiovasc. Res.200773346346910.1016/j.cardiores.2006.09.00617049503
    [Google Scholar]
  6. YimH.E. YooK.H. Renin-Angiotensin system - considerations for hypertension and kidney.Electrolyte Blood Press.200861425010.5049/EBP.2008.6.1.4224459521
    [Google Scholar]
  7. SantosR.A.S. SampaioW.O. AlzamoraA.C. Motta-SantosD. AleninaN. BaderM. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7).Physiol. Rev.201729351514
    [Google Scholar]
  8. BuriniR.C. AndersonE. DurstineJ.L. CarsonJ.A. Inflammation, physical activity, and chronic disease: An evolutionary perspective.Sports Med. Health Sci.2020211610.1016/j.smhs.2020.03.00435783338
    [Google Scholar]
  9. EscherR. BreakeyN. LämmleB. Severe COVID-19 infection associated with endothelial activation.Thromb. Res.20201906210.1016/j.thromres.2020.04.01432305740
    [Google Scholar]
  10. PoberJ.S. SessaW.C. Evolving functions of endothelial cells in inflammation.Nat. Rev. Immunol.200771080381510.1038/nri217117893694
    [Google Scholar]
  11. OkudaT. GrollmanA. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells.Tex. Rep. Biol. Med.19672522572646040652
    [Google Scholar]
  12. GuzikT.J. HochN.E. BrownK.A. McCannL.A. RahmanA. DikalovS. GoronzyJ. WeyandC. HarrisonD.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction.J. Exp. Med.2007204102449246010.1084/jem.2007065717875676
    [Google Scholar]
  13. FallonK. Exercise in the time of COVID-19.Aust. J. Gen. Pract.202049Suppl. 131210.31128/AJGP‑COVID‑1332321207
    [Google Scholar]
  14. ZhangJ. PatelM.B. GriffithsR. MaoA. SongY. KarlovichN.S. SparksM.A. JinH. WuM. LinE.E. CrowleyS.D. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension.Hypertension20146461275128110.1161/HYPERTENSIONAHA.114.0386325185128
    [Google Scholar]
  15. Ait-OufellaH. SalomonB.L. PotteauxS. RobertsonA.K.L. GourdyP. ZollJ. MervalR. EspositoB. CohenJ.L. FissonS. FlavellR.A. HanssonG.K. KlatzmannD. TedguiA. MallatZ. Natural regulatory T cells control the development of atherosclerosis in mice.Nat. Med.200612217818010.1038/nm134316462800
    [Google Scholar]
  16. BarhoumiT. KasalD.A. LiM.W. ShbatL. LaurantP. NevesM.F. ParadisP. SchiffrinE.L. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury.Hypertension201157346947610.1161/HYPERTENSIONAHA.110.16294121263125
    [Google Scholar]
  17. FavreG. PomarL. MussoD. BaudD. 2019-nCoV epidemic: what about pregnancies?Lancet202039510224e4010.1016/S0140‑6736(20)30311‑132035511
    [Google Scholar]
  18. ChenH. GuoJ. WangC. LuoF. YuX. ZhangW. LiJ. ZhaoD. XuD. GongQ. LiaoJ. YangH. HouW. ZhangY. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records.Lancet20203951022680981510.1016/S0140‑6736(20)30360‑332151335
    [Google Scholar]
  19. ChenS. HuangB. LuoD.J. LiX. YangF. ZhaoY. NieX. HuangB.X. [Pregnancy with new coronavirus infection: clinical characteristics and placental pathological analysis of three cases].Zhonghua Bing Li Xue Za Zhi202049541842332114744
    [Google Scholar]
  20. LiuY. ChenH. TanW. KuangY. TangK. LuoY. GuoY. Clinical characteristics and outcome of SARS-CoV-2 infection during pregnancy.J. Infect.2021826e9e1010.1016/j.jinf.2021.03.03033831458
    [Google Scholar]
  21. MullinsE. EvansD. VinerR.M. O’BrienP. MorrisE. Coronavirus in pregnancy and delivery: rapid review.Ultrasound Obstet. Gynecol.202055558659210.1002/uog.2201432180292
    [Google Scholar]
  22. ZhangL. JiangY. WeiM. ChengB.H. ZhouX.C. LiJ. TianJ.H. DongL. HuR.H. [Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province].Zhonghua Fu Chan Ke Za Zhi202055316617132145714
    [Google Scholar]
  23. RahimiF. GoliS. Coronavirus (19) in pregnancy and childbirth: a review study.Journal of Sabzevar University of Medical Sciences.2020274522531
    [Google Scholar]
  24. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  25. SahuK.K. LalA. MishraA.K. COVID-2019 and pregnancy: A plea for transparent reporting of all cases.Acta Obstet. Gynecol. Scand.202099795110.1111/aogs.1385032191350
    [Google Scholar]
  26. AzhN. PakniatH. RajabiM. RanjkeshF. Evaluation of Pregnancy Outcomes in Pregnant Women with COVID-19 in Qazvin 1399.Majallah-i Ipidimiyuluzhi-i Iran20211651019
    [Google Scholar]
