Skip to content
2000
image of CRISPR-Cas9: Transforming Functional Genomics, Precision Medicine, and Drug Development – Opportunities, Challenges, and Future Directions

Abstract

CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) is a groundbreaking gene-editing technology that enables scientists to make precise changes to the DNA of living organisms. It was first discovered in and emerged as a breakthrough tool in molecular biology. This technique is essential because of its adaptability, affordability, and ease of use. It uses the adaptive immune response of bacteria and archaea to repel viral invasions. It significantly influences drug discovery, functional genomics, disease models, and pharmaceutical research. CRISPR-Cas9 is a better and more accurate way to change genes than other methods, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). This technology promotes the generation of double-strand breaks in DNA, allowing for precise genetic alterations required for therapeutic target identification and confirmation. Functional genomics enables high-throughput screening (HTS) to identify gene functions, disease causes, and therapeutic targets. CRISPR-Cas9 increases drug development by enabling Cas9 to create novel antimicrobial drugs and cancer therapies. It has also helped to generate disease models, advance our understanding of neurodegenerative and other diseases, test a variety of chemicals, and facilitate precise genetic changes. Despite its promise, ethical considerations and the possibility of off-target effects require careful evaluation to ensure its safe and effective clinical application. This study investigates the current and future possibilities of CRISPR-Cas9 in drug development, focusing on its transformational influence and addressing the challenges and limitations of its therapeutic application.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232376648250312050239
2025-03-21
2025-06-25
Loading full text...

Full text loading...

References

  1. Gostimskaya I. CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochemistry 2022 87 8 777 788 10.1134/S0006297922080090 36171658
    [Google Scholar]
  2. Hossain M.A. CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. Prog. Mol. Biol. Transl. Sci. 2021 178 63 83 10.1016/bs.pmbts.2021.01.001 33685600
    [Google Scholar]
  3. Xu Y. Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020 18 2401 2415 10.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  4. Gaj T. Sirk S.J. Shui S. Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb. Perspect. Biol. 2016 8 12 a023754 10.1101/cshperspect.a023754 27908936
    [Google Scholar]
  5. Komor A.C. Badran A.H. Liu D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017 169 3 559 10.1016/j.cell.2017.04.005 28431253
    [Google Scholar]
  6. Antoun B.N. Chioni A.M. Dysregulated signalling pathways driving anticancer drug resistance. Int. J. Mol. Sci. 2023 24 15 12222 10.3390/ijms241512222 37569598
    [Google Scholar]
  7. Cornu T.I. Mussolino C. Cathomen T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017 23 4 415 423 10.1038/nm.4313 28388605
    [Google Scholar]
  8. Gaj T. Gersbach C.A. Barbas C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 31 7 397 405 10.1016/j.tibtech.2013.04.004 23664777
