Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Purpose: Nonsense mutation readthrough is used as a gene-specific treatment in some genetic diseases. The response to readthrough treatment is determined by the readthrough efficiency of various nonsense mutations. In this manuscript, we aimed to explore the harmful effects of nonsense mutation suppression. Methods: HEK293 cells were transfected with two SCN5A (encode cardiac Na+ channel) nonsense mutations, p.R1623X and p.S1812X. We applied two readthrough-enhancing methods (either aminoglycosides or a siRNA-targeting eukaryotic release factor eRF3a (a GTPase that binds eRF1)) to suppress these SCN5A nonsense mutations. When either of readthrough methods was used, the sodium channel proteins were examined by western blot and immunoblotting and recorded by whole cell patch-clamp to observe the functional characterization of the restored channels. Results: Upon readthrough treatment, the sodium currents were restored to the mutant cDNAs. These mutations reduced full-length sodium channel protein levels, and the sodium currents were reduced to 3% of wild-type. The mutant cDNA sodium currents were increased to 30% of wild-type, and the fulllength proteins also increased. However, the functional characterization of these channels from cDNAs carrying p.R1623X and p.S1812X exhibited abnormal biophysical properties, including a negative shift in steady-state sodium channel inactivation, a positive shift in sodium channel activation and robust late sodium currents. The ramp test showed prolonged QT intervals. Conclusion: These results demonstrated that readthrough-enhancing methods effectively suppressed nonsense mutations in SCN5A and restored the expression of full-length channels. However, the restored channels may increase the risk of arrhythmia.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523217666170529074758
2017-02-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523217666170529074758
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test