Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1573-4021
  • E-ISSN:

Abstract

Hypertension is one of the primary causes of cardiovascular diseases and death, with a higher prevalence in low- and middle-income countries. The pathophysiology of hypertension remains complex, with 2% to 5% of patients having underlying renal or adrenal disorders. The rest are referred to as essential hypertension, with derangements in various physiological mechanisms potentially contributing to the development of essential hypertension. Hypertension elevates the risk of cardiovascular disease (CVD) events (coronary heart disease, heart failure, and stroke) and mortality. First-line therapy for hypertension is lifestyle change, which includes weight loss, a balanced diet that includes low salt and high potassium intake, physical exercise, and limitation or elimination of alcohol use. Blood pressure-lowering effects of individual lifestyle components are partially additive, enhancing the efficacy of pharmaceutical treatment. The choice to begin antihypertensive medication should be based on the level of blood pressure and the existence of a high atherosclerotic CVD risk. First-line hypertension treatment includes a thiazide or thiazide-like diuretic, an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, and a calcium channel blocker. Addressing hypertension will require continued efforts to improve access to diagnosis, treatment, and lifestyle interventions.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021293403240309165336
2024-03-20
2024-11-26
Loading full text...

Full text loading...

References

  1. NicollR. HeneinM.Y. Hypertension and lifestyle modification: how useful are the guidelines?Br. J. Gen. Pract.20106058187988010.3399/bjgp10X544014
    [Google Scholar]
  2. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑2
    [Google Scholar]
  3. AnchalaR. KannuriN.K. PantH. KhanH. FrancoO.H. Di AngelantonioE. PrabhakaranD. Hypertension in India.J. Hypertens.20143261170117710.1097/HJH.0000000000000146
    [Google Scholar]
  4. BeeversG. ABC of hypertension: The pathophysiology of hypertension.BMJ2001322729191291610.1136/bmj.322.7291.912
    [Google Scholar]
  5. MasakiT. SawamuraT. Endothelin and endothelial dysfunction.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.2006821172410.2183/pjab.82.17
    [Google Scholar]
  6. KućmierzJ. FrąkW. MłynarskaE. FranczykB. RyszJ. Molecular interactions of arterial hypertension in its target organs.Int. J. Mol. Sci.20212218966910.3390/ijms22189669
    [Google Scholar]
  7. MensahG.A. CroftJ.B. GilesW.H. The heart, kidney, and brain as target organs in hypertension.Cardiol. Clin.200220222524710.1016/S0733‑8651(02)00004‑8
    [Google Scholar]
  8. BidaniA.K. GriffinK.A. Pathophysiology of hypertensive renal damage.Hypertension200444559560110.1161/01.HYP.0000145180.38707.84
    [Google Scholar]
  9. WrightJM MusiniVM GillR First-line drugs for hypertension.Cochrane Database Syst Rev.201844CD00184110.1002/14651858.CD001841.pub3
    [Google Scholar]
  10. AgrawalM. NandiniD. SharmaV. ChauhanN.S. Herbal remedies for treatment of hypertension.Int. J. Pharm. Sci. Res.201015121
    [Google Scholar]
  11. CarreteroO.A. OparilS. Essential hypertension.Circulation2000101332933510.1161/01.CIR.101.3.329