    [Google Scholar]
  9. Ghosh D. Venkataramani P. Nandi S. Bhattacharjee S. CRISPR–Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int. 2019 19 1 12 10.1186/s12935‑019‑0726‑0 30636933
    [Google Scholar]
  10. Kosicki M. Tomberg K. Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018 36 8 765 771 10.1038/nbt.4192 30010673
    [Google Scholar]
  11. Li H. Yang Y. Hong W. Huang M. Wu M. Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020 5 1 1 10.1038/s41392‑019‑0089‑y 32296011
    [Google Scholar]
  12. Li K. Ouyang M. Zhan J. Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genom. 2023 3 5 100300 10.1016/j.xgen.2023.100300 37228745
    [Google Scholar]
  13. Chen Y. Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv. Sci. 2018 5 6 1700964 10.1002/advs.201700964 29938175
    [Google Scholar]
  14. Khurana A. Sayed N. Singh V. Khurana I. Allawadhi P. Rawat P.S. Navik U. Pasumarthi S.K. Bharani K.K. Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J. Cell. Biochem. 2022 123 10 1674 1698 10.1002/jcb.30329 36128934
    [Google Scholar]
  15. Cisneros W.J. Cornish D. Hultquist J.F. Application of CRISPR-Cas9 gene editing for hiv host factor discovery and validation. Pathogens 2022 11 8 891 10.3390/pathogens11080891 36015010
    [Google Scholar]
  16. Ning L. Xi J. Zi Y. Chen M. Zou Q. Zhou X. Tang C. Prospects and challenges of CRISPR /Cas9 gene‐editing technology in cancer research. Clin. Genet. 2023 104 6 613 624 10.1111/cge.14424 37706265
    [Google Scholar]
  17. Chan Y.T. Lu Y. Wu J. Zhang C. Tan H.Y. Bian Z. Wang N. Feng Y. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: Overview and perspectives. Theranostics 2022 12 7 3329 3344 10.7150/thno.71144 35547744
    [Google Scholar]
  18. Ling X. Liu T. Innovative CRISPR screening promotes drug target identification. ACS Cent. Sci. 2022 8 11 1477 1479 10.1021/acscentsci.2c01142 36439304
    [Google Scholar]
  19. Yu T. Liu T. Wang Y. Zhao X. Zhang W. Effect of cas9 protein on the seed-target base pair of the sgRNA/DNA hybrid duplex. J. Phys. Chem. B 2023 127 22 4989 4997 10.1021/acs.jpcb.3c00997 37243666
    [Google Scholar]
  20. Kwanten B. Neggers J.E. Daelemans D. Target identification of small molecules using large-scale CRISPR–CAS mutagenesis scanning of essential genes. Methods Mol. Biol. 2022 2377 43 67 10.1007/978‑1‑0716‑1720‑5_3 34709610
    [Google Scholar]
  21. Bhatia S. Pooja Yadav S.K. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int. J. Biol. Macromol. 2023 238 124054 10.1016/j.ijbiomac.2023.124054 36933595
    [Google Scholar]
  22. Bonomo M.E. A small PAM optimises target recognition in the CRISPR-Cas immune system. arXiv:2101.01303 2021 1 9
    [Google Scholar]
  23. Koutsoni E. Konstantakos V. Nentidis A. Krithara A. Paliouras G. Modeling the off-target effects of CRISPR-Cas9 experiments for the treatment of Duchenne Muscular Dystrophy. Proceedings of the 12th Hellenic Conference on Artificial Intelligence 2022, pp. 1-7. 10.1145/3549737.3549747
    [Google Scholar]
  24. Proietti L. Manhart G. Heyes E. Troester S. Grebien F. Arrayed CRISPR/Cas9 screening for the functional validation of cancer genetic dependencies. Bio Protoc. 2022 12 24 e4577 10.21769/BioProtoc.4577 36618092
