Skip to content
2000
image of Unraveling Glioblastoma: TME Implication and Gene Therapy Advances

Abstract

Glioblastoma is a malignant manifestation of a solid brain tumour with a very dismal prognosis due to an overall median survival of 14 months. The currently administered Standard treatment plan, the STUPP regimen, is not very effective in tackling this neoplasia. A major concern that affects the development of new drug formulations, specifically for Glioma, is the inherent sub-clonal heterogeneity, which includes the dynamic and intricate nature of the Tumour Microenvironment (TME). Targeting the cellular niche using personalized medication for glioma specifically gene therapy, seems to be promising, with most studies in preclinical models yielding optimistic results. This paper analyses the great headways made in glioma gene therapy in the last 10 years while looking into different therapeutic strategies. That said, certain challenges do plague the clinical use of gene therapy which have been highlighted in the hopes that future researchers will address these concerns and further propel gene therapy in its journey from the Lab to the bedside.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232351747241113050243
2024-11-14
2025-01-18
Loading full text...

Full text loading...

References

  1. Aum D.J. Kim D.H. Beaumont T.L. Leuthardt E.C. Dunn G.P. Kim A.H. Molecular and cellular heterogeneity: The hallmark of glioblastoma. Neurosurg. Focus 2014 37 6 E11 10.3171/2014.9.FOCUS14521 25434380
    [Google Scholar]
  2. Eder K. Kalman B. Molecular heterogeneity of glioblastoma and its clinical relevance. Pathol. Oncol. Res. 2014 20 4 777 787 10.1007/s12253‑014‑9833‑3 25156108
    [Google Scholar]
  3. Ostrom Q.T. Price M. Neff C. Cioffi G. Waite K.A. Kruchko C. Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro-oncol. 2022 24 Suppl. 5 v1 v95 10.1093/neuonc/noac202 36196752
    [Google Scholar]
  4. Preusser M. de Ribaupierre S. Wöhrer A. Erridge S.C. Hegi M. Weller M. Stupp R. Current concepts and management of glioblastoma. Ann. Neurol. 2011 70 1 9 21 10.1002/ana.22425 21786296
    [Google Scholar]
  5. Stupp R. Hegi M.E. Mason W.P. van den Bent M.J. Taphoorn M.J.B. Janzer R.C. Ludwin S.K. Allgeier A. Fisher B. Belanger K. Hau P. Brandes A.A. Gijtenbeek J. Marosi C. Vecht C.J. Mokhtari K. Wesseling P. Villa S. Eisenhauer E. Gorlia T. Weller M. Lacombe D. Cairncross J.G. Mirimanoff R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009 10 5 459 466 10.1016/S1470‑2045(09)70025‑7 19269895
    [Google Scholar]
  6. Soeda A. Hara A. Kunisada T. Yoshimura S. Iwama T. Park D.M. The evidence of glioblastoma heterogeneity. Sci. Rep. 2015 5 1 7979 10.1038/srep07979 25623281
    [Google Scholar]
  7. Lauko A. Lo A. Ahluwalia M.S. Lathia J.D. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin. Cancer Biol. 2022 82 162 175 10.1016/j.semcancer.2021.02.014 33640445
    [Google Scholar]
  8. Linares C.A. Varghese A. Ghose A. Shinde S.D. Adeleke S. Sanchez E. Sheriff M. Chargari C. Rassy E. Boussios S. Hallmarks of the tumour microenvironment of gliomas and its interaction with emerging immunotherapy modalities. Int. J. Mol. Sci. 2023 24 17 13215 10.3390/ijms241713215 37686020
    [Google Scholar]
  9. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  10. Huang W. Hao Z. Mao F. Guo D. Small molecule inhibitors in adult high-grade glioma: From the past to the future. Front. Oncol. 2022 12 911876 10.3389/fonc.2022.911876 35785151
    [Google Scholar]
  11. Galanis E. Anderson S.K. Lafky J.M. Uhm J.H. Giannini C. Kumar S.K. Kimlinger T.K. Northfelt D.W. Flynn P.J. Jaeckle K.A. Kaufmann T.J. Buckner J.C. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A north central cancer treatment group trial. Clin. Cancer Res. 2013 19 17 4816 4823 10.1158/1078‑0432.CCR‑13‑0708 23833308
    [Google Scholar]
  12. Kreisl T.N. Smith P. Sul J. Salgado C. Iwamoto F.M. Shih J.H. Fine H.A. Continuous daily sunitinib for recurrent glioblastoma. J. Neurooncol. 2013 111 1 41 48 10.1007/s11060‑012‑0988‑z 23086433
    [Google Scholar]
  13. Stupp R. Drug development for glioma: Are we repeating the same mistakes? Lancet Oncol. 2019 20 1 10 12 10.1016/S1470‑2045(18)30827‑1 30522968
    [Google Scholar]
  14. Haslam A. Prasad V. Estimation of the percentage of us patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2019 2 5 e192535 10.1001/jamanetworkopen.2019.2535 31050774
    [Google Scholar]
  15. Magee D.E. Hird A.E. Klaassen Z. Sridhar S.S. Nam R.K. Wallis C.J.D. Kulkarni G.S. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: A systematic review and meta-analysis of randomized clinical trials. Ann. Oncol. 2020 31 1 50 60 10.1016/j.annonc.2019.10.008 31912796
    [Google Scholar]
  16. Weller M. Kaulich K. Hentschel B. Felsberg J. Gramatzki D. Pietsch T. Simon M. Westphal M. Schackert G. Tonn J.C. von Deimling A. Davis T. Weiss W.A. Loeffler M. Reifenberger G. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int. J. Cancer 2014 134 10 2437 2447 10.1002/ijc.28576 24614983
    [Google Scholar]
  17. Medikonda R. Dunn G. Rahman M. Fecci P. Lim M. A review of glioblastoma immunotherapy. J. Neurooncol. 2021 151 1 41 53 10.1007/s11060‑020‑03448‑1 32253714
    [Google Scholar]
  18. Zhang P. Xia Q. Liu L. Li S. Dong L. Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Front. Mol. Biosci. 2020 7 562798 10.3389/fmolb.2020.562798 33102518
    [Google Scholar]
  19. Wang Y. Luo R. Zhang X. Xiang H. Yang B. Feng J. Deng M. Ran P. Sujie A. Zhang F. Zhu J. Tan S. Xie T. Chen P. Yu Z. Li Y. Jiang D. Zhang X. Zhao J.Y. Hou Y. Ding C. Proteogenomics of diffuse gliomas reveal molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nat. Commun. 2023 14 1 505 10.1038/s41467‑023‑36005‑1 36720864