    [Google Scholar]
  12. LandsbergL. AronneL.J. BeilinL.J. BurkeV. IgelL.I. Lloyd-JonesD. SowersJ. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment.J. Clin. Hypertens. (Greenwich)2013151143310.1111/jch.12049
    [Google Scholar]
  13. AkilL. AhmadH.A. Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado.J. Health Care Poor Underserved2011224A617210.1353/hpu.2011.0166
    [Google Scholar]
  14. AronowW.S. Drug-induced causes of secondary hypertension.Ann. Transl. Med.201751734934910.21037/atm.2017.06.16
    [Google Scholar]
  15. MorganT. AndersonA. The effect of nonsteroidal anti-inflammatory drugs on blood pressure in patients treated with different antihypertensive drugs.J. Clin. Hypertens. (Greenwich)200351535710.1111/j.1524‑6175.2003.00514.x
    [Google Scholar]
  16. PolóniaJ. Interaction of antihypertensive drugs with anti-inflammatory drugs.Cardiology1997883475110.1159/000177507
    [Google Scholar]
  17. RuschitzkaF. BorerJ.S. KrumH. FlammerA.J. YeomansN.D. LibbyP. LüscherT.F. SolomonD.H. HusniM.E. GrahamD.Y. DaveyD.A. WisniewskiL.M. MenonV. FayyadR. BeckermanB. IorgaD. LincoffA.M. NissenS.E. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen Ambulatory Blood Pressure Measurement) Trial.Eur. Heart J.201738443282329210.1093/eurheartj/ehx508
    [Google Scholar]
  18. SalernoS.M. JacksonJ.L. BerbanoE.P. Effect of oral pseudoephedrine on blood pressure and heart rate.Arch. Intern. Med.200516515168610.1001/archinte.165.15.1686
    [Google Scholar]
  19. CooperD.B. PatelP. MahdyH. Oral Contraceptive Pills.Treasure Island, FLStatPearls2022
    [Google Scholar]
  20. FinkG.D. Sympathetic activity, vascular capacitance, and long-term regulation of arterial pressure.Hypertension200953230731210.1161/HYPERTENSIONAHA.108.119990
    [Google Scholar]
  21. DelongC. SharmaS. Physiology, Peripheral Vascular Resistance.Treasure Island, FLStatPearls2023
    [Google Scholar]
  22. MayetJ. Cardiac and vascular pathophysiology in hypertension.Br. Heart J.20038991104110910.1136/heart.89.9.1104
    [Google Scholar]
  23. ThethiT. KamiyamaM. KoboriH. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome.Curr. Hypertens. Rep.201214216016910.1007/s11906‑012‑0245‑z
    [Google Scholar]
  24. KalilG.Z. HaynesW.G. Sympathetic nervous system in obesity-related hypertension: Mechanisms and clinical implications.Hypertens. Res.201235141610.1038/hr.2011.173
    [Google Scholar]
  25. LeggioM. LombardiM. CaldaroneE. SeveriP. D’EmidioS. ArmeniM. BraviV. BendiniM.G. MazzaA. The relationship between obesity and hypertension: An updated comprehensive overview on vicious twins.Hypertens. Res.2017401294796310.1038/hr.2017.75
    [Google Scholar]
  26. SchiffrinE.L. TouyzR.M. From bedside to bench to bedside: Role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension.Am. J. Physiol. Heart Circ. Physiol.20042872H435H44610.1152/ajpheart.00262.2004
    [Google Scholar]
  27. HoughtonD. JonesT.W. CassidyS. SiervoM. MacGowanG.A. TrenellM.I. JakovljevicD.G. The effect of age on the relationship between cardiac and vascular function.Mech. Ageing Dev.20161531610.1016/j.mad.2015.11.001
    [Google Scholar]
  28. TouyzR.M. HerrmannS.M.S. HerrmannJ. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events.J. Am. Soc. Hypertens.201812640942510.1016/j.jash.2018.03.008