  27. AskaryE. TaherehP. ShiravaniZ. Ali AshrafM. HashemiA. NaseriR. MoradialamdarlooS. KarimiZ. IzanlooE. Sadat NajibF. Coronavirus disease 2019 (COVID-19) manifestations during pregnancy in all three trimesters: A case series.Int. J. Reprod. Biomed. (Yazd)202119219120410.18502/ijrm.v19i2.847733718763
    [Google Scholar]
  28. LiN. HanL. PengM. LvY. OuyangY. LiuK. YueL. LiQ. SunG. ChenL. YangL. Maternal and neonatal outcomes of pregnant women with coronavirus disease 2019 (COVID-19) pneumonia: a case-control study.Clin. Infect. Dis.202071162035204110.1093/cid/ciaa35232249918
    [Google Scholar]
  29. GriffinI. BenarbaF. PetersC. OyeleseY. MurphyT. ContrerasD. GagliardoC. Nwaobasi-IwuhE. DiPentimaM.C. SchenkmanA. The impact of COVID-19 infection on labor and delivery, newborn nursery, and neonatal intensive care unit: prospective observational data from a single hospital system.Am. J. Perinatol.202037101022103010.1055/s‑0040‑171341632534458
    [Google Scholar]
  30. HciniN. MaamriF. PiconeO. CarodJ.F. LambertV. MathieuM. CarlesG. PomarL. Maternal, fetal and neonatal outcomes of large series of SARS-CoV-2 positive pregnancies in peripartum period: A single-center prospective comparative study.Eur. J. Obstet. Gynecol. Reprod. Biol.2021257111810.1016/j.ejogrb.2020.11.06833310656
    [Google Scholar]
  31. AbbasA.M. AhmedO.A. ShaltoutA.S. COVID-19 and maternal pre-eclampsia: A synopsis.Scand. J. Immunol.2020923e1291810.1111/sji.1291832542883
    [Google Scholar]
  32. MorM. KuglerN. JauniauxE. BetserM. WienerY. CuckleH. MaymonR. Impact of the COVID-19 pandemic on excess perinatal mortality and morbidity in Israel.Am. J. Perinatol.202138439840310.1055/s‑0040‑172151533302306
    [Google Scholar]
  33. da SilveiraM.P. da Silva FagundesK.K. BizutiM.R. StarckÉ. RossiR.C. de Resende e SilvaD.T. SilvaD.T. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature.Clin. Exp. Med.2021211152810.1007/s10238‑020‑00650‑332728975
    [Google Scholar]
  34. LokkenE.M. WalkerC.L. DelaneyS. KachikisA. KretzerN.M. EricksonA. Clinical characteristics of 46 pregnant women with a severe acute respiratory syndrome coronavirus 2 infection in Washington State.Am. J. Obstet. Gynecol.2020223691110.1016/j.ajog.2020.05.031
    [Google Scholar]
  35. MaraschiniA. CorsiE. SalvatoreM.A. DonatiS. Group IC-W. Coronavirus and birth in Italy: results of a national population-based cohort study.medRxiv 2020.062020
    [Google Scholar]
  36. AyedA. EmbaireegA. BenawadhA. Al-FouzanW. HammoudM. Al-HathalM. AlzaydaiA. AhmadA. AyedM. Maternal and perinatal characteristics and outcomes of pregnancies complicated with COVID-19 in Kuwait.BMC Pregnancy Childbirth202020175410.1186/s12884‑020‑03461‑233267785
    [Google Scholar]
  37. WanY. ShangJ. GrahamR. BaricR.S. LiF. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus.J. Virol.2020947e00127-2010.1128/JVI.00127‑2031996437
    [Google Scholar]
  38. NicinL. AbplanalpW.T. MellentinH. KattihB. TomborL. JohnD. SchmittoJ.D. HeinekeJ. EmrichF. ArsalanM. HolubecT. WaltherT. ZeiherA.M. DimmelerS. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts.Eur. Heart J.202041191804180610.1093/eurheartj/ehaa31132293672
    [Google Scholar]
  39. CarameloF. FerreiraN. OliverosB. Estimation of risk factors for COVID-19 mortality-preliminary results.MedRxiv 2020.02202010.1101/2020.02.24.20027268
    [Google Scholar]
  40. SiregarD.A.S. RiandaD. IrwindaR. Dwi UtamiA. HanifaH. ShankarA.H. AgustinaR. Associations between diet quality, blood pressure, and glucose levels among pregnant women in the Asian megacity of Jakarta.PLoS One20201511e024215010.1371/journal.pone.024215033237938
    [Google Scholar]
  41. BerneR.M. Cardiovascular Physiology.Annu. Rev. Physiol.198143135735810.1146/annurev.ph.43.030181.002041
    [Google Scholar]
  42. LeungC. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China.Mech. Aging. Develop.2020188111255
    [Google Scholar]
  43. WolffD. NeeS. HickeyN.S. MarschollekM. Risk factors for Covid-19 severity and fatality: a structured literature review.Infection2021491152810.1007/s15010‑020‑01509‑132860214
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021319741240905163734
Loading
/content/journals/chyr/10.2174/0115734021319741240905163734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test