    [Google Scholar]
  25. Winter M.J. Ono Y. Ball J.S. Walentinsson A. Michaelsson E. Tochwin A. Scholpp S. Tyler C.R. Rees S. Hetheridge M.J. Bohlooly-Y M. A combined human in Silico and CRISPR/Cas9-mediated in vivo zebrafish based approach to provide phenotypic data for supporting early target validation. Front. Pharmacol. 2022 13 827686 10.3389/fphar.2022.827686 35548346
    [Google Scholar]
  26. Bunnik E.M. Roch L.K.G. An introduction to functional genomics and systems biology. Adv. Wound Care. 2013 2 9 490 498 10.1089/wound.2012.0379 24527360
    [Google Scholar]
  27. Pushparaj P.N. Introduction to functional bioinformatics. Essentials of Bioinformatics, Volume I Shaik N. Hakeem K. Banaganapalli B. Cham Springer 2019 235 254
    [Google Scholar]
  28. Satam H. Joshi K. Mangrolia U. Waghoo S. Zaidi G. Rawool S. Thakare R.P. Banday S. Mishra A.K. Das G. Malonia S.K. Next-generation sequencing technology: Current trends and advancements. Biology 2023 12 7 997 10.3390/biology12070997 37508427
    [Google Scholar]
  29. Li T. Yang Y. Qi H. Cui W. Zhang L. Fu X. He X. Liu M. Li P. Yu T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023 8 1 36 10.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  30. Zhang X. Zhang C. Liang C. Li B. Meng F. Ai Y. CRISPR–Cas9 based bacteriophage genome editing. Microbiol. Spectr. 2022 10 4 e00820-22 10.1128/spectrum.00820‑22 35880867
    [Google Scholar]
  31. Frantzesko A. Malysheva V. Shi C. Ding J. Bowes J. Thomson W. Orozco G. Op0222 identification of causal genes and mechanisms by which genetic variation mediates juvenile idiopathic arthritis susceptibility using functional genomics and crispr-cas9. Ann. Rheumat. Dis. 2022 81 1 146 10.1136/annrheumdis‑2022‑eular.196
    [Google Scholar]
  32. Adkar S.S. Brunger J.M. Willard V.P. Wu C.L. Gersbach C.A. Guilak F. Genome engineering for personalized arthritis therapeutics. Trends Mol. Med. 2017 23 10 917 931 10.1016/j.molmed.2017.08.002 28887050
    [Google Scholar]
  33. Tariq M.A. CRISPR-Cas9: The future of precision genome engineering. Futurist. Biotech. 2023 3 1 01 01 10.54393/fbt.v3i01.35
    [Google Scholar]
  34. Zhang J. The therapeutic potential of crispr-cas9 in drug resistance during cancer treatment. Eng. Tech. 2023 45 286 290 10.54097/hset.v45i.7397
    [Google Scholar]
  35. Ngan K.C. Lue N.Z. Lee C. Liau B.B. CRISPR‐suppressor scanning for systematic discovery of drug‐resistance mutations. Curr. Protoc. 2022 2 12 e614 10.1002/cpz1.614 36541895
    [Google Scholar]
  36. Ghasemi S. Dashtaki M.E. CRISPR/Cas9-based gene therapies for fighting drug resistance mediated by cancer stem cells. Curr. Gene Ther. 2023 23 1 41 50 10.2174/1566523222666220831161225 36056851
    [Google Scholar]
  37. Luo M.L. Leenay R.T. Beisel C.L. Current and future prospects for CRISPR‐based tools in bacteria. Biotechnol. Bioeng. 2016 113 5 930 943 10.1002/bit.25851 26460902
    [Google Scholar]
  38. de la Fuente-Núñez C. Lu T. K. CRISPR-Cas9 technology: Applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr. Biol. 2017 9 2 109 122 10.1039/c6ib00140h
    [Google Scholar]
