Skip to content
2000
image of Targeting Undruggable Proteins: The siRNA Revolution Beyond Small Molecules - Advances, Challenges, and Future Prospects in Therapeutic Innovation

Abstract

The field of drug discovery has long been challenged by the existence of “undruggable” proteins - targets that have resisted traditional small molecule approaches due to their structural or functional characteristics. This review explores the revolutionary potential of small interfering RNA (siRNA) technology in addressing these elusive targets, marking a paradigm shift in therapeutic development. We discuss the historical development of siRNA technology and its unique mechanism of action, which allows for the silencing of virtually any gene, including those coding for proteins previously deemed undruggable. The review provides a comprehensive analysis of the challenges in targeting undruggable proteins and how siRNA approaches are overcoming these obstacles. We examine several case studies of undruggable targets being successfully addressed by siRNA, including oncogenic proteins like KRAS and c-Myc, transcription factors such as NF-κB and STAT3, and proteins involved in complex protein-protein interactions. The article delves into the latest advances in siRNA design, delivery systems, and targeting strategies, highlighting innovations that enhance specificity and reduce off-target effects. We also discuss the challenges facing siRNA therapeutics, including delivery obstacles, potential immune responses, and regulatory considerations. The review concludes with an exploration of future directions, including combination therapies, personalized medicine approaches, and emerging technologies that complement siRNA strategies. By providing a thorough examination of the advances, challenges, and prospects of using siRNA to target undruggable proteins, this review underscores the transformative potential of this technology in expanding the landscape of therapeutic targets and ushering in a new era of precision medicine.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232357160250123113148
2025-02-04
2025-06-22
Loading full text...

Full text loading...

References

  1. Esau C.C. Monia B.P. Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev. 2007 59 2-3 101 114 10.1016/j.addr.2007.03.007 17462786
    [Google Scholar]
  2. Adams D. Gonzalez-Duarte A. O’Riordan W.D. Yang C.C. Ueda M. Kristen A.V. Tournev I. Schmidt H.H. Coelho T. Berk J.L. Lin K.P. Vita G. Attarian S. Planté-Bordeneuve V. Mezei M.M. Campistol J.M. Buades J. Brannagan T.H. III Kim B.J. Oh J. Parman Y. Sekijima Y. Hawkins P.N. Solomon S.D. Polydefkis M. Dyck P.J. Gandhi P.J. Goyal S. Chen J. Strahs A.L. Nochur S.V. Sweetser M.T. Garg P.P. Vaishnaw A.K. Gollob J.A. Suhr O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018 379 1 11 21 10.1056/NEJMoa1716153 29972753
    [Google Scholar]
  3. Kulkarni J.A. Cullis P.R. van der Meel R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther. 2018 28 3 146 157 10.1089/nat.2018.0721 29683383
    [Google Scholar]
  4. Hanna J. Hossain G.S. Kocerha J. The potential for microRNA therapeutics and clinical research. Front. Genet. 2019 10 478 10.3389/fgene.2019.00478 31156715
    [Google Scholar]
  5. Sen G.L. Blau H.M. A brief history of RNAi: The silence of the genes. FASEB J. 2006 20 9 1293 1299 10.1096/fj.06‑6014rev 16816104
    [Google Scholar]
  6. Fire A. Xu S. Montgomery M.K. Kostas S.A. Driver S.E. Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 391 6669 806 811 10.1038/35888 9486653
    [Google Scholar]
  7. Tuschl T. Zamore P.D. Lehmann R. Bartel D.P. Sharp P.A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999 13 24 3191 3197 10.1101/gad.13.24.3191 10617568
    [Google Scholar]
  8. McCaffrey A.P. Meuse L. Pham T.T.T. Conklin D.S. Hannon G.J. Kay M.A. RNA interference in adult mice. Nature 2002 418 6893 38 39 10.1038/418038a 12097900
    [Google Scholar]
  9. Kaiser P.K. Symons R.C.A. Shah S.M. Quinlan E.J. Tabandeh H. Do D.V. Reisen G. Lockridge J.A. Short B. Guerciolini R. Nguyen Q.D. Sirna-027 Study Investigators RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am. J. Ophthalmol. 2010 150 1 33 39.e2 10.1016/j.ajo.2010.02.006 20609706
    [Google Scholar]
  10. Whitehead K.A. Langer R. Anderson D.G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009 8 2 129 138 10.1038/nrd2742 19180106
    [Google Scholar]
  11. Hu B. Zhong L. Weng Y. Peng L. Huang Y. Zhao Y. Liang X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020 5 1 101 10.1038/s41392‑020‑0207‑x 32561705
    [Google Scholar]
  12. Hopkins A.L. Groom C.R. The druggable genome. Nat. Rev. Drug Discov. 2002 1 9 727 730 10.1038/nrd892 12209152
    [Google Scholar]
  13. Verdine G.L. Walensky L.D. The challenge of drugging undruggable targets in cancer: Lessons learned from targeting BCL-2 family members. Clin. Cancer Res. 2007 13 24 7264 7270 10.1158/1078‑0432.CCR‑07‑2184 18094406
    [Google Scholar]
  14. Hollander M. Do T. Will T. Helms V. Detecting rewiring events in protein-protein interaction networks based on transcriptomic data. Front. Bioinform. 2021 1 724297 10.3389/fbinf.2021.724297 36303788
