Skip to content
2000
Volume 14, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background: DNA vaccines provide high tolerability and safety but commonly suffer from suboptimal immunogenicity. We previously reported that a plasmid vector (pATRex), encoding the DNA sequence for the von Willebrand I/A domain of the tumor endothelial marker-8 (TEM8) when given in combination with plasmid-encoded tumor antigens acted as a powerful molecular adjuvant enhancing immunity against breast and melanoma tumors. Aims: In the present study we addressed two unsolved issues; would the adjuvant action of pATRex extend to a DNA vaccine against infectious disease and, if so, what is the mechanistic basis for pATRex adjuvant action? Results: Here we show in a murine malaria vaccine model that co-administration of pATRex potentiates antibody production elicited by an intramuscular injection of plasmid encoding Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5). pATRex enhanced the B-cell response and induced increased IgG1 production consistent with TH2 polarization of the DNA vaccine response. To explore the mechanism of adjuvant action, cells were transfected in vitro with pATRex and this resulted in formation of insoluble intracellular aggregates and apoptotic cell death. Using a structural modeling approach we identified a short peptide sequence (α3-β4) within ATRex responsible for protein aggregation and confirmed that transfection of cells with plasmid encoding this self-assembling peptide similarly triggered intracellular aggregates, caspase activation and cell death. Conclusion: Plasmids encoding aggregationpromoting domains induce formation of insoluble intracellular aggregates that trigger caspase activation and apoptotic cell death leading to activation of the innate immune system thereby acting as genetic adjuvants.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523214666140509114838
2014-06-01
2024-11-02
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523214666140509114838
Loading
  • Article Type: Research Article
Keyword(s): adjuvant; apoptosis; DNA vaccine; molecular adjuvant; plasmid; Vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test