  39. Kiga K. Tan X.E. Ibarra-Chávez R. Watanabe S. Aiba Y. Sato’o Y. Li F.Y. Sasahara T. Cui B. Kawauchi M. Boonsiri T. Thitiananpakorn K. Taki Y. Azam A.H. Suzuki M. Penadés J.R. Cui L. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 2020 11 1 2934 10.1038/s41467‑020‑16731‑6 32523110
    [Google Scholar]
  40. Gomaa A.A. Klumpe H.E. Luo M.L. Selle K. Barrangou R. Beisel C.L. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 2014 5 1 e00928-13 10.1128/mBio.00928‑13 24473129
    [Google Scholar]
  41. McLean B. Istadi A. Clack T. Vankan M. Schramek D. Neely G.G. Pajic M. A CRISPR path to finding vulnerabilities and solving drug resistance: Targeting the diverse cancer landscape and its ecosystem. Adv. Genet. 2022 3 4 2200014 10.1002/ggn2.202200014 36911295
    [Google Scholar]
  42. Mayorga-Ramos A. Zúñiga-Miranda J. Carrera-Pacheco S.E. Barba-Ostria C. Guamán L.P. CRISPR-Cas-based antimicrobials: Design, challenges, and bacterial mechanisms of resistance. ACS Infect. Dis. 2023 9 7 1283 1302 10.1021/acsinfecdis.2c00649 37347230
    [Google Scholar]
  43. Araya P.D. Palmer K.L. Duerkop B.A. CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathog. 2021 17 7 e1009672 10.1371/journal.ppat.1009672 34237097
    [Google Scholar]
  44. Qi Y. Li K. Li Y. Guo D. Xu J. Li Y. Gong W. CRISPR-based diagnostics: A potential tool to address the diagnostic challenges of tuberculosis. Pathogens 2022 11 10 1211 10.3390/pathogens11101211 36297268
    [Google Scholar]
  45. Akbar G. Zia M.A. Ahmad A. Arooj N. Review on-Genome editing tool to combat with multidrug resistant bacteria: Challenges and future perspectives. Pure Appl. Biol. 2020 9 4 2441 2455 10.19045/bspab.2020.90259
    [Google Scholar]
  46. Yang W. Tu Z. Sun Q. Li X.J. CRISPR/Cas9: Implications for modeling and therapy of neurodegenerative diseases. Front. Mol. Neurosci. 2016 9 30 10.3389/fnmol.2016.00030 27199655
    [Google Scholar]
  47. Benz T. Larghero P. Marschalek R. Optimizing CRISPR/Cas9 technologies to develop disease model systems. Klini. Pädiat. 2023 235 03 192 10.1055/s‑0043‑1768500
    [Google Scholar]
  48. Qu J. Liu N. Gao L. Hu J. Sun M. Yu D. Development of CRISPR Cas9, spin-off technologies and their application in model construction and potential therapeutic methods of Parkinson’s disease. Front. Neurosci. 2023 17 1223747 10.3389/fnins.2023.1223747 37483347
    [Google Scholar]
  49. Nasrallah A. Sulpice E. Kobaisi F. Gidrol X. Rachidi W. CRISPR-Cas9 technology for the creation of biological avatars capable of modeling and treating pathologies: From discovery to the latest improvements. Cells 2022 11 22 3615 10.3390/cells11223615 36429042
    [Google Scholar]
  50. Sowbhagya R. Muktha H. Ramakrishnaiah T.N. Surendra A.S. Tanvi Y. Nivitha K. Rajashekara S. CRISPR/Cas-mediated genome editing in mice for the development of drug delivery mechanism. Mol. Biol. Rep. 2023 50 9 7729 7743 10.1007/s11033‑023‑08659‑z 37438488
    [Google Scholar]
  51. González-Romero E. Martínez-Valiente C. García-Ruiz C. Vázquez-Manrique R.P. Cervera J. Sanjuan-Pla A. CRISPR to fix bad blood: A new tool in basic and clinical hematology. Haematologica 2019 104 5 881 893 10.3324/haematol.2018.211359 30923099
    [Google Scholar]
  52. Nojadeh N.J. Eryilmaz B.N.S. Ergüder B.I. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023 22 567 582 10.17179/excli2023‑6155 37636024