    [Google Scholar]
  15. Latysheva N.S. Oates M.E. Maddox L. Flock T. Gough J. Buljan M. Weatheritt R.J. Babu M.M. Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer. Mol. Cell 2016 63 4 579 592 10.1016/j.molcel.2016.07.008 27540857
    [Google Scholar]
  16. Dang C.V. Reddy E.P. Shokat K.M. Soucek L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 2017 17 8 502 508 10.1038/nrc.2017.36 28643779
    [Google Scholar]
  17. Lazo J.S. Sharlow E.R. Drugging undruggable molecular cancer targets. Annu. Rev. Pharmacol. Toxicol. 2016 56 1 23 40 10.1146/annurev‑pharmtox‑010715‑103440 26527069
    [Google Scholar]
  18. Wright P.E. Dyson H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015 16 1 18 29 10.1038/nrm3920 25531225
    [Google Scholar]
  19. Nero T.L. Morton C.J. Holien J.K. Wielens J. Parker M.W. Oncogenic protein interfaces: Small molecules, big challenges. Nat. Rev. Cancer 2014 14 4 248 262 10.1038/nrc3690 24622521
    [Google Scholar]
  20. Valeur E. Guéret S.M. Adihou H. Gopalakrishnan R. Lemurell M. Waldmann H. Grossmann T.N. Plowright A.T. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 2017 56 35 10294 10323 10.1002/anie.201611914 28186380
    [Google Scholar]
  21. Banks W.A. From blood–brain barrier to blood–brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 2016 15 4 275 292 10.1038/nrd.2015.21 26794270
    [Google Scholar]
  22. Crews C.M. Targeting the undruggable proteome: The small molecules of my dreams. Chem. Biol. 2010 17 6 551 555 10.1016/j.chembiol.2010.05.011 20609404
    [Google Scholar]
  23. Kim D.H. Behlke M.A. Rose S.D. Chang M.S. Choi S. Rossi J.J. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 2005 23 2 222 226 10.1038/nbt1051 15619617
    [Google Scholar]
  24. Jackson A.L. Linsley P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010 9 1 57 67 10.1038/nrd3010 20043028
    [Google Scholar]
  25. Hammond S.M. Bernstein E. Beach D. Hannon G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000 404 6775 293 296 10.1038/35005107 10749213
    [Google Scholar]
  26. Liu J. Carmell M.A. Rivas F.V. Marsden C.G. Thomson J.M. Song J.J. Hammond S.M. Joshua-Tor L. Hannon G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004 305 5689 1437 1441 10.1126/science.1102513 15284456
    [Google Scholar]
  27. Iwakawa H. Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol. Cell 2022 82 1 30 43 10.1016/j.molcel.2021.11.026 34942118
    [Google Scholar]
  28. Dykxhoorn D.M. Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 2005 56 1 401 423 10.1146/annurev.med.56.082103.104606 15660519
    [Google Scholar]
  29. Moore A.R. Rosenberg S.C. McCormick F. Malek S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020 19 8 533 552 10.1038/s41573‑020‑0068‑6 32528145
    [Google Scholar]
  30. Yuan T.L. Amzallag A. Bagni R. Yi M. Afghani S. Burgan W. Fer N. Strathern L.A. Powell K. Smith B. Waters A.M. Drubin D. Thomson T. Liao R. Greninger P. Stein G.T. Murchie E. Cortez E. Egan R.K. Procter L. Bess M. Cheng K.T. Lee C.S. Lee L.C. Fellmann C. Stephens R. Luo J. Lowe S.W. Benes C.H. McCormick F. Differential effector engagement by oncogenic KRAS. Cell Rep. 2018 22 7 1889 1902 10.1016/j.celrep.2018.01.051 29444439
    [Google Scholar]
  31. Chen H. Liu H. Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 2018 3 1 5 10.1038/s41392‑018‑0008‑7 29527331
    [Google Scholar]
  32. Yin H. Kanasty R.L. Eltoukhy A.A. Vegas A.J. Dorkin J.R. Anderson D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014 15 8 541 555 10.1038/nrg3763 25022906
    [Google Scholar]
  33. Zhang Q. Lenardo M.J. Baltimore D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 2017 168 1-2 37 57 10.1016/j.cell.2016.12.012 28086098
    [Google Scholar]
  34. Khan I.W. Dad Ullah M.U. Choudhry M. Ali M.J. Ali M.A. Lam S.L.K. Shah P.A. Kaur S.P. Lau D.T.Y. Novel therapies of hepatitis B and D. Microorganisms 2021 9 12 2607 10.3390/microorganisms9122607 34946209
    [Google Scholar]
  35. Johnson D.E. O’Keefe R.A. Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018 15 4 234 248 10.1038/nrclinonc.2018.8 29405201
    [Google Scholar]
  36. Yang P.L. Liu L.X. Li E.M. Xu L.Y. STAT3, the challenge for chemotherapeutic and radiotherapeutic efficacy. Cancers 2020 12 9 2459 10.3390/cancers12092459 32872659
    [Google Scholar]
  37. Zhang Q. Zeng S.X. Lu H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell. Biochem. 2014 85 281 319 10.1007/978‑94‑017‑9211‑0_16 25201201
    [Google Scholar]
  38. Tabrizi S.J. Leavitt B.R. Landwehrmeyer G.B. Wild E.J. Saft C. Barker R.A. Blair N.F. Craufurd D. Priller J. Rickards H. Rosser A. Kordasiewicz H.B. Czech C. Swayze E.E. Norris D.A. Baumann T. Gerlach I. Schobel S.A. Paz E. Smith A.V. Bennett C.F. Lane R.M. Phase 1–2a IONIS-HTTRx Study Site Teams Targeting huntingtin expression in patients with huntington’s disease. N. Engl. J. Med. 2019 380 24 2307 2316 10.1056/NEJMoa1900907 31059641
    [Google Scholar]
  39. DeVos S.L. Miller R.L. Schoch K.M. Holmes B.B. Kebodeaux C.S. Wegener A.J. Chen G. Shen T. Tran H. Nichols B. Zanardi T.A. Kordasiewicz H.B. Swayze E.E. Bennett C.F. Diamond M.I. Miller T.M. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 2017 9 374 eaag0481 10.1126/scitranslmed.aag0481 28123067