    [Google Scholar]
  20. Kanter J. Walters M.C. Krishnamurti L. Mapara M.Y. Kwiatkowski J.L. Rifkin-Zenenberg S. Aygun B. Kasow K.A. Pierciey F.J. Bonner M. Miller A. Zhang X. Lynch J. Kim D. Ribeil J.A. Asmal M. Goyal S. Thompson A.A. Tisdale J.F. Biologic and clinical efficacy of lentiglobin for sickle cell disease. N. Engl. J. Med. 2022 386 7 617 628 10.1056/NEJMoa2117175 34898139
    [Google Scholar]
  21. Kwiatkowska A. Nandhu M. Behera P. Chiocca E. Viapiano M. Strategies in gene therapy for glioblastoma. Cancers (Basel) 2013 5 4 1271 1305 10.3390/cancers5041271 24202446
    [Google Scholar]
  22. Al-Sammarraie N. Ray S.K. Applications of CRISPR-Cas9 technology to genome editing in glioblastoma multiforme. Cells 2021 10 9 2342 10.3390/cells10092342 34571991
    [Google Scholar]
  23. Brooks L.J. Clements M.P. Burden J.J. Kocher D. Richards L. Devesa S.C. Zakka L. Woodberry M. Ellis M. Jaunmuktane Z. Brandner S. Morrison G. Pollard S.M. Dirks P.B. Marguerat S. Parrinello S. The white matter is a pro-differentiative niche for glioblastoma. Nat. Commun. 2021 12 1 2184 10.1038/s41467‑021‑22225‑w 33846316
    [Google Scholar]
  24. Cohen Z.R. Hassenbusch S.J. Maor M.H. Pfeffer R.M. Ram Z. Intractable vomiting from glioblastoma metastatic to the fourth ventricle: Three case studies. Neuro-oncol. 2002 4 2 129 133 10.1093/neuonc/4.2.129 11916505
    [Google Scholar]
  25. Gupta N. Prinja S. Patil V. Bahuguna P. Cost-effectiveness of temozolamide for treatment of glioblastoma multiforme in India. JCO Glob. Oncol. 2021 7 7 108 117 10.1200/GO.20.00288 33449801
    [Google Scholar]
  26. Hernández Martínez A. Madurga R. García-Romero N. Ayuso-Sacido Á. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 2022 527 66 79 10.1016/j.canlet.2021.12.008 34902524
    [Google Scholar]
  27. Barca C. Foray C. Zinnhardt B. In vivo quantitative imaging of glioma heterogeneity employing positron emission tomography. Cancers Cancers 2022 14 13 3139
    [Google Scholar]
  28. Lin C. Wang N. Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Front. Immunol. 2023 14 1123853 10.3389/fimmu.2023.1123853 36969167
    [Google Scholar]
  29. Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front. Immunol. 2018 9 697 10.3389/fimmu.2018.00697 29681904
    [Google Scholar]
  30. Han S. Wang W. Wang S. Yang T. Zhang G. Wang D. Ju R. Lu Y. Wang H. Wang L. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics 2021 11 6 2892 2916 10.7150/thno.50928 33456579
    [Google Scholar]
  31. Chen Y. Huo R. Kang W. Liu Y. Zhao Z. Fu W. Ma R. Zhang X. Tang J. Zhu Z. Lyu Q. Huang Y. Yan M. Jiang B. Chai R. Bao Z. Hu Z. Wang W. Jiang T. Cao Y. Wang J. Tumor-associated monocytes promote mesenchymal transformation through EGFR signaling in glioma. Cell Rep. Med. 2023 4 9 101177 10.1016/j.xcrm.2023.101177 37652019
    [Google Scholar]
  32. Hara T. Chanoch-Myers R. Mathewson N.D. Myskiw C. Atta L. Bussema L. Eichhorn S.W. Greenwald A.C. Kinker G.S. Rodman C. Gonzalez Castro L.N. Wakimoto H. Rozenblatt-Rosen O. Zhuang X. Fan J. Hunter T. Verma I.M. Wucherpfennig K.W. Regev A. Suvà M.L. Tirosh I. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 2021 39 6 779 792.e11 10.1016/j.ccell.2021.05.002 34087162
    [Google Scholar]
  33. Lai Y. Lu X. Liao Y. Ouyang P. Wang H. Zhang X. Huang G. Qi S. Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis. 2024 11 2 874 889 10.1016/j.gendis.2023.05.025 37692522
    [Google Scholar]
  34. Mathewson N.D. Ashenberg O. Tirosh I. Gritsch S. Perez E.M. Marx S. Jerby-Arnon L. Chanoch-Myers R. Hara T. Richman A.R. Ito Y. Pyrdol J. Friedrich M. Schumann K. Poitras M.J. Gokhale P.C. Gonzalez Castro L.N. Shore M.E. Hebert C.M. Shaw B. Cahill H.L. Drummond M. Zhang W. Olawoyin O. Wakimoto H. Rozenblatt-Rosen O. Brastianos P.K. Liu X.S. Jones P.S. Cahill D.P. Frosch M.P. Louis D.N. Freeman G.J. Ligon K.L. Marson A. Chiocca E.A. Reardon D.A. Regev A. Suvà M.L. Wucherpfennig K.W. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 2021 184 5 1281 1298.e26 10.1016/j.cell.2021.01.022 33592174
    [Google Scholar]
  35. Close H.J. Stead L.F. Nsengimana J. Reilly K.A. Droop A. Wurdak H. Mathew R.K. Corns R. Newton-Bishop J. Melcher A.A. Short S.C. Cook G.P. Wilson E.B. Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma. Clin. Exp. Immunol. 2020 200 1 33 44 10.1111/cei.13403 31784984
    [Google Scholar]
  36. Comba A. Faisal S.M. Varela M.L. Hollon T. Al-Holou W.N. Umemura Y. Nunez F.J. Motsch S. Castro M.G. Lowenstein P.R. Uncovering spatiotemporal heterogeneity of high-grade gliomas: From disease biology to therapeutic implications. Front. Oncol. 2021 11 703764 10.3389/fonc.2021.703764 34422657
    [Google Scholar]
  37. Rubenich D.S. de Souza P.O. Omizzollo N. Aubin M.R. Basso P.J. Silva L.M. da Silva E.M. Teixeira F.C. Gentil G.F.S. Domagalski J.L. Cunha M.T. Gadelha K.A. Diel L.F. Gelsleichter N.E. Rubenich A.S. Lenz G.S. de Abreu A.M. Kroeff G.M. Paz A.H. Visioli F. Lamers M.L. Wink M.R. Worm P.V. Araújo A.B. Sévigny J. Câmara N.O.S. Ludwig N. Braganhol E. Tumor-neutrophil crosstalk promotes in vitro and in vivo glioblastoma progression. Front. Immunol. 2023 14 1183465 10.3389/fimmu.2023.1183465 37292196
    [Google Scholar]
  38. Venkatesh H.S. Johung T.B. Caretti V. Noll A. Tang Y. Nagaraja S. Gibson E.M. Mount C.W. Polepalli J. Mitra S.S. Woo P.J. Malenka R.C. Vogel H. Bredel M. Mallick P. Monje M. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 2015 161 4 803 816 10.1016/j.cell.2015.04.012 25913192
    [Google Scholar]