    [Google Scholar]
  53. Chen Y. Zheng Y. Kang Y. Yang W. Niu Y. Guo X. Tu Z. Si C. Wang H. Xing R. Pu X. Yang S.H. Li S. Ji W. Li X.J. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum. Mol. Genet. 2015 24 13 3764 3774 10.1093/hmg/ddv120 25859012
    [Google Scholar]
  54. Wang X. Cao C. Huang J. Yao J. Hai T. Zheng Q. Wang X. Zhang H. Qin G. Cheng J. Wang Y. Yuan Z. Zhou Q. Wang H. Zhao J. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci. Rep. 2016 6 1 20620 10.1038/srep20620 26857844
    [Google Scholar]
  55. Rahman M. Bilal M. Shah J.A. Kaushik A. Teissedre P.L. Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson’s Disease. Pharmaceutics 2022 14 6 1252 10.3390/pharmaceutics14061252 35745824
    [Google Scholar]
  56. Geurts M.H. Gandhi S. Boretto M.G. Akkerman N. Derks L.L.M. Son V.G. Celotti M. Harshuk-Shabso S. Peci F. Begthel H. Hendriks D. Schürmann P. Andersson-Rolf A. Lopes C.D.S.S.M. Es V.J.H. Boxtel V.R. Clevers H. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat. Commun. 2023 14 1 4998 10.1038/s41467‑023‑40701‑3 37591832
    [Google Scholar]
  57. Li J. Ma X. Chakravarti D. Shalapour S. DePinho R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021 35 11-12 787 820 10.1101/gad.348226.120 34074695
    [Google Scholar]
  58. Luo L. Ma Y. Zheng Y. Su J. Huang G. Application progress of organoids in colorectal cancer. Front. Cell Dev. Biol. 2022 10 815067 10.3389/fcell.2022.815067 35273961
    [Google Scholar]
  59. Wang Q. Guo F. Jin Y. Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct. Target. Ther. 2022 7 1 336 10.1038/s41392‑022‑01194‑6 36167824
    [Google Scholar]
  60. Xu T. Zheng W. Huang R. High‐throughput screening assays for SARS‐CoV‐2 drug development: Current status and future directions. Drug Discov. Today 2021 26 10 2439 2444 10.1016/j.drudis.2021.05.012 34048893
    [Google Scholar]
  61. a Zhang L. He W. Fu R. Wang S. Chen Y. Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Nucleic Acids Res. 2023 51 18 9880 9893 10.1093/nar/gkad702 37615574
    [Google Scholar]
  62. a Zhang L. He W. Fu R. Wang S. Chen Y. Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Nucleic Acids Res. 2023 51 18 9880 9893 10.1093/nar/gkad702 37615574
    [Google Scholar]
  63. Galappaththi S.L. Katz B. Howze P.H. IV Hoover G. Grelet S. A CRISPR/Cas9-based assay for high-throughput studies of cancer-induced innervation. Cancers 2023 15 7 2026 10.3390/cancers15072026 37046688
    [Google Scholar]
  64. López-Muñoz A.D. Rastrojo A. Martín R. Alcami A. High-throughput engineering of cytoplasmic- and nuclear-replicating large dsDNA viruses by CRISPR/Cas9. J. Gen. Virol. 2022 103 10 001797 10.1099/jgv.0.001797 36260063
    [Google Scholar]
  65. Rossato M. Marcolungo L. Antoni D.L. Lopatriello G. Bellucci E. Cortinovis G. Frascarelli G. Nanni L. Bitocchi E. Vittori D.V. Vincenzi L. Lucchini F. Bett K.E. Ramsay L. Konkin D.J. Delledonne M. Papa R. CRISPR-Cas9-based repeat depletion for high-throughput genotyping of complex plant genomes. Genome Res. 2023 33 5 787 797 10.1101/gr.277628.122 37127332
    [Google Scholar]