    [Google Scholar]
  40. Basu-Shrivastava M. Kozoriz A. Desagher S. Lassot I. To ubiquitinate or not to ubiquitinate: TRIM17 in cell life and death. Cells 2021 10 5 1235 10.3390/cells10051235 34069831
    [Google Scholar]
  41. Jiang J. Zhu Q. Gendron T.F. Saberi S. McAlonis-Downes M. Seelman A. Stauffer J.E. Jafar-nejad P. Drenner K. Schulte D. Chun S. Sun S. Ling S.C. Myers B. Engelhardt J. Katz M. Baughn M. Platoshyn O. Marsala M. Watt A. Heyser C.J. Ard M.C. De Muynck L. Daughrity L.M. Swing D.A. Tessarollo L. Jung C.J. Delpoux A. Utzschneider D.T. Hedrick S.M. de Jong P.J. Edbauer D. Van Damme P. Petrucelli L. Shaw C.E. Bennett C.F. Da Cruz S. Ravits J. Rigo F. Cleveland D.W. Lagier-Tourenne C. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 2016 90 3 535 550 10.1016/j.neuron.2016.04.006 27112497
    [Google Scholar]
  42. Ray K.K. Wright R.S. Kallend D. Koenig W. Leiter L.A. Raal F.J. Bisch J.A. Richardson T. Jaros M. Wijngaard P.L.J. Kastelein J.J.P. ORION-10 and ORION-11 Investigators Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 2020 382 16 1507 1519 10.1056/NEJMoa1912387 32187462
    [Google Scholar]
  43. Patel V. Joharapurkar A. Kshirsagar S. Sutariya B. Patel M. Patel H. Pandey D. Patel D. Ranvir R. Kadam S. Bahekar R. Jain M. Coagonist of GLP-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc. Hematol. Agents Med. Chem. 2018 16 1 35 43 10.2174/1871525716666180118152158 29357809
    [Google Scholar]
  44. Schreiber R. Xie H. Schweiger M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 6 880 899 10.1016/j.bbalip.2018.10.008 30367950
    [Google Scholar]
  45. Behan F.M. Iorio F. Picco G. Gonçalves E. Beaver C.M. Migliardi G. Santos R. Rao Y. Sassi F. Pinnelli M. Ansari R. Harper S. Jackson D.A. McRae R. Pooley R. Wilkinson P. van der Meer D. Dow D. Buser-Doepner C. Bertotti A. Trusolino L. Stronach E.A. Saez-Rodriguez J. Yusa K. Garnett M.J. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 2019 568 7753 511 516 10.1038/s41586‑019‑1103‑9 30971826
    [Google Scholar]
  46. Subramanian A. Narayan R. Corsello S.M. Peck D.D. Natoli T.E. Lu X. Gould J. Davis J.F. Tubelli A.A. Asiedu J.K. Lahr D.L. Hirschman J.E. Liu Z. Donahue M. Julian B. Khan M. Wadden D. Smith I.C. Lam D. Liberzon A. Toder C. Bagul M. Orzechowski M. Enache O.M. Piccioni F. Johnson S.A. Lyons N.J. Berger A.H. Shamji A.F. Brooks A.N. Vrcic A. Flynn C. Rosains J. Takeda D.Y. Hu R. Davison D. Lamb J. Ardlie K. Hogstrom L. Greenside P. Gray N.S. Clemons P.A. Silver S. Wu X. Zhao W.N. Read-Button W. Wu X. Haggarty S.J. Ronco L.V. Boehm J.S. Schreiber S.L. Doench J.G. Bittker J.A. Root D.E. Wong B. Golub T.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017 171 6 1437 1452.e17 10.1016/j.cell.2017.10.049 29195078
    [Google Scholar]
  47. Wu S.Y. Lopez-Berestein G. Calin G.A. Sood A.K. RNAi therapies: Drugging the undruggable. Sci. Transl. Med. 2014 6 240 240ps7 10.1126/scitranslmed.3008362 24920658
    [Google Scholar]
  48. Naito Y. Ui-Tei K. siRNA design software for a target gene-specific RNA interference. Front. Genet. 2012 3 102 10.3389/fgene.2012.00102 22701467
    [Google Scholar]
  49. Laganà A. Acunzo M. Romano G. Pulvirenti A. Veneziano D. Cascione L. Giugno R. Gasparini P. Shasha D. Ferro A. Croce C.M. miR-Synth: A computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res. 2014 42 9 5416 5425 10.1093/nar/gku202 24627222
    [Google Scholar]
  50. Anderson EM Birmingham A Baskerville S Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA N Y N 2008 14 5 853 861 10.1261/rna.704708
    [Google Scholar]
  51. Sohail M. Doran G. Riedemann J. Macaulay V. Southern E.M. A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res. 2003 31 7 38e 38 10.1093/nar/gng038 12655026
    [Google Scholar]
  52. Tsubaki K. Hammill M.L. Varley A.J. Kitamura M. Okauchi T. Desaulniers J.P. Synthesis and evaluation of neutral phosphate triester backbone-modified siRNAs. ACS Med. Chem. Lett. 2020 11 7 1457 1462 10.1021/acsmedchemlett.0c00232 32676154
    [Google Scholar]
  53. Beaucage S.L. Solid-phase synthesis of siRNA oligonucleotides. Curr. Opin. Drug Discov. Devel. 2008 11 2 203 216 18283608
    [Google Scholar]
  54. Paul S. Gray D. Caswell J. Brooks J. Ye W. Moody T.S. Radinov R. Nechev L. Convergent biocatalytic mediated synthesis of siRNA. ACS Chem. Biol. 2023 18 10 2183 2187 10.1021/acschembio.3c00071 37061926
    [Google Scholar]
  55. Ye G. Beverly M. The use of strong anion‐exchange (SAX) magnetic particles for the extraction of therapeutic siRNA and their analysis by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2011 25 21 3207 3215 10.1002/rcm.5221 22006382
    [Google Scholar]
  56. Khvorova A. Watts J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017 35 3 238 248 10.1038/nbt.3765 28244990
    [Google Scholar]