  39. Oliveira A.I. Anjo S.I. Vieira de Castro J. Serra S.C. Salgado A.J. Manadas B. Costa B.M. Crosstalk between glial and glioblastoma cells triggers the “go-or-grow” phenotype of tumor cells. Cell Commun. Signal. 2017 15 1 37 10.1186/s12964‑017‑0194‑x 28969644
    [Google Scholar]
  40. Jain S. Rick J.W. Joshi R.S. Beniwal A. Spatz J. Gill S. Chang A.C.C. Choudhary N. Nguyen A.T. Sudhir S. Chalif E.J. Chen J.S. Chandra A. Haddad A.F. Wadhwa H. Shah S.S. Choi S. Hayes J.L. Wang L. Yagnik G. Costello J.F. Diaz A. Heiland D.H. Aghi M.K. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J. Clin. Invest. 2023 133 5 e147087 10.1172/JCI147087 36856115
    [Google Scholar]
  41. Gao X.Y. Zang J. Zheng M.H. Zhang Y.F. Yue K.Y. Cao X.L. Cao Y. Li X.X. Han H. Jiang X.F. Liang L. Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma. Front. Cell Dev. Biol. 2021 9 620883 10.3389/fcell.2021.620883 33614649
    [Google Scholar]
  42. Suvà M.L. Rheinbay E. Gillespie S.M. Patel A.P. Wakimoto H. Rabkin S.D. Riggi N. Chi A.S. Cahill D.P. Nahed B.V. Curry W.T. Martuza R.L. Rivera M.N. Rossetti N. Kasif S. Beik S. Kadri S. Tirosh I. Wortman I. Shalek A.K. Rozenblatt-Rosen O. Regev A. Louis D.N. Bernstein B.E. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014 157 3 580 594 10.1016/j.cell.2014.02.030 24726434
    [Google Scholar]
  43. Ben-Porath I. Thomson M.W. Carey V.J. Ge R. Bell G.W. Regev A. Weinberg R.A. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 2008 40 5 499 507 10.1038/ng.127 18443585
    [Google Scholar]
  44. Minata M. Audia A. Shi J. Lu S. Bernstock J. Pavlyukov M.S. Das A. Kim S.H. Shin Y.J. Lee Y. Koo H. Snigdha K. Waghmare I. Guo X. Mohyeldin A. Gallego-Perez D. Wang J. Chen D. Cheng P. Mukheef F. Contreras M. Reyes J.F. Vaillant B. Sulman E.P. Cheng S.Y. Markert J.M. Tannous B.A. Lu X. Kango-Singh M. Lee L.J. Nam D.H. Nakano I. Bhat K.P. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 2019 26 7 1893 1905.e7 10.1016/j.celrep.2019.01.076 30759398
    [Google Scholar]
  45. Comba A. Dunn P.J. Kish P.E. Kadiyala P. Kahana A. Castro M.G. Lowenstein P.R. Laser capture microdissection of glioma subregions for spatial and molecular characterization of intratumoral heterogeneity, oncostreams, and invasion. J. Vis. Exp. 2020 2020 158 ••• 10.3791/60939‑v 32338655
    [Google Scholar]
  46. Faisal S.M. Comba A. Varela M.L. Argento A.E. Brumley E. Abel C. Castro M.G. Lowenstein P.R. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front. Oncol. 2022 12 1005069 10.3389/fonc.2022.1005069 36276147
    [Google Scholar]
  47. Jamous S. Comba A. Lowenstein P.R. Motsch S. Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. PLOS Comput. Biol. 2020 16 5 e1007611 10.1371/journal.pcbi.1007611 32379821
    [Google Scholar]
  48. Nicholson J.G. Fine H.A. Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov. 2021 11 3 575 590 10.1158/2159‑8290.CD‑20‑1474 33558264
    [Google Scholar]
  49. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  50. Feinberg A.P. Ohlsson R. Henikoff S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 2006 7 1 21 33 10.1038/nrg1748 16369569
    [Google Scholar]
  51. Lu X. Maturi N.P. Jarvius M. Yildirim I. Dang Y. Zhao L. Xie Y. Tan E.J. Xing P. Larsson R. Fryknäs M. Uhrbom L. Chen X. Cell-lineage controlled epigenetic regulation in glioblastoma stem cells determines functionally distinct subgroups and predicts patient survival. Nat. Commun. 2022 13 1 2236 10.1038/s41467‑022‑29912‑2 35469026
    [Google Scholar]
  52. Kung C.P. Weber J.D. It’s getting complicated - A fresh look at p53-MDM2-ARF triangle in tumorigenesis and cancer therapy. Front. Cell Dev. Biol. 2022 10 818744 10.3389/fcell.2022.818744 35155432
    [Google Scholar]
  53. Burns K.L. Ueki K. Jhung S.L. Koh J. Louis D.N. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J. Neuropathol. Exp. Neurol. 1998 57 2 122 130 10.1097/00005072‑199802000‑00003 9600204
    [Google Scholar]
  54. Jang S.H. Jung B.K. An Y.H. Jang H. The phosphatase and tensin homolog gene inserted between NP and P gene of recombinant Newcastle disease virus oncolytic effect test to glioblastoma cell and xenograft mouse model. Virol. J. 2022 19 1 21 10.1186/s12985‑022‑01746‑w 35093115
    [Google Scholar]
  55. Kennedy M.C. Lowe S.W. Mutant p53: It’s not all one and the same. Cell Death Differ. 2022 29 5 983 987 10.1038/s41418‑022‑00989‑y 35361963
    [Google Scholar]
  56. Sun X. Klingbeil O. Lu B. Wu C. Ballon C. Ouyang M. Wu X.S. Jin Y. Hwangbo Y. Huang Y.H. Somerville T.D.D. Chang K. Park J. Chung T. Lyons S.K. Shi J. Vogel H. Schulder M. Vakoc C.R. Mills A.A. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network. Nature 2023 613 7942 195 202 10.1038/s41586‑022‑05551‑x 36544023
    [Google Scholar]
  57. Liggett W.H. Sidransky D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 1998 16 3 1197 1206 10.1200/JCO.1998.16.3.1197 9508208
    [Google Scholar]
  58. Yang W. Xia Y. Hawke D. Li X. Liang J. Xing D. Aldape K. Hunter T. Alfred Yung W.K. Lu Z. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012 150 4 685 696 10.1016/j.cell.2012.07.018 22901803
    [Google Scholar]
  59. Fan K. Wang X. Zhang J. Ramos R.I. Zhang H. Li C. Ye D. Kang J. Marzese D.M. Hoon D.S.B. Hua W. Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas. Sci. Rep. 2017 7 1 7079 10.1038/s41598‑017‑07124‑9
    [Google Scholar]
  60. Tang H. Wang Z. Liu Q. Liu X. Wu M. Li G. Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS One 2014 9 1 e84146 10.1371/journal.pone.0084146 24404152
    [Google Scholar]
  61. Zhang M. Ye G. Li J. Wang Y. Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol. 2015 32 4 229 236 10.1007/s10014‑015‑0233‑5 26437643
    [Google Scholar]