    [Google Scholar]
  29. SafarM.E. Systolic hypertension in elderly patients.Semin. Cardiothorac. Vasc. Anesth.200610320320510.1177/1089253206291144
    [Google Scholar]
  30. AvolioA.P. DengF.Q. LiW.Q. LuoY.F. HuangZ.D. XingL.F. O’RourkeM.F. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: Comparison between urban and rural communities in China.Circulation198571220221010.1161/01.CIR.71.2.202
    [Google Scholar]
  31. LionakisN. Hypertension in the elderly.World J. Cardiol.20124513510.4330/wjc.v4.i5.135
    [Google Scholar]
  32. StiefelP. Vallejo-VazA.J. García MorilloS. VillarJ. Role of the renin-angiotensin system and aldosterone on cardiometabolic syndrome.Int. J. Hypertens.201120111810.4061/2011/685238
    [Google Scholar]
  33. IvyJ.L. Ferguson-StegallL.M. Nutrient Timing.Am. J. Lifestyle Med.20148424625910.1177/1559827613502444
    [Google Scholar]
  34. HallJ.E. GuytonA.C. BrandsM.W. Pressure-volume regulation in hypertension.Kidney Int. Suppl.199655S35S41
    [Google Scholar]
  35. GrassiG. CattaneoB.M. SeravalleG. LanfranchiA. ManciaG. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension.Hypertension1998311687210.1161/01.HYP.31.1.68
    [Google Scholar]
  36. GuangC. PhillipsR.D. JiangB. MilaniF. Three key proteases – angiotensin-I-converting enzyme (ACE), ACE2 and renin – within and beyond the renin-angiotensin system.Arch. Cardiovasc. Dis.20121056-737338510.1016/j.acvd.2012.02.010
    [Google Scholar]
  37. NehmeA. ZoueinF.A. ZayeriZ.D. ZibaraK. An update on the tissue renin angiotensin system and its role in physiology and pathology.J. Cardiovasc. Dev. Dis.2019621410.3390/jcdd6020014
    [Google Scholar]
  38. NeubauerB. SchranklJ. SteppanD. NeubauerK. Sequeira-LopezM.L. PanL. GomezR.A. CoffmanT.M. GrossK.W. KurtzA. WagnerC. Angiotensin II short-loop feedback.Hypertension20187161075108210.1161/HYPERTENSIONAHA.117.10357
    [Google Scholar]
  39. CrowleyS.D. GurleyS.B. HerreraM.J. RuizP. GriffithsR. KumarA.P. KimH-S. SmithiesO. LeT.H. CoffmanT.M. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney.Proc. Natl. Acad. Sci. USA200610347179851799010.1073/pnas.0605545103
    [Google Scholar]
  40. SeeligerE. LunenburgT. LadwigM. ReinhardtH.W. Role of the renin–angiotensin–aldosterone system for control of arterial blood pressure following moderate deficit in total body sodium: Balance studies in freely moving dogs.Clin. Exp. Pharmacol. Physiol.2010372e43e5110.1111/j.1440‑1681.2009.05332.x
    [Google Scholar]
  41. SahayR. NageshV.S. Hypothyroidism in pregnancy.Indian J. Endocrinol. Metab.201216336410.4103/2230‑8210.95667
    [Google Scholar]
  42. WilliamsS.F. African Americans, hypertension and the renin angiotensin system.World J. Cardiol.20146987810.4330/wjc.v6.i9.878
    [Google Scholar]
  43. HermanL.L. PadalaS.A. AhmedI. BashirK. Angiotensin-Converting Enzyme Inhibitors (ACEI).StatPearlsTreasure Island, FL2023
    [Google Scholar]
  44. LòpezC. JiminezW. ArroyoV. La VillaG. Martinez-PardoA. GayaJ. RiveraF. Effects of atrial natriuretic peptide on urinary kallikrein excretion and renal function in rats.Eur. J. Pharmacol.198916811610.1016/0014‑2999(89)90625‑0
    [Google Scholar]
  45. KawanabeY. NauliS.M. Endothelin.Cell. Mol. Life Sci.201168219520310.1007/s00018‑010‑0518‑0
    [Google Scholar]