  57. Nair J.K. Willoughby J.L.S. Chan A. Charisse K. Alam M.R. Wang Q. Hoekstra M. Kandasamy P. Kel’in A.V. Milstein S. Taneja N. O’Shea J. Shaikh S. Zhang L. van der Sluis R.J. Jung M.E. Akinc A. Hutabarat R. Kuchimanchi S. Fitzgerald K. Zimmermann T. van Berkel T.J.C. Maier M.A. Rajeev K.G. Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014 136 49 16958 16961 10.1021/ja505986a 25434769
    [Google Scholar]
  58. Mohr S.E. Smith J.A. Shamu C.E. Neumüller R.A. Perrimon N. RNAi screening comes of age: Improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 2014 15 9 591 600 10.1038/nrm3860 25145850
    [Google Scholar]
  59. Kampmann M. Horlbeck M.A. Chen Y. Tsai J.C. Bassik M.C. Gilbert L.A. Villalta J.E. Kwon S.C. Chang H. Kim V.N. Weissman J.S. Next-generation libraries for robust RNA interference-based genome-wide screens. Proc. Natl. Acad. Sci. USA 2015 112 26 E3384 E3391 10.1073/pnas.1508821112 26080438
    [Google Scholar]
  60. Fellmann C. Hoffmann T. Sridhar V. Hopfgartner B. Muhar M. Roth M. Lai D.Y. Barbosa I.A.M. Kwon J.S. Guan Y. Sinha N. Zuber J. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 2013 5 6 1704 1713 10.1016/j.celrep.2013.11.020 24332856
    [Google Scholar]
  61. Pandey A.P. Sawant K.K. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C 2016 68 904 918 10.1016/j.msec.2016.07.066 27524093
    [Google Scholar]
  62. Ding Y. Jiang Z. Saha K. Kim C.S. Kim S.T. Landis R.F. Rotello V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014 22 6 1075 1083 10.1038/mt.2014.30 24599278
    [Google Scholar]
  63. Kotelianski V. Zatsepin T. Kotelevtsev Y. Lipid nanoparticles for targeted siRNA delivery – Going from bench to bedside. Int. J. Nanomedicine 2016 11 3077 3086 10.2147/IJN.S106625 27462152
    [Google Scholar]
  64. Semple S.C. Akinc A. Chen J. Sandhu A.P. Mui B.L. Cho C.K. Sah D.W.Y. Stebbing D. Crosley E.J. Yaworski E. Hafez I.M. Dorkin J.R. Qin J. Lam K. Rajeev K.G. Wong K.F. Jeffs L.B. Nechev L. Eisenhardt M.L. Jayaraman M. Kazem M. Maier M.A. Srinivasulu M. Weinstein M.J. Chen Q. Alvarez R. Barros S.A. De S. Klimuk S.K. Borland T. Kosovrasti V. Cantley W.L. Tam Y.K. Manoharan M. Ciufolini M.A. Tracy M.A. de Fougerolles A. MacLachlan I. Cullis P.R. Madden T.D. Hope M.J. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010 28 2 172 176 10.1038/nbt.1602 20081866
    [Google Scholar]
  65. Grimm D. Streetz K.L. Jopling C.L. Storm T.A. Pandey K. Davis C.R. Marion P. Salazar F. Kay M.A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006 441 7092 537 541 10.1038/nature04791 16724069
    [Google Scholar]
  66. Büning H. Srivastava A. Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol. Ther. Methods Clin. Dev. 2019 12 248 265 10.1016/j.omtm.2019.01.008 30815511
    [Google Scholar]
  67. Fujiki H. Sueoka E. Watanabe T. Suganuma M. Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J. Cancer Prev. 2015 20 1 1 4 10.15430/JCP.2015.20.1.1 25853098
    [Google Scholar]
  68. Andrade S. Nunes D. Dabur M. Ramalho M.J. Pereira M.C. Loureiro J.A. Therapeutic potential of natural compounds in neurodegenerative diseases: Insights from clinical trials. Pharmaceutics 2023 15 1 212 10.3390/pharmaceutics15010212 36678841
    [Google Scholar]
  69. Zhou J. Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017 16 3 181 202 10.1038/nrd.2016.199 27807347
    [Google Scholar]
  70. Dassie J.P. Liu X. Thomas G.S. Whitaker R.M. Thiel K.W. Stockdale K.R. Meyerholz D.K. McCaffrey A.P. McNamara J.O. II Giangrande P.H. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 2009 27 9 839 846 10.1038/nbt.1560 19701187
    [Google Scholar]
  71. Suhr O.B. Coelho T. Buades J. Pouget J. Conceicao I. Berk J. Schmidt H. Waddington-Cruz M. Campistol J.M. Bettencourt B.R. Vaishnaw A. Gollob J. Adams D. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: A phase II multi-dose study. Orphanet J. Rare Dis. 2015 10 1 109 10.1186/s13023‑015‑0326‑6 26338094
    [Google Scholar]
  72. Palanca-Wessels M.C. Booth G.C. Convertine A.J. Lundy B.B. Berguig G.Y. Press M.F. Stayton P.S. Press O.W. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget 2016 7 8 9561 9575 10.18632/oncotarget.7076 26840082
    [Google Scholar]
  73. Jiang T. Zhang Z. Zhang Y. Lv H. Zhou J. Li C. Hou L. Zhang Q. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 2012 33 36 9246 9258 10.1016/j.biomaterials.2012.09.027 23031530
    [Google Scholar]
  74. MacEwan S.R. Chilkoti A. Harnessing the power of cell‐penetrating peptides: Activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013 5 1 31 48 10.1002/wnan.1197 22977001
    [Google Scholar]
  75. Zhao Y. Wang W. Guo S. Wang Y. Miao L. Xiong Y. Huang L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun. 2016 7 1 11822 10.1038/ncomms11822 27264609
    [Google Scholar]
  76. Dosio F. Arpicco S. Stella B. Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev. 2016 97 204 236 10.1016/j.addr.2015.11.011 26592477
    [Google Scholar]
  77. Kumar L. Verma S. Vaidya B. Gupta V. Exosomes: Natural carriers for siRNA delivery. Curr. Pharm. Des. 2015 21 31 4556 4565 10.2174/138161282131151013190112 26486142
    [Google Scholar]
  78. Biswas S. Torchilin V. Dendrimers for siRNA delivery. Pharmaceuticals 2013 6 2 161 183 10.3390/ph6020161 24275946
    [Google Scholar]