  62. Das S. Marsden P.A. Angiogenesis in glioblastoma. N. Engl. J. Med. 2013 369 16 1561 1563 10.1056/NEJMcibr1309402 24131182
    [Google Scholar]
  63. Xu G. Li J.Y. Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma. Tumour Biol. 2016 37 8 10577 10586 10.1007/s13277‑016‑4968‑3 26857280
    [Google Scholar]
  64. Maddison K. Bowden N.A. Graves M.C. Tooney P.A. Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: A systematic review. BMC Cancer 2023 23 1 185 10.1186/s12885‑023‑10659‑y 36823554
    [Google Scholar]
  65. Kuhnert F. Kuo C.J. miR-17-92 angiogenesis micromanagement. Blood 2010 115 23 4631 4632 10.1182/blood‑2010‑03‑276428 20538815
    [Google Scholar]
  66. Smits M. Nilsson J. Mir S.E. van der Stoop P.M. Hulleman E. Niers J.M. de Witt Hamer P.C. Marquez V.E. Cloos J. Krichevsky A.M. Noske D.P. Tannous B.A. Würdinger T. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 2010 1 8 710 720 10.18632/oncotarget.205 21321380
    [Google Scholar]
  67. Dinevska M. Widodo S.S. Furst L. Cuzcano L. Fang Y. Mangiola S. Neeson P.J. Darcy P.K. Ramsay R.G. Hutchinson R. MacKay F. Christie M. Stylli S.S. Mantamadiotis T. Cell signaling activation and extracellular matrix remodeling underpin glioma tumor microenvironment heterogeneity and organization. Cell Oncol. (Dordr.) 2023 46 3 589 602 10.1007/s13402‑022‑00763‑9 36567397
    [Google Scholar]
  68. Garcia-Fabiani M.B. Haase S. Comba A. Carney S. McClellan B. Banerjee K. Alghamri M.S. Syed F. Kadiyala P. Nunez F.J. Candolfi M. Asad A. Gonzalez N. Aikins M.E. Schwendeman A. Moon J.J. Lowenstein P.R. Castro M.G. Genetic alterations in gliomas remodel the tumor immune microenvironment and impact immune-mediated therapies. Front. Oncol. 2021 11 631037 10.3389/fonc.2021.631037 34168976
    [Google Scholar]
  69. Zhao Y. Lyons C.E. Xiao A. Templeton D.J. Sang Q.A. Brew K. Hussaini I.M. Urokinase directly activates matrix metalloproteinases-9: A potential role in glioblastoma invasion. Biochem. Biophys. Res. Commun. 2008 369 4 1215 1220 10.1016/j.bbrc.2008.03.038 18355442
    [Google Scholar]
  70. Scully S. Francescone R. Faibish M. Bentley B. Taylor S.L. Oh D. Schapiro R. Moral L. Yan W. Shao R. Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J. Neurosci. 2012 32 37 12950 12960 10.1523/JNEUROSCI.2017‑12.2012 22973019
    [Google Scholar]
  71. Soda Y. Marumoto T. Friedmann-Morvinski D. Soda M. Liu F. Michiue H. Pastorino S. Yang M. Hoffman R.M. Kesari S. Verma I.M. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl. Acad. Sci. USA 2011 108 11 4274 4280 10.1073/pnas.1016030108 21262804
    [Google Scholar]
  72. Chen W. Xia P. Wang H. Tu J. Liang X. Zhang X. Li L. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J. Cell Commun. Signal. 2019 13 3 291 301 10.1007/s12079‑019‑00511‑z 30903604
    [Google Scholar]
  73. Hu B. Wang Q. Wang Y.A. Hua S. Sauvé C.E.G. Ong D. Lan Z.D. Chang Q. Ho Y.W. Monasterio M.M. Lu X. Zhong Y. Zhang J. Deng P. Tan Z. Wang G. Liao W.T. Corley L.J. Yan H. Zhang J. You Y. Liu N. Cai L. Finocchiaro G. Phillips J.J. Berger M.S. Spring D.J. Hu J. Sulman E.P. Fuller G.N. Chin L. Verhaak R.G.W. DePinho R.A. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell 2016 167 5 1281 1295.e18 10.1016/j.cell.2016.10.039 27863244
    [Google Scholar]
  74. Cheng L. Huang Z. Zhou W. Wu Q. Donnola S. Liu J.K. Fang X. Sloan A.E. Mao Y. Lathia J.D. Min W. McLendon R.E. Rich J.N. Bao S. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013 153 1 139 152 10.1016/j.cell.2013.02.021 23540695
    [Google Scholar]
  75. Jin Z. Zhan T. Tao J. Xu B. Zheng H. Cheng Y. Yan B. Wang H. Lu G. Lin Y. Guo S. MicroRNA-34a induces transdifferentiation of glioma stem cells into vascular endothelial cells by targeting Notch pathway. Biosci. Biotechnol. Biochem. 2017 81 10 1899 1907 10.1080/09168451.2017.1364965 28859546
    [Google Scholar]
  76. Dixit D. Prager B.C. Gimple R.C. Miller T.E. Wu Q. Yomtoubian S. Kidwell R.L. Lv D. Zhao L. Qiu Z. Zhang G. Lee D. Park D.E. Wechsler-Reya R.J. Wang X. Bao S. Rich J.N. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci. Transl. Med. 2022 14 626 eabf3917 10.1126/scitranslmed.abf3917 34985972
    [Google Scholar]
  77. Razavi S.M. Lee K.E. Jin B.E. Aujla P.S. Gholamin S. Li G. Immune evasion strategies of glioblastoma. Front. Surg. 2016 3 11 10.3389/fsurg.2016.00011 26973839
    [Google Scholar]
  78. Khan F. Pang L. Dunterman M. Lesniak M.S. Heimberger A.B. Chen P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Invest. 2023 133 1 e163446 10.1172/JCI163446 36594466
    [Google Scholar]
  79. Pyonteck S.M. Akkari L. Schuhmacher A.J. Bowman R.L. Sevenich L. Quail D.F. Olson O.C. Quick M.L. Huse J.T. Teijeiro V. Setty M. Leslie C.S. Oei Y. Pedraza A. Zhang J. Brennan C.W. Sutton J.C. Holland E.C. Daniel D. Joyce J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013 19 10 1264 1272 10.1038/nm.3337 24056773
    [Google Scholar]
  80. Zhang Z. Hu Y. Chen Y. Chen Z. Zhu Y. Chen M. Xia J. Sun Y. Xu W. Immunometabolism in the tumor microenvironment and its related research progress. Front. Oncol. 2022 12 1024789 10.3389/fonc.2022.1024789 36387147
    [Google Scholar]
  81. Hao C. Chen G. Zhao H. Li Y. Chen J. Zhang H. Li S. Zhao Y. Chen F. Li W. Jiang W.G. PD-L1 expression in glioblastoma, the clinical and prognostic significance: A systematic literature review and meta-analysis. Front. Oncol. 2020 10 1015 10.3389/fonc.2020.01015 32670884
    [Google Scholar]
  82. Xue S. Hu M. Iyer V. Yu J. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy. J. Hematol. Oncol. 2017 10 1 81 10.1186/s13045‑017‑0455‑6 28388955
    [Google Scholar]