  46. HynynenM. KhalilR. The vascular endothelin system in hypertension - recent patents and discoveries.Recent Adv. Cardiovasc. Drug Discov.2006119510810.2174/157489006775244263
    [Google Scholar]
  47. SandooA. Veldhuijzen van ZantenJ.J.C.S. MetsiosG.S. CarrollD. KitasG.D. The endothelium and its role in regulating vascular tone.Open Cardiovasc. Med. J.20104130231210.2174/1874192401004010302
    [Google Scholar]
  48. GordanR. GwathmeyJ.K. XieL.H. Autonomic and endocrine control of cardiovascular function.World J. Cardiol.20157420410.4330/wjc.v7.i4.204
    [Google Scholar]
  49. HartE.C. CharkoudianN. WallinB.G. CurryT.B. EisenachJ. JoynerM.J. Sex and ageing differences in resting arterial pressure regulation: The role of the β-adrenergic receptors.J. Physiol.2011589215285529710.1113/jphysiol.2011.212753
    [Google Scholar]
  50. FisherJ.P. FadelP.J. Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension.Exp. Physiol.201095557258010.1113/expphysiol.2009.047332
    [Google Scholar]
  51. BurgessC. InghamT. WoodbridgeM. WeatherallM. NowitzM. The use of antithrombotics in patients presenting with stroke and atrial fibrillation.Ther. Clin. Risk Manag.200733491498
    [Google Scholar]
  52. TaddeiS. GalettaF. VirdisA. GhiadoniL. SalvettiG. FranzoniF. GiustiC. SalvettiA. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes.Circulation2000101252896290110.1161/01.CIR.101.25.2896
    [Google Scholar]
  53. BlausteinM.P. LeenenF.H.H. ChenL. GolovinaV.A. HamlynJ.M. PalloneT.L. Van HuysseJ.W. ZhangJ. WierW.G. How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-dependent hypertension.Am. J. Physiol. Heart Circ. Physiol.20123025H1031H104910.1152/ajpheart.00899.2011
    [Google Scholar]
  54. BornsteinA.B. RaoS.S. MarwahaK. Left Ventricular Hypertrophy.Treasure Island, FLStatPearls2023
    [Google Scholar]
  55. DokainishH. Left ventricular diastolic function and dysfunction: Central role of echocardiography.Glob. Cardiol. Sci. Pract.201520151310.5339/gcsp.2015.3
    [Google Scholar]
  56. KannelW.B. BenjaminE.J. Current perceptions of the epidemiology of atrial fibrillation.Cardiol. Clin.2009271132410.1016/j.ccl.2008.09.015
    [Google Scholar]
  57. PicarielloC. LazzeriC. AttanàP. ChiostriM. GensiniG.F. ValenteS. The impact of hypertension on patients with Acute Coronary Syndromes.Int. J. Hypertens.201120111710.4061/2011/563657
    [Google Scholar]
  58. OlafiranyeO. ZiziF. BrimahP. Jean-louisG. MakaryusA.N. McFarlaneS. OgedegbeG. Management of hypertension among patients with Coronary Heart Disease.Int. J. Hypertens.201120111610.4061/2011/653903
    [Google Scholar]
  59. OjhaN. DhamoonA.S. Myocardial Infarction.Treasure Island, FLStatPearls2023
    [Google Scholar]
  60. ElgendyI.Y. MahmoudA.N. ElgendyA.Y. BavryA.A. Outcomes with intravascular ultrasound-guided stent implantation.Circ. Cardiovasc. Interv.20169410.1161/CIRCINTERVENTIONS.116.003700
    [Google Scholar]
  61. KannelW.B. WolfP.A. McGeeD.L. DawberT.R. McNamaraP. CastelliW.P. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham study - PubMed.JAMA198124512122510.1001/jama.1981.03310370017013
    [Google Scholar]
  62. AursuleseiV. CostacheI.I. Anticoagulation in chronic kidney disease: From guidelines to clinical practice.Clin. Cardiol.201942877478210.1002/clc.23196
    [Google Scholar]