  79. Bechara C. Sagan S. Cell‐penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013 587 12 1693 1702 10.1016/j.febslet.2013.04.031 23669356
    [Google Scholar]
  80. Li S. Jiang Q. Liu S. Zhang Y. Tian Y. Song C. Wang J. Zou Y. Anderson G.J. Han J.Y. Chang Y. Liu Y. Zhang C. Chen L. Zhou G. Nie G. Yan H. Ding B. Zhao Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018 36 3 258 264 10.1038/nbt.4071 29431737
    [Google Scholar]
  81. Cheng Z. Al Zaki A. Hui J.Z. Muzykantov V.R. Tsourkas A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012 338 6109 903 910 10.1126/science.1226338 23161990
    [Google Scholar]
  82. García-González J. Ruiz-Bañobre J. Afonso-Afonso F.J. Amenedo-Gancedo M. Areses-Manrique M.C. Campos-Balea B. Casal-Rubio J. Fernández-Núñez N. Fírvida Pérez J.L. Lázaro-Quintela M. Pérez Parente D. Crama L. Ruiz-Gracia P. Santomé-Couto L. León-Mateos L. PD-(L)1 inhibitors in combination with chemotherapy as first-line treatment for non-small-cell lung cancer: A pairwise meta-analysis. J. Clin. Med. 2020 9 7 2093 10.3390/jcm9072093 32635291
    [Google Scholar]
  83. Shi L. Chen S. Yang L. Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 2013 6 1 74 10.1186/1756‑8722‑6‑74 24283718
    [Google Scholar]
  84. Fellmann C. Gowen B.G. Lin P.C. Doudna J.A. Corn J.E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 2017 16 2 89 100 10.1038/nrd.2016.238 28008168
    [Google Scholar]
  85. Guo W. Chen W. Yu W. Huang W. Deng W. Small interfering RNA-based molecular therapy of cancers. Chin. J. Cancer 2013 32 9 488 493 10.5732/cjc.012.10280 23327796
    [Google Scholar]
  86. Hossain D.M.S. Javaid S. Cai M. Zhang C. Sawant A. Hinton M. Sathe M. Grein J. Blumenschein W. Pinheiro E.M. Chackerian A. Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J. Clin. Invest. 2018 128 2 644 654 10.1172/JCI94586 29337311
    [Google Scholar]
  87. Xu C. Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J. Pharm. Sci. 2015 10 1 1 12 10.1016/j.ajps.2014.08.011
    [Google Scholar]
  88. Karnak D. Engelke C.G. Parsels L.A. Kausar T. Wei D. Robertson J.R. Marsh K.B. Davis M.A. Zhao L. Maybaum J. Lawrence T.S. Morgan M.A. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin. Cancer Res. 2014 20 19 5085 5096 10.1158/1078‑0432.CCR‑14‑1038 25117293
    [Google Scholar]
  89. McNamara J.O. II Andrechek E.R. Wang Y. Viles K.D. Rempel R.E. Gilboa E. Sullenger B.A. Giangrande P.H. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006 24 8 1005 1015 10.1038/nbt1223 16823371
    [Google Scholar]
  90. Yin H. Xue W. Anderson D.G. CRISPR–Cas: A tool for cancer research and therapeutics. Nat. Rev. Clin. Oncol. 2019 16 5 281 295 10.1038/s41571‑019‑0166‑8 30664678
    [Google Scholar]
  91. Xu X. Wu J. Liu Y. Yu M. Zhao L. Zhu X. Bhasin S. Li Q. Ha E. Shi J. Farokhzad O.C. Ultra‐pH‐responsive and tumor‐penetrating nanoplatform for targeted siRNA delivery with robust anti‐cancer efficacy. Angew. Chem. Int. Ed. 2016 55 25 7091 7094 10.1002/anie.201601273 27140428
    [Google Scholar]
  92. Lord C.J. Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017 355 6330 1152 1158 10.1126/science.aam7344 28302823
    [Google Scholar]
  93. Elbashir S.M. Harborth J. Lendeckel W. Yalcin A. Weber K. Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 411 6836 494 498 10.1038/35078107 11373684
    [Google Scholar]
  94. Wittrup A. Lieberman J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet. 2015 16 9 543 552 10.1038/nrg3978 26281785
    [Google Scholar]
  95. Robbins M. Judge A. MacLachlan I. siRNA and innate immunity. Oligonucleotides 2009 19 2 89 102 10.1089/oli.2009.0180 19441890
    [Google Scholar]
  96. Judge A.D. Bola G. Lee A.C.H. MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 2006 13 3 494 505 10.1016/j.ymthe.2005.11.002 16343994
    [Google Scholar]
  97. Hannus M. Beitzinger M. Engelmann J.C. Weickert M.T. Spang R. Hannus S. Meister G. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 2014 42 12 8049 8061 10.1093/nar/gku480 24875475
    [Google Scholar]
  98. Kamola P.J. Nakano Y. Takahashi T. Wilson P.A. Ui-Tei K. The siRNA non-seed region and its target sequences are auxiliary determinants of off-target effects. PLOS Comput. Biol. 2015 11 12 e1004656 10.1371/journal.pcbi.1004656 26657993
    [Google Scholar]
  99. Xue H.Y. Liu S. Wong H.L. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 2014 9 2 295 312 10.2217/nnm.13.204 24552562
    [Google Scholar]
  100. Setten R.L. Rossi J.J. Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019 18 6 421 446 10.1038/s41573‑019‑0017‑4 30846871
    [Google Scholar]
  101. Pulgar V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019 12 1019 10.3389/fnins.2018.01019 30686985
    [Google Scholar]
  102. Timbie K.F. Mead B.P. Price R.J. Drug and gene delivery across the blood–brain barrier with focused ultrasound. J. Control. Release 2015 219 61 75 10.1016/j.jconrel.2015.08.059 26362698
    [Google Scholar]
  103. Dhuria S.V. Hanson L.R. Frey W.H. II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010 99 4 1654 1673 10.1002/jps.21924 19877171
    [Google Scholar]