  83. Davidson T.B. Lee A. Hsu M. Sedighim S. Orpilla J. Treger J. Mastall M. Roesch S. Rapp C. Galvez M. Mochizuki A. Antonios J. Garcia A. Kotecha N. Bayless N. Nathanson D. Wang A. Everson R. Yong W.H. Cloughesy T.F. Liau L.M. Herold-Mende C. Prins R.M. Expression of PD-1 by T cells in malignant glioma patients reflects exhaustion and activation. Clin. Cancer Res. 2019 25 6 1913 1922 10.1158/1078‑0432.CCR‑18‑1176 30498094
    [Google Scholar]
  84. Lu I.N. Dobersalske C. Rauschenbach L. Teuber-Hanselmann S. Steinbach A. Ullrich V. Prasad S. Blau T. Kebir S. Siveke J.T. Becker J.C. Sure U. Glas M. Scheffler B. Cima I. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat. Commun. 2021 12 1 3895 10.1038/s41467‑021‑23995‑z 34162860
    [Google Scholar]
  85. Gan L. Yang Y. Li Q. Feng Y. Liu T. Guo W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res. 2018 6 1 10 10.1186/s40364‑018‑0122‑2 29556394
    [Google Scholar]
  86. Hu C. Wang K. Damon C. Fu Y. Ma T. Kratz L. Lal B. Ying M. Xia S. Cahill D.P. Jackson C.M. Lim M. Laterra J. Li Y. ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro-oncol. 2022 24 6 888 900 10.1093/neuonc/noab292 34951647
    [Google Scholar]
  87. Givechian K.B. Garner C. Benz S. Rabizadeh S. Soon-Shiong P. Glycolytic expression in lower-grade glioma reveals an epigenetic association between IDH mutation status and PDL1/2 expression. Neurooncol. Adv. 2021 3 1 vdaa162 10.1093/noajnl/vdaa162 33532725
    [Google Scholar]
  88. Cesur-Ergün B. Demir-Dora D. Gene therapy in cancer. J. Gene Med. 2023 25 11 e3550 10.1002/jgm.3550 37354071
    [Google Scholar]
  89. Hossain J.A. Marchini A. Fehse B. Bjerkvig R. Miletic H. Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neurooncol. Adv. 2020 2 1 vdaa013 10.1093/noajnl/vdaa013 32642680
    [Google Scholar]
  90. Duarte S. Carle G. Faneca H. Lima M.C.P. Pierrefite-Carle V. Suicide gene therapy in cancer: Where do we stand now? Cancer Lett. 2012 324 2 160 170 10.1016/j.canlet.2012.05.023 22634584
    [Google Scholar]
  91. Garin M.I. Garrett E. Tiberghien P. Apperley J.F. Chalmers D. Melo J.V. Ferrand C. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 2001 97 1 122 129 10.1182/blood.V97.1.122 11133751
    [Google Scholar]
  92. Salomon B. Maury S. Loubière L. Caruso M. Onclercq R. Klatzmann D. A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice. Mol. Cell. Biol. 1995 15 10 5322 5328 10.1128/MCB.15.10.5322 7565681
    [Google Scholar]
  93. Balzarini J. Liekens S. Solaroli N. El Omari K. Stammers D.K. Karlsson A. Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation. J. Biol. Chem. 2006 281 28 19273 19279 10.1074/jbc.M600414200 16702226
    [Google Scholar]
  94. Kostova Y. Mantwill K. Holm P.S. Anton M. An armed, YB-1-dependent oncolytic adenovirus as a candidate for a combinatorial anti-glioma approach of virotherapy, suicide gene therapy and chemotherapeutic treatment. Cancer Gene Ther. 2015 22 1 30 43 10.1038/cgt.2014.67 25501992
    [Google Scholar]
  95. Sancho-Martinez I. Nivet E. Xia Y. Hishida T. Aguirre A. Ocampo A. Ma L. Morey R. Krause M.N. Zembrzycki A. Ansorge O. Vazquez-Ferrer E. Dubova I. Reddy P. Lam D. Hishida Y. Wu M.Z. Esteban C.R. O’Leary D. Wahl G.M. Verma I.M. Laurent L.C. Izpisua Belmonte J.C. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat. Commun. 2016 7 1 10743 10.1038/ncomms10743 26899176
    [Google Scholar]
  96. Tamura R. Miyoshi H. Imaizumi K. Yo M. Kase Y. Sato T. Sato M. Morimoto Y. Sampetrean O. Kohyama J. Shinozaki M. Miyawaki A. Yoshida K. Saya H. Okano H. Toda M. Gene therapy using genome‐edited iPS cells for targeting malignant glioma. Bioeng. Transl. Med. 2023 8 5 e10406 10.1002/btm2.10406 37693056
    [Google Scholar]
  97. Iwasawa C. Tamura R. Sugiura Y. Suzuki S. Kuzumaki N. Narita M. Suematsu M. Nakamura M. Yoshida K. Toda M. Okano H. Miyoshi H. Increased cytotoxicity of herpes simplex virus thymidine kinase expression in human induced pluripotent stem cells. Int. J. Mol. Sci. 2019 20 4 810 10.3390/ijms20040810 30769780
    [Google Scholar]
  98. Wang L.H. Wu C.F. Rajasekaran N. Shin Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem. 2018 51 6 2647 2693 10.1159/000495956 30562755
    [Google Scholar]
  99. Kontomanolis E.N. Koutras A. Syllaios A. Schizas D. Mastoraki A. Garmpis N. Diakosavvas M. Angelou K. Tsatsaris G. Pagkalos A. Ntounis T. Fasoulakis Z. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res. 2020 40 11 6009 6015 10.21873/anticanres.14622 33109539
    [Google Scholar]
  100. Huang H. A pan-cancer analysis for the oncogenic role of cyclin-dependent kinase inhibitor 1B in human cancers. Discov. Oncol. 2023 14 1 126 10.1007/s12672‑023‑00746‑8
    [Google Scholar]
  101. Schiappacassi M. Lovat F. Canzonieri V. Belletti B. Berton S. Di Stefano D. Vecchione A. Colombatti A. Baldassarre G. p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol. Cancer Ther. 2008 7 5 1164 1175 10.1158/1535‑7163.MCT‑07‑2154 18483304
    [Google Scholar]
  102. Fierro J. DiPasquale J. Perez J. Chin B. Chokpapone Y. Tran A.M. Holden A. Factoriza C. Sivagnanakumar N. Aguilar R. Mazal S. Lopez M. Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci. Rep. 2022 12 1 2417 10.1038/s41598‑022‑06430‑1 35165339
    [Google Scholar]
  103. Huang J. Zheng M. Zhang Z. Tang X. Chen Y. Peng A. Peng X. Tong A. Zhou L. Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol. Immunother. 2021 70 9 2453 2465 10.1007/s00262‑021‑02856‑0 33543339
    [Google Scholar]
  104. Hu C. Ji H. Chen S. Zhang H. Wang B. Zhou L. Zhang Z. Sun X. Chen Z. Cai Y. Qin L. Lu L. Jiang X. Xu R. Ke Y. Investigation of a plasmid containing a novel immunotoxin VEGF165‐PE38 gene for antiangiogenic therapy in a malignant glioma model. Int. J. Cancer 2010 127 9 2222 2229 10.1002/ijc.25217 20127864