  63. IsekiK. IkemiyaY. InoueT. IsekiC. KinjoK. TakishitaS. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort.Am. J. Kidney Dis.200444464265010.1016/S0272‑6386(04)00934‑5
    [Google Scholar]
  64. PrasadR.M. BaliA. TikariaR. Microalbuminuria.Treasure Island, FLStatPearls2023
    [Google Scholar]
  65. PsatyB.M. LumleyT. FurbergC.D. SchellenbaumG. PahorM. AldermanM.H. WeissN.S. Health outcomes associated with various antihypertensive therapies used as first-line agents.JAMA200328919253410.1001/jama.289.19.2534
    [Google Scholar]
  66. WilliamsB. ManciaG. SpieringW. Agabiti RoseiE. AziziM. BurnierM. ClementD.L. CocaA. de SimoneG. DominiczakA. KahanT. MahfoudF. RedonJ. RuilopeL. ZanchettiA. KerinsM. KjeldsenS.E. KreutzR. LaurentS. LipG.Y.H. McManusR. NarkiewiczK. RuschitzkaF. SchmiederR.E. ShlyakhtoE. TsioufisC. AboyansV. DesormaisI. De BackerG. HeagertyA.M. AgewallS. BochudM. BorghiC. BoutouyrieP. BrguljanJ. BuenoH. CaianiE.G. CarlbergB. ChapmanN. CífkováR. ClelandJ.G.F. ColletJ-P. ComanI.M. de LeeuwP.W. DelgadoV. DendaleP. DienerH-C. DorobantuM. FagardR. FarsangC. FerriniM. GrahamI.M. GrassiG. HallerH. HobbsF.D.R. JelakovicB. JenningsC. KatusH.A. KroonA.A. LeclercqC. LovicD. LurbeE. ManolisA.J. McDonaghT.A. MesserliF. MuiesanM.L. NixdorffU. OlsenM.H. ParatiG. PerkJ. PiepoliM.F. PoloniaJ. PonikowskiP. RichterD.J. RimoldiS.F. RoffiM. SattarN. SeferovicP.M. SimpsonI.A. Sousa-UvaM. StantonA.V. van de BorneP. VardasP. VolpeM. WassmannS. WindeckerS. ZamoranoJ.L. WindeckerS. AboyansV. AgewallS. BarbatoE. BuenoH. CocaA. ColletJ-P. ComanI.M. DeanV. DelgadoV. FitzsimonsD. GaemperliO. HindricksG. IungB. JüniP. KatusH.A. KnuutiJ. LancellottiP. LeclercqC. McDonaghT.A. PiepoliM.F. PonikowskiP. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. ZamoranoJ.L. TsioufisC. LurbeE. KreutzR. BochudM. RoseiE.A. JelakovicB. AziziM. JanuszewicsA. KahanT. PoloniaJ. van de BorneP. WilliamsB. BorghiC. ManciaG. ParatiG. ClementD.L. CocaA. ManolisA. LovicD. BenkheddaS. ZelveianP. SiostrzonekP. NajafovR. PavlovaO. De PauwM. Dizdarevic-HudicL. RaevD. KarpettasN. LinhartA. OlsenM.H. ShakerA.F. ViigimaaM. MetsärinneK. VavlukisM. HalimiJ-M. PagavaZ. SchunkertH. ThomopoulosC. PállD. AndersenK. ShechterM. MercuroG. BajraktariG. RomanovaT. TrušinskisK. SaadeG.A. SakalyteG. NoppeS. DeMarcoD.C. CarausA. WittekoekJ. AksnesT.A. JankowskiP. PoloniaJ. VinereanuD. BaranovaE.I. FoscoliM. DikicA.D. FilipovaS. FrasZ. Bertomeu-MartínezV. CarlbergB. BurkardT. SdiriW. AydogduS. SirenkoY. BradyA. WeberT. LazarevaI. BackerT.D. SokolovicS. JelakovicB. WidimskyJ. ViigimaaM. PörstiI. DenolleT. KrämerB.K. StergiouG.S. ParatiG. TrušinskisK. MiglinasM. GerdtsE. TykarskiA. de Carvalho RodriguesM. DorobantuM. ChazovaI. LovicD. FilipovaS. BrguljanJ. SeguraJ. GottsäterA. Pechère-BertschiA. ErdineS. SirenkoY. BradyA. 2018 ESC/ESH Guidelines for the management of arterial hypertension.Eur. Heart J.201839333021310410.1093/eurheartj/ehy339
    [Google Scholar]
  67. FarzamK JanA. Beta Blockers.Treasure Island, FLStatPearls2023
    [Google Scholar]
  68. YancyCW JessupM BozkurtB ButlerJ CaseyDEJr ColvinMM 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America.Circulation20171366e137e161
    [Google Scholar]