  104. Yang Z. Shi J. Xie J. Wang Y. Sun J. Liu T. Zhao Y. Zhao X. Wang X. Ma Y. Malkoc V. Chiang C. Deng W. Chen Y. Fu Y. Kwak K.J. Fan Y. Kang C. Yin C. Rhee J. Bertani P. Otero J. Lu W. Yun K. Lee A.S. Jiang W. Teng L. Kim B.Y.S. Lee L.J. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2019 4 1 69 83 10.1038/s41551‑019‑0485‑1 31844155
    [Google Scholar]
  105. Berger M. Shankar V. Vafai A. Therapeutic applications of monoclonal antibodies. Am. J. Med. Sci. 2002 324 1 14 30 10.1097/00000441‑200207000‑00004 12120821
    [Google Scholar]
  106. Dominska M. Dykxhoorn D.M. Breaking down the barriers: SiRNA delivery and endosome escape. J. Cell Sci. 2010 123 8 1183 1189 10.1242/jcs.066399 20356929
    [Google Scholar]
  107. Pardridge W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci. 2020 11 373 10.3389/fnagi.2019.00373 31998120
    [Google Scholar]
  108. Damase T.R. Sukhovershin R. Boada C. Taraballi F. Pettigrew R.I. Cooke J.P. The limitless future of RNA therapeutics. Front. Bioeng. Biotechnol. 2021 9 628137 10.3389/fbioe.2021.628137 33816449
    [Google Scholar]
  109. Kulkarni J.A. Witzigmann D. Thomson S.B. Chen S. Leavitt B.R. Cullis P.R. van der Meel R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021 16 6 630 643 10.1038/s41565‑021‑00898‑0 34059811
    [Google Scholar]
  110. Fang R.H. Kroll A.V. Gao W. Zhang L. Cell membrane coating nanotechnology. Adv. Mater. 2018 30 23 1706759 10.1002/adma.201706759 29582476
    [Google Scholar]
  111. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
  112. Grundhoff A. Sullivan C.S. Virus-encoded microRNAs. Virology 2011 411 2 325 343 10.1016/j.virol.2011.01.002 21277611
    [Google Scholar]
  113. Bogdanov A.A. Jr Merging molecular imaging and RNA interference: Early experience in live animals. J. Cell. Biochem. 2008 104 4 1113 1123 10.1002/jcb.21689 18247325
    [Google Scholar]
  114. Amangurbanova M. Huang D.Q. Loomba R. Review article: The role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment. Pharmacol. Ther. 2023 57 1 37 51 10.1111/apt.17292 36349732
    [Google Scholar]
  115. Syed Y.Y. Nedosiran: First approval. Drugs 2023 83 18 1729 1733 10.1007/s40265‑023‑01976‑4 38060091
    [Google Scholar]
  116. O’Donoghue M.L. Rosenson R.S. Gencer B. López J.A.G. Lepor N.E. Baum S.J. Stout E. Gaudet D. Knusel B. Kuder J.F. Ran X. Murphy S.A. Wang H. Wu Y. Kassahun H. Sabatine M.S. OCEAN(a)-DOSE Trial Investigators Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease. N. Engl. J. Med. 2022 387 20 1855 1864 10.1056/NEJMoa2211023 36342163
    [Google Scholar]
  117. Olatunji G. Kokori E. Yusuf I.A. Akinmoju O. Egbunu E. Muogbo I. Lema K. Kanagala S.G. Owolabi S. Abdulbasit M. Aderinto N. Inclisiran siRNA technology in the management of dyslipidemia: A narrative review of clinical trials. Curr. Probl. Cardiol. 2024 49 4 102419 10.1016/j.cpcardiol.2024.102419 38246315
    [Google Scholar]
  118. Rider D.A. Eisermann M. Löffler K. Aleku M. Swerdlow D.I. Dames S. Hauptmann J. Morrison E. Lindholm M.W. Schubert S. Campion G. Pre-clinical assessment of SLN360, a novel siRNA targeting LPA, developed to address elevated lipoprotein (a) in cardiovascular disease. Atherosclerosis 2022 349 240 247 10.1016/j.atherosclerosis.2022.03.029 35400495
    [Google Scholar]
  119. Balwani M. Sardh E. Ventura P. Peiró P.A. Rees D.C. Stölzel U. Bissell D.M. Bonkovsky H.L. Windyga J. Anderson K.E. Parker C. Silver S.M. Keel S.B. Wang J.D. Stein P.E. Harper P. Vassiliou D. Wang B. Phillips J. Ivanova A. Langendonk J.G. Kauppinen R. Minder E. Horie Y. Penz C. Chen J. Liu S. Ko J.J. Sweetser M.T. Garg P. Vaishnaw A. Kim J.B. Simon A.R. Gouya L. ENVISION Investigators Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 2020 382 24 2289 2301 10.1056/NEJMoa1913147 32521132
    [Google Scholar]
  120. Garrelfs S.F. Frishberg Y. Hulton S.A. Koren M.J. O’Riordan W.D. Cochat P. Deschênes G. Shasha-Lavsky H. Saland J.M. van’t Hoff W.G. Fuster D.G. Magen D. Moochhala S.H. Schalk G. Simkova E. Groothoff J.W. Sas D.J. Meliambro K.A. Lu J. Sweetser M.T. Garg P.P. Vaishnaw A.K. Gansner J.M. McGregor T.L. Lieske J.C. ILLUMINATE-A Collaborators Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 2021 384 13 1216 1226 10.1056/NEJMoa2021712 33789010
    [Google Scholar]
  121. Neklesa T.K. Winkler J.D. Crews C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 2017 174 138 144 10.1016/j.pharmthera.2017.02.027 28223226
    [Google Scholar]
  122. Schreiber S.L. The rise of molecular glues. Cell 2021 184 1 3 9 10.1016/j.cell.2020.12.020 33417864
    [Google Scholar]
  123. Mullard A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 2019 18 4 237 239 10.1038/d41573‑019‑00043‑6 30936511
    [Google Scholar]
  124. Słabicki M. Kozicka Z. Petzold G. Li Y.D. Manojkumar M. Bunker R.D. Donovan K.A. Sievers Q.L. Koeppel J. Suchyta D. Sperling A.S. Fink E.C. Gasser J.A. Wang L.R. Corsello S.M. Sellar R.S. Jan M. Gillingham D. Scholl C. Fröhling S. Golub T.R. Fischer E.S. Thomä N.H. Ebert B.L. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020 585 7824 293 297 10.1038/s41586‑020‑2374‑x 32494016
    [Google Scholar]