    [Google Scholar]
  105. Tang B. Guo Z.S. Bartlett D.L. Yan D.Z. Schane C.P. Thomas D.L. Liu J. McFadden G. Shisler J.L. Roy E.J. Synergistic combination of oncolytic virotherapy and immunotherapy for glioma. Clin. Cancer Res. 2020 26 9 2216 2230 10.1158/1078‑0432.CCR‑18‑3626 32019860
    [Google Scholar]
  106. Liang C. Yang L. Guo S. Li R. Downregulation of astrocyte elevated gene-1 expression combined with all-trans retinoic acid inhibits development of vasculogenic mimicry and angiogenesis in glioma. Curr. Med. Sci. 2022 42 2 397 406 10.1007/s11596‑022‑2517‑4 35201552
    [Google Scholar]
  107. Li J. Sun Y. Sun X. Zhao X. Ma Y. Wang Y. Zhang X. AEG-1 silencing attenuates M2-polarization of glioma-associated microglia/macrophages and sensitizes glioma cells to temozolomide. Sci. Rep. 2021 11 1 17348 10.1038/s41598‑021‑96647‑3 34462446
    [Google Scholar]
  108. Luo M. Li Y. Peng B. White J. Mäkilä E. Tong W.Y. Jonathan Choi C.H. Day B. Voelcker N.H. A multifunctional porous silicon nanocarrier for glioblastoma treatment. Mol. Pharm. 2023 20 1 545 560 10.1021/acs.molpharmaceut.2c00763 36484477
    [Google Scholar]
  109. Huang J. Zhang L. Wan D. Zhou L. Zheng S. Lin S. Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021 6 1 153 10.1038/s41392‑021‑00544‑0 33888679
    [Google Scholar]
  110. Najafi M. Farhood B. Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 2019 120 3 2782 2790 10.1002/jcb.27681 30321449
    [Google Scholar]
  111. Kuriyama N. Kuriyama H. Julin C.M. Lamborn K.R. Israel M.A. Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res. 2001 61 5 1805 1809 11280727
    [Google Scholar]
  112. Kuriyama N. Kuriyama H. Julin C.M. Lamborn K. Israel M.A. Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum. Gene Ther. 2000 11 16 2219 2230 10.1089/104303400750035744 11084679
    [Google Scholar]
  113. Kim Y. Lee H.G. Dmitrieva N. Kim J. Kaur B. Friedman A. Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: A mathematical model. PLoS One 2014 9 7 e102499 10.1371/journal.pone.0102499 25047810
    [Google Scholar]
  114. Comba A. Faisal S.M. Dunn P.J. Argento A.E. Hollon T.C. Al-Holou W.N. Varela M.L. Zamler D.B. Quass G.L. Apostolides P.F. Abel C. Brown C.E. Kish P.E. Kahana A. Kleer C.G. Motsch S. Castro M.G. Lowenstein P.R. Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nat. Commun. 2022 13 1 3606 10.1038/s41467‑022‑31340‑1 35750880
    [Google Scholar]
  115. Li A. Zhang T. Huang T. Lin R. Mu J. Su Y. Sun H. Jiang X. Wu H. Xu D. Cao H. Sun X. Ling D. Gao J. Iron oxide nanoparticles promote Cx43-overexpression of mesenchymal stem cells for efficient suicide gene therapy during glioma treatment. Theranostics 2021 11 17 8254 8269 10.7150/thno.60160 34373740
    [Google Scholar]
  116. Zheng T. Wang W. Mohammadniaei M. Ashley J. Zhang M. Zhou N. Shen J. Sun Y. Anti‐MicroRNA‐21 oligonucleotide loaded spermine‐modified acetalated dextran nanoparticles for B1 receptor‐targeted gene therapy and antiangiogenesis therapy. Adv. Sci. (Weinh.) 2022 9 5 2103812 10.1002/advs.202103812 34936240
    [Google Scholar]
  117. Zhang J. Chen H. Chen C. Liu H. He Y. Zhao J. Yang P. Mao Q. Xia H. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy. Cancer Lett. 2021 509 26 38 10.1016/j.canlet.2021.03.027 33819529
    [Google Scholar]
  118. Denbo J.W. Williams R.F. Orr W.S. Sims T.L. Ng C.Y. Zhou J. Spence Y. Morton C.L. Nathwani A.C. Duntsch C. Pfeffer L.M. Davidoff A.M. Continuous local delivery of interferon-β stabilizes tumor vasculature in an orthotopic glioblastoma xenograft resection model. Surgery 2011 150 3 497 504 10.1016/j.surg.2011.07.044 21878236
    [Google Scholar]
  119. Sugii N. Matsuda M. Okumura G. Shibuya A. Ishikawa E. Kaneda Y. Matsumura A. Hemagglutinating virus of Japan‐envelope containing programmed cell death‐ligand 1 siRNA inhibits immunosuppressive activities and elicits antitumor immune responses in glioma. Cancer Sci. 2021 112 1 81 90 10.1111/cas.14721 33155337
    [Google Scholar]
  120. Omar N.B. Bentley R.T. Crossman D.K. Foote J.B. Koehler J.W. Markert J.M. Platt S.R. Rissi D.R. Shores A. Sorjonen D. Yanke A.B. Gillespie G.Y. Chambers M.R. Safety and interim survival data after intracranial administration of M032, a genetically engineered oncolytic HSV-1 expressing IL-12, in pet dogs with sporadic gliomas. Neurosurg. Focus 2021 50 2 E5 10.3171/2020.11.FOCUS20844 33524948
    [Google Scholar]
  121. Andreou T. Williams J. Brownlie R.J. Salmond R.J. Watson E. Shaw G. Melcher A. Wurdak H. Short S.C. Lorger M. Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model. J. Immunother. Cancer 2021 9 3 e001143 10.1136/jitc‑2020‑001143 33707311
    [Google Scholar]
  122. Wu J. Xie S. Li H. Zhang Y. Yue J. Yan C. Liu K. Liu Y. Xu R. Zheng G. Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model. J. Transl. Med. 2021 19 1 143 10.1186/s12967‑021‑02809‑2 33827606
    [Google Scholar]
  123. Zhou Q. Fu Q. Shaya M. Kugeluke Y. Li S. Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β‐catenin signaling pathway. CNS Neurosci. Ther. 2022 28 6 884 896 10.1111/cns.13820 35332692
    [Google Scholar]
  124. Kwak S. Park S.H. Kim S.H. Sung G.J. Song J.H. Jeong J.H. Kim H. Ha C.H. Kim S.W. Choi K.C. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J. Exp. Clin. Cancer Res. 2022 41 1 87 10.1186/s13046‑022‑02305‑5 35260183
    [Google Scholar]
  125. Wei L. Wei Q. Yang X. Zhou P. CMTM6 knockdown prevents glioma progression by inactivating the mTOR pathway. Ann. Transl. Med. 2022 10 4 181 10.21037/atm‑21‑6894 35280358
    [Google Scholar]