  69. O’BrienE. AsmarR. BeilinL. ImaiY. ManciaG. MengdenT. MyersM. PadfieldP. PalatiniP. ParatiG. PickeringT. RedonJ. StaessenJ. StergiouG. VerdecchiaP. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement.J. Hypertens.200523469770110.1097/01.hjh.0000163132.84890.c4
    [Google Scholar]
  70. KoboriH. MoriH. MasakiT. NishiyamaA. AngiotensinI.I. Angiotensin II blockade and renal protection.Curr. Pharm. Des.201319173033304210.2174/1381612811319170009
    [Google Scholar]
  71. FarisR.F. FlatherM. PurcellH. Poole-WilsonP.A. CoatsA.J. Diuretics for heart failure.Cochrane Database of Systematic Reviews.Chichester, UKJohn Wiley & Sons, Ltd201210.1002/14651858.CD003838.pub3
    [Google Scholar]
  72. NardoneR. BrigoF. TrinkaE. Acute symptomatic seizures caused by electrolyte disturbances.J. Clin. Neurol.20161212110.3988/jcn.2016.12.1.21
    [Google Scholar]
  73. MartinsVM ZiegelmannPK FerrariF BottinoLG LuccaMB CorrêaHLR Thiazide diuretics alone or combined with potassium-sparing diuretics to treat hypertension: A systematic review and network meta-analysis of randomized controlled trials.J Hypertens202341171108111610.1097/HJH.0000000000003436
    [Google Scholar]
  74. DézsiC.A. SzentesV. The real role of β-Blockers in daily cardiovascular therapy.Am. J. Cardiovasc. Drugs201717536137310.1007/s40256‑017‑0221‑8
    [Google Scholar]
  75. KoD.T. β-Blocker therapy and symptoms of depression, fatigue, and sexual dysfunction.JAMA2002288335110.1001/jama.288.3.351
    [Google Scholar]
  76. HallerH. Effective management of hypertension with dihydropyridine calcium channel blocker-based combination therapy in patients at high cardiovascular risk.Int. J. Clin. Pract.200862578179010.1111/j.1742‑1241.2008.01713.x
    [Google Scholar]
  77. ChenR. SuchardM.A. KrumholzH.M. SchuemieM.J. SheaS. DukeJ. PrattN. ReichC.G. MadiganD. YouS.C. RyanP.B. HripcsakG. Comparative first-line effectiveness and safety of ACE (Angiotensin-Converting Enzyme) inhibitors and angiotensin receptor blockers: A multinational cohort study.Hypertension202178359160310.1161/HYPERTENSIONAHA.120.16667
    [Google Scholar]
  78. GoyalA. CusickA.S. ThielemierB. ACE Inhibitors.Treasure Island, FLStatPearls2023
    [Google Scholar]
  79. LiE.C.K. HeranB.S. WrightJ.M. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension.Cochrane Libr.20142014810.1002/14651858.CD009096.pub2
    [Google Scholar]
  80. KatsikiN. TsioufisK. UralD. VolpeM. Fifteen years of LIFE (Losartan Intervention for Endpoint Reduction in Hypertension)—Lessons learned for losartan: An “old dog playing good tricks”.J. Clin. Hypertens. (Greenwich)20182081153115910.1111/jch.13325
    [Google Scholar]
  81. StraussM.H. HallA.S. NarkiewiczK. The combination of beta-blockers and ACE inhibitors across the spectrum of cardiovascular diseases.Cardiovasc. Drugs Ther.2021374757770
    [Google Scholar]
  82. JarredG. Lee KennedyR. Therapeutic perspective: Starting an angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in a diabetic patient.Ther. Adv. Endocrinol. Metab.201011232810.1177/2042018810369437
    [Google Scholar]
  83. McKeeverR.G. HamiltonR.J. Calcium Channel Blockers.Treasure Island, FLStatPearls2022
    [Google Scholar]
  84. RirashF TingeyPC HardingSE MaxwellLJ Tanjong GhogomuE WellsGA Calcium channel blockers for primary and secondary Raynaud's phenomenon.Cochrane Database Syst Rev.20171212CD00046710.1002/14651858.CD000467.pub2
