Skip to content
2000
Volume 3, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Cerebral ischemia induces many degenerative cellular reactions, including the release of excitatory amino acids, the formation of oxygen free radicals, Ca2+ overload, the activation of several cellular enzyme systems such as Ca2+dependent proteases, and the initiation of genomic responses that can affect the tissue outside the area of reduced blood flow. Furthermore, increasing evidence indicates that apoptosis contributes to the death of brain cells following cerebral ischemia. Several studies have shown that cerebral ischemia alters the expression of genes, some of which may play protective or harmful roles. Although many genes have the potential to treat cerebral ischemia, target genes or their translated products are often difficult to express, if at all, in brain cells. However, adenovirus-mediated gene transfer can overcome this disadvantage. To date, many treatment strategies have been developed for cerebral ischemia using target genes such as neuronal apoptosis inhibitory protein (NAIP), glial cell line-derived neurotrophic factor (GDNF), sensitive to apoptosis gene (SAG), 150-kDa oxygen-regulated protein (ORP150), etc. Moreover, new vectors and gene delivery systems are constantly being invented although there is no perfect vector to date. Gene therapy could constitute a powerful strategy to treat cerebral ischemia in the near future.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523033347516
2003-02-01
2025-05-22
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523033347516
Loading

  • Article Type:
    Review Article
Keyword(s): adenovirus vector; cerebral infarction; cerebral ischemia; gene therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test