  126. Zhou Y. Wang X. Lv P. Yu H. Jiang X. CDK5 Knockdown inhibits proliferation and induces apoptosis and cell cycle arrest in human glioblastoma. J. Cancer 2021 12 13 3958 3966 10.7150/jca.53981 34093802
    [Google Scholar]
  127. Quijano-Rubio C. Silginer M. Weller M. CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models. J. Neurooncol. 2022 160 2 299 310 10.1007/s11060‑022‑04137‑x 36355258
    [Google Scholar]
  128. Morimoto T. Nakazawa T. Matsuda R. Nishimura F. Nakamura M. Yamada S. Nakagawa I. Park Y.S. Tsujimura T. Nakase H. CRISPR-Cas9–mediated TIM3 knockout in human natural killer cells enhances growth inhibitory effects on human glioma cells. Int. J. Mol. Sci. 2021 22 7 3489 10.3390/ijms22073489 33800561
    [Google Scholar]
  129. Wei J. Marisetty A. Schrand B. Gabrusiewicz K. Hashimoto Y. Ott M. Grami Z. Kong L.Y. Ling X. Caruso H. Zhou S. Wang Y.A. Fuller G.N. Huse J. Gilboa E. Kang N. Huang X. Verhaak R. Li S. Heimberger A.B. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J. Clin. Invest. 2018 129 1 137 149 10.1172/JCI121266 30307407
    [Google Scholar]
  130. Li C. Feng S. Chen L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol. Cell. Biochem. 2021 476 2 699 713 10.1007/s11010‑020‑03937‑x 33106913
    [Google Scholar]
  131. Huang H. Georganaki M. Conze L.L. Laviña B. van Hooren L. Vemuri K. van de Walle T. Ramachandran M. Zhang L. Pontén F. Bergqvist M. Smits A. Betsholtz C. Dejana E. Magnusson P.U. He L. Lugano R. Dimberg A. ELTD1 deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro-oncol. 2022 24 3 398 411 10.1093/neuonc/noab181 34347079
    [Google Scholar]
  132. Han N. Hu G. Shi L. Long G. Yang L. Xi Q. Guo Q. Wang J. Dong Z. Zhang M. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget 2017 8 50 88059 88068 10.18632/oncotarget.21409 29152141
    [Google Scholar]
  133. Bulcha J.T. Wang Y. Ma H. Tai P.W.L. Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021 6 1 53 10.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  134. Shirley J.L. de Jong Y.P. Terhorst C. Herzog R.W. Immune Responses to Viral Gene Therapy Vectors. Mol. Ther. 2020 28 3 709 722 10.1016/j.ymthe.2020.01.001 31968213
    [Google Scholar]
  135. Wang D. Tai P.W.L. Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019 18 5 358 378 10.1038/s41573‑019‑0012‑9 30710128
    [Google Scholar]
  136. Milone M.C. O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018 32 7 1529 1541 10.1038/s41375‑018‑0106‑0 29654266
    [Google Scholar]
  137. Banerjee K. Núñez F.J. Haase S. McClellan B.L. Faisal S.M. Carney S.V. Yu J. Alghamri M.S. Asad A.S. Candia A.J.N. Varela M.L. Candolfi M. Lowenstein P.R. Castro M.G. Current approaches for glioma gene therapy and virotherapy. Front. Mol. Neurosci. 2021 14 621831 10.3389/fnmol.2021.621831 33790740
    [Google Scholar]
  138. Luiz M.T. Dutra J.A.P. Tofani L.B. de Araújo J.T.C. Di Filippo L.D. Marchetti J.M. Chorilli M. Targeted liposomes: A nonviral gene delivery system for cancer therapy. Pharmaceutics 2022 14 4 821 10.3390/pharmaceutics14040821 35456655
    [Google Scholar]
  139. Harrington K. Alvarez-Vallina L. Crittenden M. Gough M. Chong H. Diaz R.M. Vassaux G. Lemoine N. Vile R. Cells as vehicles for cancer gene therapy: The missing link between targeted vectors and systemic delivery? Hum. Gene Ther. 2002 13 11 1263 1280 10.1089/104303402760128504 12162810
    [Google Scholar]
  140. Chiu T.-L. Wang M.-J. Su C.-C. Enhanced anti-cancer activity of microglia by AAV2-mediated IL-12 in the therapy of glioblastoma multiforme. Oncol. Rep. 2011 25 5 1373 1380 10.3892/or.2011.1213
    [Google Scholar]
  141. Ye L. Park J.J. Dong M.B. Yang Q. Chow R.D. Peng L. Du Y. Guo J. Dai X. Wang G. Errami Y. Chen S. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 2019 37 11 1302 1313 10.1038/s41587‑019‑0246‑4 31548728
    [Google Scholar]
  142. Lundstrom K. Self-replicating RNA viral vectors in vaccine development and gene therapy. Future Virol. 2016 11 5 345 356 10.2217/fvl‑2016‑0028
    [Google Scholar]
  143. Allen C. Opyrchal M. Aderca I. Schroeder M.A. Sarkaria J.N. Domingo E. Federspiel M.J. Galanis E. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther. 2013 20 4 444 449 10.1038/gt.2012.62 22914495
    [Google Scholar]
  144. Luiz M.T. Tofani L.B. Araújo V.H.S. Di Filippo L.D. Duarte J.L. Marchetti J.M. Chorilli M. Gene therapy based on lipid nanoparticles as non-viral vectors for glioma treatment. Curr. Gene Ther. 2021 21 5 452 463 10.2174/1566523220999201230205126 33390137
    [Google Scholar]
  145. Kim H.A. Park J.H. Yi N. Lee M. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy. Mol. Pharm. 2014 11 3 938 950 10.1021/mp4006003 24467192
    [Google Scholar]
  146. Bae Y. Lee J. Kho C. Choi J.S. Han J. Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy. Korean J. Physiol. Pharmacol. 2021 25 5 467 478 10.4196/kjpp.2021.25.5.467 34448464
    [Google Scholar]
  147. Kim J. Mondal S.K. Tzeng S.Y. Rui Y. Al-kharboosh R. Kozielski K.K. Bhargav A.G. Garcia C.A. Quiñones-Hinojosa A. Green J.J. Poly(ethylene glycol)–poly(beta-amino ester)-based nanoparticles for suicide gene therapy enhance brain penetration and extend survival in a preclinical human glioblastoma orthotopic xenograft model. ACS Biomater. Sci. Eng. 2020 6 5 2943 2955 10.1021/acsbiomaterials.0c00116 33463272
    [Google Scholar]
  148. Park S. Han H. Ahn S. Ryu C. Jeun S.S. Combination treatment with VPA and MSCs‑TRAIL could increase anti‑tumor effects against intracranial glioma. Oncol. Rep. 2021 45 3 869 878 10.3892/or.2021.7937 33469674
    [Google Scholar]
  149. Ahmed A.U. Alexiades N.G. Lesniak M.S. The use of neural stem cells in cancer gene therapy: Predicting the path to the clinic. Curr. Opin. Mol. Ther. 2010 12 5 546 552 20886386