    [Google Scholar]
  85. OpieL. Calcium channel blockers for hypertension dissecting the evidence for adverse effects.Am. J. Hypertens.199710556557710.1016/S0895‑7061(96)00508‑0
    [Google Scholar]
  86. MorganT. Ace inhibitors, beta-blockers, calcium blockers, and diuretics for the control of systolic hypertension.Am. J. Hypertens.200114324124710.1016/S0895‑7061(00)01266‑8
    [Google Scholar]
  87. RastogiS. PandeyM.M. RawatA.K.S. Traditional herbs: A remedy for cardiovascular disorders.Phytomedicine201623111082108910.1016/j.phymed.2015.10.012
    [Google Scholar]
  88. KamyabR. NamdarH. TorbatiM. GhojazadehM. Araj-KhodaeiM. FazljouS.M.B. Medicinal plants in the treatment of hypertension: A review.Adv. Pharm. Bull.202011460161710.34172/apb.2021.090
    [Google Scholar]
  89. BoskabadyM.H. AlitanehS. AlavinezhadA. Carum copticum L.: A herbal medicine with various pharmacological effects.BioMed Res. Int.2014201411110.1155/2014/569087
    [Google Scholar]
  90. LeongX.F. Rais MustafaM. JaarinK. Nigella sativa and Its protective role in oxidative stress and hypertension.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/120732
    [Google Scholar]
  91. ShoukR. AbdouA. ShettyK. SarkarD. EidA.H. Mechanisms underlying the antihypertensive effects of garlic bioactives.Nutr. Res.201434210611510.1016/j.nutres.2013.12.005
    [Google Scholar]
  92. SiskaS. Mun’imA. BahtiarA. SuyatnaF. Effect of Apium graveolens extract administration on the pharmacokinetics of captopril in the plasma of rats.Sci. Pharm.2018861610.3390/scipharm86010006
    [Google Scholar]
  93. AkinyemiA.J. AdemiluyiA.O. ObohG. Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit Angiotensin i–converting enzyme, iron (II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro.J. Med. Food201316764164610.1089/jmf.2012.0022
    [Google Scholar]
  94. AkinyemiA.J. AdemiluyiA.O. ObohG. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.J. Med. Food201417331732310.1089/jmf.2012.0264
    [Google Scholar]
  95. Al DisiS.S. AnwarM.A. EidA.H. Anti-hypertensive Herbs and their Mechanisms of Action: Part I.Front. Pharmacol.20166610.3389/fphar.2015.00323
    [Google Scholar]
  96. AjayM. ChaiH.J. MustafaA.M. GilaniA.H. MustafaM.R. Mechanisms of the anti-hypertensive effect of Hibiscus sabdariffa L. calyces.J. Ethnopharmacol.2007109338839310.1016/j.jep.2006.08.005
    [Google Scholar]
  97. BoskabadyM.H. ShafeiM.N. ShakibaA. SefidiH.S. Effect of aqueous-ethanol extract from Crocus sativus (saffron) on guinea-pig isolated heart.Phytother. Res.200822333033410.1002/ptr.2317
    [Google Scholar]
  98. JeonBH KimCS ParkKS LeeJW ParkJB KimKJ KimSH ChangSJ NamKY Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats.Gen. Pharmacol.20003531354110.1016/S0306‑3623(01)00096‑9
    [Google Scholar]
  99. SiskaS. HananiE. BarirohT. FebriantoB. PratiwiA.D.A.P. YanerN.N. FitriN.A. Effect of the ethanol extract of Pereskia bleo (Kunth) DC. on the blood pressure and electrolyte levels of hypertensive rats.J. Herbmed. Pharmacol.202312344845210.34172/jhp.2023.50
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021293403240309165336
Loading
/content/journals/chyr/10.2174/0115734021293403240309165336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test