  66. Ancos-Pintado R. Bragado-García I. Morales M.L. García-Vicente R. Arroyo-Barea A. Rodríguez-García A. Martínez-López J. Linares M. Hernández-Sánchez M. High-throughput CRISPR screening in hematological neoplasms. Cancers 2022 14 15 3612 10.3390/cancers14153612 35892871
    [Google Scholar]
  67. Beneke T. Engstler M. 2022 Introducing the CRISPR/Cas9 cytosine base editor toolbox ‘LeishBASEedit’–Gene editing and high-throughput screening in Leishmania without requiring DNA double-strand breaks, homologous recombination or donor DNA. bioRxiv 1 6
    [Google Scholar]
  68. Narina S. Connelly J.P. Pruett-Miller S.M. High-throughput analysis of CRISPR-CAS9 editing outcomes in cell and animal models using CRIS.PY. Methods Mol. Biol. 2023 2631 155 182 10.1007/978‑1‑0716‑2990‑1_6 36995667
    [Google Scholar]
  69. Chehelgerdi M. Chehelgerdi M. Khorramian-Ghahfarokhi M. Shafieizadeh M. Mahmoudi E. Eskandari F. Rashidi M. Arshi A. Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024 23 1 9 10.1186/s12943‑023‑01925‑5 38195537
    [Google Scholar]
  70. Rabaan A.A. AlSaihati H. Bukhamsin R. Bakhrebah M.A. Nassar M.S. Alsaleh A.A. Alhashem Y.N. Bukhamseen A.Y. Al-Ruhimy K. Alotaibi M. Alsubki R.A. Alahmed H.E. Al-Abdulhadi S. Alhashem F.A. Alqatari A.A. Alsayyah A. Farahat R.A. Abdulal R.H. Al-Ahmed A.H. Imran M. Mohapatra R.K. Application of CRISPR/Cas9 technology in cancer treatment: A future direction. Curr. Oncol. 2023 30 2 1954 1976 10.3390/curroncol30020152 36826113
    [Google Scholar]
  71. Ayanoğlu F.B. Elçin A.E. Elçin Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020 44 2 110 120 10.3906/biy‑1912‑52
    [Google Scholar]
  72. Shao M. Xu T.R. Chen C.S. The big bang of genome editing technology: Development and application of the CRISPR/Cas9 system in disease animal models. Zool. Res. 2016 37 4 191 204 10.13918/j.issn.2095‑8137.2016.4.191 27469250
    [Google Scholar]
  73. Zheng R. Zhang L. Parvin R. Su L. Chi J. Shi K. Ye F. Huang X. Progress and perspective of CRISPR‐CAS9 technology in translational medicine. Adv. Sci. 2023 10 25 2300195 10.1002/advs.202300195 37356052
    [Google Scholar]
  74. Selvakumar S.C. Preethi K.A. Ross K. Tusubira D. Khan M.W.A. Mani P. Rao T.N. Sekar D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol. Cancer 2022 21 1 83 10.1186/s12943‑022‑01565‑1 35331236
    [Google Scholar]
  75. Zhu Y. Advances in CRISPR/Cas9. BioMed Res. Int. 2022 2022 1 9978571 10.1155/2022/9978571 36193328
    [Google Scholar]
  76. Mishra G. Srivastava K. Rais J. Dixit M. Singh K.V. Mishra C.L. CRISPR-Cas9: A potent gene-editing tool for the treatment of cancer. Curr. Mol. Med. 2024 24 2 191 204 10.2174/1566524023666230213094308 36788695
    [Google Scholar]
  77. Varanasi A. The applications of the CRISPR/Cas9 gene-editing system in treating human diseases. Authorea 2022 1 9 10.22541/au.166023612.27704269/v1
    [Google Scholar]
  78. Zheng Q. Wang W. Zhou Y. Mo J. Chang X. Zha Z. Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: Classification and biomedical applications. Biomater. Sci. 2023 11 16 5361 5389 10.1039/D3BM00788J 37381725
    [Google Scholar]
  79. Liu J. Ma J. Comparative Analysis of Machine Learning Algorithms for Predicting On-Target and Off-Target Effects of CRISPR-Cas13d for gene editing. arXiv:2305.06769 2023 1 6
    [Google Scholar]