  125. Tian Z. Liang G. Cui K. Liang Y. Wang Q. Lv S. Cheng X. Zhang L. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol. 2021 12 644718 10.3389/fphar.2021.644718 33796026
    [Google Scholar]
  126. DiMasi J.A. Grabowski H.G. Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016 47 20 33 10.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  127. Dowdy S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017 35 3 222 229 10.1038/nbt.3802 28244992
    [Google Scholar]
  128. Antisense And RNAi Therapeutics Market Size Report, 2030. Available from: https://www.grandviewresearch.com/industry-analysis/global-antisense-and-rni-therapeutic-market
  129. Hu Q. Li H. Wang L. Gu H. Fan C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019 119 10 6459 6506 10.1021/acs.chemrev.7b00663 29465222
    [Google Scholar]
  130. Cheng Q. Wei T. Farbiak L. Johnson L.T. Dilliard S.A. Siegwart D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020 15 4 313 320 10.1038/s41565‑020‑0669‑6 32251383
    [Google Scholar]
  131. Osborn M.F. Khvorova A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 2018 28 3 128 136 10.1089/nat.2018.0725 29746209
    [Google Scholar]
  132. Jost I. Shalamova L.A. Gerresheim G.K. Niepmann M. Bindereif A. Rossbach O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol. 2018 15 8 1 8 10.1080/15476286.2018.1435248 29486652
    [Google Scholar]
  133. Yin H. Song C.Q. Suresh S. Wu Q. Walsh S. Rhym L.H. Mintzer E. Bolukbasi M.F. Zhu L.J. Kauffman K. Mou H. Oberholzer A. Ding J. Kwan S.Y. Bogorad R.L. Zatsepin T. Koteliansky V. Wolfe S.A. Xue W. Langer R. Anderson D.G. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 2017 35 12 1179 1187 10.1038/nbt.4005 29131148
    [Google Scholar]
  134. Shen X. Corey D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018 46 4 1584 1600 10.1093/nar/gkx1239 29240946
    [Google Scholar]
  135. Thi E.P. Mire C.E. Lee A.C.H. Geisbert J.B. Zhou J.Z. Agans K.N. Snead N.M. Deer D.J. Barnard T.R. Fenton K.A. MacLachlan I. Geisbert T.W. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 2015 521 7552 362 365 10.1038/nature14442 25901685
    [Google Scholar]
  136. Cox D.B.T. Gootenberg J.S. Abudayyeh O.O. Franklin B. Kellner M.J. Joung J. Zhang F. RNA editing with CRISPR-Cas13. Science 2017 358 6366 1019 1027 10.1126/science.aaq0180 29070703
    [Google Scholar]
  137. Abudayyeh O.O. Gootenberg J.S. Essletzbichler P. Han S. Joung J. Belanto J.J. Verdine V. Cox D.B.T. Kellner M.J. Regev A. Lander E.S. Voytas D.F. Ting A.Y. Zhang F. RNA targeting with CRISPR–Cas13. Nature 2017 550 7675 280 284 10.1038/nature24049 28976959
    [Google Scholar]
  138. Chuang J.C. Jones P.A. Epigenetics and MicroRNAs. Pediatr. Res. 2007 61 5 Part 2 24R 29R 10.1203/pdr.0b013e3180457684 17413852
    [Google Scholar]
  139. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  140. Benson M.D. Waddington-Cruz M. Berk J.L. Polydefkis M. Dyck P.J. Wang A.K. Planté-Bordeneuve V. Barroso F.A. Merlini G. Obici L. Scheinberg M. Brannagan T.H. III Litchy W.J. Whelan C. Drachman B.M. Adams D. Heitner S.B. Conceição I. Schmidt H.H. Vita G. Campistol J.M. Gamez J. Gorevic P.D. Gane E. Shah A.M. Solomon S.D. Monia B.P. Hughes S.G. Kwoh T.J. McEvoy B.W. Jung S.W. Baker B.F. Ackermann E.J. Gertz M.A. Coelho T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018 379 1 22 31 10.1056/NEJMoa1716793 29972757
    [Google Scholar]
  141. Lauschke V.M. Milani L. Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy—recent progress and future developments. AAPS J. 2018 20 1 4 10.1208/s12248‑017‑0161‑x 29181807
    [Google Scholar]
  142. Antimisiaris S.G. Mourtas S. Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018 10 4 218 10.3390/pharmaceutics10040218 30404188
    [Google Scholar]
  143. Luan X. Sansanaphongpricha K. Myers I. Chen H. Yuan H. Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 2017 38 6 754 763 10.1038/aps.2017.12 28392567
    [Google Scholar]
  144. Bai Z-T. Bai B. Zhu J. Di C.X. Li X. Zhou W.C. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol. Lett. 2018 15 2 2049 2056 29434904
    [Google Scholar]
  145. Bohacek J. Mansuy I.M. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 2015 16 11 641 652 10.1038/nrg3964 26416311
    [Google Scholar]
  146. Baylis F. Robert J.S. The inevitability of genetic enhancement technologies. Bioethics 2004 18 1 1 26 10.1111/j.1467‑8519.2004.00376.x 15168695
    [Google Scholar]
  147. Bublitz J.C. Merkel R. Autonomy and authenticity of enhanced personality traits. Bioethics 2009 23 6 360 374 10.1111/j.1467‑8519.2009.01725.x 19527264
    [Google Scholar]
  148. Houser R.S. The benefits of more government interference in prescription drug pricing. Health Policy OPEN 2022 3 100071 10.1016/j.hpopen.2022.100071 37383579
    [Google Scholar]
  149. Hollis A. Sustainable financing of innovative therapies: A review of approaches. PharmacoEconomics 2016 34 10 971 980 10.1007/s40273‑016‑0416‑x 27251182
    [Google Scholar]
  150. Tambuyzer E. Rare diseases, orphan drugs and their regulation: Questions and misconceptions. Nat. Rev. Drug Discov. 2010 9 12 921 929 10.1038/nrd3275 21060315
    [Google Scholar]