  80. Humbert O. Davis L. Maizels N. Targeted gene therapies: Tools, applications, optimization. Crit. Rev. Biochem. Mol. Biol. 2012 47 3 264 281 10.3109/10409238.2012.658112 22530743
    [Google Scholar]
  81. Roth T.L. Marson A. Genetic disease and therapy. Annu. Rev. Pathol. 2021 16 1 145 166 10.1146/annurev‑pathmechdis‑012419‑032626 33497260
    [Google Scholar]
  82. Liu Q. Yang J. Xing Y. Zhao Y. Liu Y. Development of delivery strategies for CRISPR‐Cas9 genome editing. BMEMat 2023 1 3 e12025 10.1002/bmm2.12025
    [Google Scholar]
  83. Uddin F. Rudin C.M. Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 2020 10 1387 10.3389/fonc.2020.01387 32850447
    [Google Scholar]
  84. Karimian A. Azizian K. Parsian H. Rafieian S. Shafiei-Irannejad V. Kheyrollah M. Yousefi M. Majidinia M. Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J. Cell. Physiol. 2019 234 8 12267 12277 10.1002/jcp.27972 30697727
    [Google Scholar]
  85. Xiao-Jie L. Hui-Ying X. Zun-Ping K. Jin-Lian C. Li-Juan J. CRISPR-Cas9: A new and promising player in gene therapy. J. Med. Genet. 2015 52 5 289 296 10.1136/jmedgenet‑2014‑102968 25713109
    [Google Scholar]
  86. Mollanoori H. Teimourian S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol. Lett. 2018 40 6 907 914 10.1007/s10529‑018‑2555‑y 29704220
    [Google Scholar]
  87. Yao T. Yuan G. Lu H. Liu Y. Zhang J. Tuskan G.A. Muchero W. Chen J.G. Yang X. CRISPR/Cas9-based gene activation and base editing in Populus. Hortic. Res. 2023 10 6 uhad085 10.1093/hr/uhad085 37323227
    [Google Scholar]
  88. Yang L. Li H. Han Y. Song Y. Wei M. Fang M. Sun Y. CRISPR/Cas9 gene editing system can alter gene expression and induce DNA damage accumulation. Genes 2023 14 4 806 10.3390/genes14040806 37107564
    [Google Scholar]
  89. Chao R. Fei J. Off-Target Effects Of CRISPR/Cas9 and Their Solutions. Eng. Tech. 2023 45 296 301 10.54097/hset.v45i.7444
    [Google Scholar]
  90. Guo C. Ma X. Gao F. Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023 11 1143157 10.3389/fbioe.2023.1143157 36970624
    [Google Scholar]
  91. Rostain W. Grebert T. Vyhovskyi D. Pizarro P.T. Tshinsele-Van Bellingen G. Cui L. Bikard D. Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Res. 2023 51 7 3485 3496 10.1093/nar/gkad170 36929199
    [Google Scholar]
  92. Khan Z. Khan S.H. Ahmed A. Iqbal M.U. Mubarik M.S. Ghouri M.Z. Ahmad F. Yaseen S. Ali Z. Khan A.A. Azhar M.T. Genome editing in cotton: Challenges and opportunities. J. Cotton Res. 2023 6 1 3 10.1186/s42397‑023‑00140‑3
    [Google Scholar]
  93. Nakamae K. Bono H. DANGER analysis: Risk-averse on/off-target assessment for CRISPR editing without a reference genome. Bioinform. Adv. 2023 3 1 vbad114 10.1093/bioadv/vbad114 37661945
    [Google Scholar]
  94. Guan Z. Jiang Z. Transformer-based anti-noise models for CRISPR-Cas9 off-target activities prediction. Brief. Bioinform. 2023 24 3 bbad127 10.1093/bib/bbad127 37068307
    [Google Scholar]
  95. Zhang S. Shen J. Wang X. Sun X. Wu Y. Zhang M.R. Wang R. Hu K. Integration of organoids in peptide drug discovery: Rise of the high‐throughput screening. VIEW 2023 4 6 20230010 10.1002/VIW.20230010
    [Google Scholar]
  96. Ozden F. Minary P. Quantifying uncertainty in off-target activity for CRISPR guide RNAs. Nucleic Acids Res. 2023 52 18 e87 10.1093/nar/gkae759