  151. Bühler M. Moazed D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 2007 14 11 1041 1048 10.1038/nsmb1315 17984966
    [Google Scholar]
  152. Clayton E.W. Evans B.J. Hazel J.W. Rothstein M.A. The law of genetic privacy: Applications, implications, and limitations. J. Law Biosci. 2019 6 1 1 36 10.1093/jlb/lsz007 31666963
    [Google Scholar]
  153. Zlatev I. Castoreno A. Brown C.R. Qin J. Waldron S. Schlegel M.K. Degaonkar R. Shulga-Morskaya S. Xu H. Gupta S. Matsuda S. Akinc A. Rajeev K.G. Manoharan M. Maier M.A. Jadhav V. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 2018 36 6 509 511 10.1038/nbt.4136 29786096
    [Google Scholar]
  154. Huang L. Jin J. Deighan P. Kiner E. McReynolds L. Lieberman J. Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat. Biotechnol. 2013 31 4 350 356 10.1038/nbt.2537 23475073
    [Google Scholar]
  155. Caplen N.J. Gene therapy progress and prospects. Downregulating gene expression: The impact of RNA interference. Gene Ther. 2004 11 16 1241 1248 10.1038/sj.gt.3302324 15292914
    [Google Scholar]
  156. Easton LE Shibata Y Lukavsky PJ Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA N Y N 2010 16 3 647 653 10.1261/rna.1862210
    [Google Scholar]
  157. Gong W. Desaulniers J.P. Gene-silencing properties of siRNAs that contain internal amide-bond linkages. Bioorg. Med. Chem. Lett. 2012 22 22 6934 6937 10.1016/j.bmcl.2012.09.009 23062704
    [Google Scholar]
  158. Bobbin M.L. Rossi J.J. RNA interference (RNAi)-based therapeutics: Delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 2016 56 1 103 122 10.1146/annurev‑pharmtox‑010715‑103633 26738473
    [Google Scholar]
  159. Targeted Protein Degradation Market Size Targeted Protein Degradation Market Size, Report 2035. Available from: https://www.rootsanalysis.com/reports/protein-degradation-market/289.html
  160. Garrison L. Towse A. Value-based pricing and reimbursement in personalised healthcare: Introduction to the basic health economics. J. Pers. Med. 2017 7 3 10 10.3390/jpm7030010 28869571
    [Google Scholar]
  161. Hampson G. Towse A. Pearson S.D. Dreitlein W.B. Henshall C. Gene therapy: Evidence, value and affordability in the US health care system. J. Comp. Eff. Res. 2018 7 1 15 28 10.2217/cer‑2017‑0068 29144165
    [Google Scholar]
  162. Pearson S.D. Ollendorf D.A. Chapman R.H. New cost-effectiveness methods to determine value-based prices for potential cures: What are the options? Value Health 2019 22 6 656 660 10.1016/j.jval.2019.01.012 31198182
    [Google Scholar]
  163. Carlson J.J. Sullivan S.D. Garrison L.P. Neumann P.J. Veenstra D.L. Linking payment to health outcomes: A taxonomy and examination of performance-based reimbursement schemes between healthcare payers and manufacturers. Health Policy 2010 96 3 179 190 10.1016/j.healthpol.2010.02.005 20226559
    [Google Scholar]
  164. Towse A. Fenwick E. Uncertainty and cures: Discontinuation, irreversibility, and outcomes-based payments: what is different about a one-off treatment? Value Health 2019 22 6 677 683 10.1016/j.jval.2019.03.013 31198185
    [Google Scholar]
  165. Moon S. Jambert E. Childs M. von Schoen-Angerer T. A win-win solution?: A critical analysis of tiered pricing to improve access to medicines in developing countries. Global. Health 2011 7 1 39 10.1186/1744‑8603‑7‑39 21992405
    [Google Scholar]
  166. Lloyd-Williams H. Hughes D.A. A systematic review of economic evaluations of advanced therapy medicinal products. Br. J. Clin. Pharmacol. 2021 87 6 2428 2443 10.1111/bcp.14275 32154598
    [Google Scholar]
  167. Drummond M.E. Sculpher M.J. Torrance G.W. Methods for the Economic Evaluation of Health Care Programmes, 2005. 3rd ed Oxford University PressOxford 2005 10.1093/oso/9780198529446.001.0001
    [Google Scholar]
  168. Kass N.E. Faden R.R. Goodman S.N. Pronovost P. Tunis S. Beauchamp T.L. The research-treatment distinction: A problematic approach for determining which activities should have ethical oversight. Hastings Cent. Rep. 2013 Spec No S4 S15 23315895
    [Google Scholar]
  169. Michaeli D.T. Michaeli T. Albers S. Special FDA designations for drug development: Orphan, fast track, accelerated approval, priority review, and breakthrough therapy. Eur. J. Health Econ. 2023 37962724
    [Google Scholar]
  170. Hwang T.J. Ross J.S. Vokinger K.N. Kesselheim A.S. Association between FDA and EMA expedited approval programs and therapeutic value of new medicines: Retrospective cohort study. BMJ 2020 371 m3434 10.1136/bmj.m3434 33028575
    [Google Scholar]
  171. Kondo H. Hata T. Ito K. Koike H. Kono N. The current status of sakigake designation in Japan, PRIME in the European union, and breakthrough therapy designation in the United States. Ther. Innov. Regul. Sci. 2017 51 1 51 54 10.1177/2168479016662682 30235998
    [Google Scholar]
  172. Gertz M.A. Mauermann M.L. Grogan M. Coelho T. Advances in the treatment of hereditary transthyretin amyloidosis: A review. Brain Behav. 2019 9 9 e01371 10.1002/brb3.1371 31368669
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232357160250123113148
Loading
/content/journals/cgt/10.2174/0115665232357160250123113148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test