    [Google Scholar]
  97. Imani A. Valiant J. Gunawan A.A.S. Deep learning-based approach on sgRNA off-target prediction in CRISPR/Cas9. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE) IEEE, 2023, pp. 444-440. 10.1109/ICCoSITE57641.2023.10127682
    [Google Scholar]
  98. D’SOUZA R.F. A scoping review on the ethical issues in the use of crispr-cas9 in the creation of human disease models. J. Clin. Diagn. Res. 2023 17 12 1 6 10.7860/JCDR/2023/68275.18809
    [Google Scholar]
  99. Lorenzo D. Esquerda M. Palau F. Cambra F.J. Bioética G.I. Ethics and genomic editing using the crispr-cas9 technique: Challenges and conflicts. NanoEthics 2022 16 3 313 321 10.1007/s11569‑022‑00425‑y
    [Google Scholar]
  100. Reyes P.A. Lanner F. Towards a CRISPR view of early human development: Applications, limitations and ethical concerns of genome editing in human embryos. Development 2017 144 1 3 7 10.1242/dev.139683 28049687
    [Google Scholar]
  101. Sartori-Maldonado R. Montaser H. Soppa I. Balaz M. Puttonen H. Eurola S. Wartiovaara K. CRISPR/Cas9 DNA synthesis disruption as a tool to control cell proliferation in vitro and in vivo bioRxiv. 2023 1 9 10.1101/2023.06.26.546441
    [Google Scholar]
  102. Amendola M. Brusson M. Miccio A. CRISPRthripsis: The risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl. Med. 2022 11 10 1003 1009 10.1093/stcltm/szac064 36048170
    [Google Scholar]
  103. Höijer I. Emmanouilidou A. Östlund R. Schendel V.R. Bozorgpana S. Tijsterman M. Feuk L. Gyllensten U. Hoed D.M. Ameur A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 2022 13 1 627 10.1038/s41467‑022‑28244‑5 35110541
    [Google Scholar]
  104. Maserat E. Integration of artificial intelligence and CRISPR/Cas9 system for vaccine design. Cancer Inform. 2022 21 11769351221140102 10.1177/11769351221140102 36452267
    [Google Scholar]
  105. Bhat A.A. Nisar S. Mukherjee S. Saha N. Yarravarapu N. Lone S.N. Masoodi T. Chauhan R. Maacha S. Bagga P. Dhawan P. Akil A.A.S. El-Rifai W. Uddin S. Reddy R. Singh M. Macha M.A. Haris M. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J. Transl. Med. 2022 20 1 534 10.1186/s12967‑022‑03765‑1 36401282
    [Google Scholar]
  106. Xiang X. Corsi G.I. Anthon C. Qu K. Pan X. Liang X. Han P. Dong Z. Liu L. Zhong J. Ma T. Wang J. Zhang X. Jiang H. Xu F. Liu X. Xu X. Wang J. Yang H. Bolund L. Church G.M. Lin L. Gorodkin J. Luo Y. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 2021 12 1 3238 10.1038/s41467‑021‑23576‑0 34050182
    [Google Scholar]
  107. Esmail S. Danter W.R. DeepNEU©: Introducing aiCRISPRL, a hybrid AI stem cell and organoid simulation platform with broad gene editing capabilities and applications. bioRxiv 2022 1 9 10.1101/2022.06.18.496679
    [Google Scholar]
  108. Maggio I. Zittersteijn H.A. Wang Q. Liu J. Janssen J.M. Ojeda I.T. Maarel D.V.S.M. Lankester A.C. Hoeben R.C. Gonçalves M.A.F.V. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther. 2020 27 5 209 225 10.1038/s41434‑019‑0119‑y 31900423
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232376648250312050239
Loading
/content/journals/cgt/10.2174/0115665232376648250312050239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test