    [Google Scholar]
  150. Shah K. Bureau E. Kim D.E. Yang K. Tang Y. Weissleder R. Breakefield X.O. Glioma therapy and real‐time imaging of neural precursor cell migration and tumor regression. Ann. Neurol. 2005 57 1 34 41 10.1002/ana.20306 15622535
    [Google Scholar]
  151. Qian J. Yang M. Feng Q. Pan X.Y. Yang L.L. Yang J.L. Inhibition of glioma by adenovirus KGHV500 encoding anti-p21Ras scFv and carried by cytokine-induced killer cells. Exp. Biol. Med. (Maywood) 2021 246 10 1228 1238 10.1177/1535370220986769 33535808
    [Google Scholar]
  152. Tirgar F. Azizi Z. Hosseindoost S. Hadjighassem M. Preclinical gene therapy in glioblastoma multiforme: Using olfactory ensheathing cells containing a suicide gene. Life Sci. 2022 311 Pt A 121132 10.1016/j.lfs.2022.121132 36309223
    [Google Scholar]
  153. Fallaux F.J. van der Eb A.J. Hoeben R.C. Who’s afraid of replication-competent adenoviruses? Gene Ther. 1999 6 5 709 712 10.1038/sj.gt.3300902 10505092
    [Google Scholar]
  154. Voges J. Reszka R. Gossmann A. Dittmar C. Richter R. Garlip G. Kracht L. Coenen H.H. Sturm V. Wienhard K. Heiss W.D. Jacobs A.H. Imaging‐guided convection‐enhanced delivery and gene therapy of glioblastoma. Ann. Neurol. 2003 54 4 479 487 10.1002/ana.10688 14520660
    [Google Scholar]
  155. Kang J.H. Desjardins A. Convection-enhanced delivery for high-grade glioma. Neurooncol. Pract. 2022 9 1 24 34 10.1093/nop/npab065 35096401
    [Google Scholar]
  156. Mangraviti A. Tzeng S.Y. Kozielski K.L. Wang Y. Jin Y. Gullotti D. Pedone M. Buaron N. Liu A. Wilson D.R. Hansen S.K. Rodriguez F.J. Gao G.D. DiMeco F. Brem H. Olivi A. Tyler B. Green J.J. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 2015 9 2 1236 1249 10.1021/nn504905q 25643235
    [Google Scholar]
  157. Xiao R. Ding J. Chen J. Zhao Z. He L. Wang H. Huang S. Luo B. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma. J. Biomater. Appl. 2021 36 1 15 25 10.1177/0885328220975570 33287646
    [Google Scholar]
  158. Tang L. Feng Y. Gao S. Mu Q. Liu C. Nanotherapeutics overcoming the blood-brain barrier for glioblastoma treatment. Front. Pharmacol. 2021 12 786700 10.3389/fphar.2021.786700 34899350
    [Google Scholar]
  159. Zou Y. Sun X. Yang Q. Zheng M. Shimoni O. Ruan W. Wang Y. Zhang D. Yin J. Huang X. Tao W. Park J.B. Liang X-J. Leong K.W. Shi B. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022 8 16 eabm8011 10.1126/sciadv.abm8011
    [Google Scholar]
  160. Wang F. Li Y. Shen Y. Wang A. Wang S. Xie T. The functions and applications of RGD in tumor therapy and tissue engineering. Int. J. Mol. Sci. 2013 14 7 13447 13462 10.3390/ijms140713447 23807504
    [Google Scholar]
  161. Wang Y. Tong L. Wang J. Luo J. Tang J. Zhong L. Xiao Q. Niu W. Li J. Zhu J. Chen H. Li X. Wang Y. cRGD-functionalized nanoparticles for combination therapy of anti-endothelium dependent vessels and anti-vasculogenic mimicry to inhibit the proliferation of ovarian cancer. Acta Biomater. 2019 94 495 504 10.1016/j.actbio.2019.06.039 31252171
    [Google Scholar]
  162. Stepanenko A.A. Sosnovtseva A.O. Valikhov M.P. Chekhonin V.P. A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci. Rep. 2021 11 1 16088 10.1038/s41598‑021‑94573‑y 34373477
    [Google Scholar]
  163. Liu K. Tsung K. Attenello F.J. Characterizing cell stress and GRP78 in glioma to enhance tumor treatment. Front. Oncol. 2020 10 608911 10.3389/fonc.2020.608911 33363039
    [Google Scholar]
  164. Przystal J.M. Waramit S. Pranjol M.Z.I. Yan W. Chu G. Chongchai A. Samarth G. Olaciregui N.G. Tabatabai G. Carcaboso A.M. Aboagye E.O. Suwan K. Hajitou A. Efficacy of systemic temozolomide‐activated phage‐targeted gene therapy in human glioblastoma. EMBO Mol. Med. 2019 11 4 e8492 10.15252/emmm.201708492 30808679
    [Google Scholar]
  165. Hardee M.E. Zagzag D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 2012 181 4 1126 1141 10.1016/j.ajpath.2012.06.030 22858156
    [Google Scholar]
  166. Caro C. Avasthi A. Paez-Muñoz J.M. Pernia Leal M. García-Martín M.L. Passive targeting of high-grade gliomas via the EPR effect: A closed path for metallic nanoparticles? Biomater. Sci. 2021 9 23 7984 7995 10.1039/D1BM01398J 34710207
    [Google Scholar]
  167. Dogbey D.M. Torres V.E.S. Fajemisin E. Mpondo L. Ngwenya T. Akinrinmade O.A. Perriman A.W. Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv. Transl. Res. 2023 13 11 2719 2738 10.1007/s13346‑023‑01362‑3 37301780
    [Google Scholar]
  168. Ramamoorth M. Narvekar A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res. 2015 9 1 GE01 GE06 10.7860/JCDR/2015/10443.5394 25738007
    [Google Scholar]
  169. Tian Z. Liang G. Cui K. Liang Y. Wang Q. Lv S. Cheng X. Zhang L. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol. 2021 12 644718 10.3389/fphar.2021.644718 33796026
    [Google Scholar]
  170. Wojnilowicz M. Glab A. Bertucci A. Caruso F. Cavalieri F. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA. ACS Nano 2019 13 1 187 202 10.1021/acsnano.8b05151 30566836
    [Google Scholar]
  171. Pattanayak V. Lin S. Guilinger J.P. Ma E. Doudna J.A. Liu D.R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013 31 9 839 843 10.1038/nbt.2673 23934178
    [Google Scholar]
  172. Doench J.G. Fusi N. Sullender M. Hegde M. Vaimberg E.W. Donovan K.F. Smith I. Tothova Z. Wilen C. Orchard R. Virgin H.W. Listgarten J. Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016 34 2 184 191 10.1038/nbt.3437 26780180
    [Google Scholar]
  173. Charlesworth C.T. Deshpande P.S. Dever D.P. Camarena J. Lemgart V.T. Cromer M.K. Vakulskas C.A. Collingwood M.A. Zhang L. Bode N.M. Behlke M.A. Dejene B. Cieniewicz B. Romano R. Lesch B.J. Gomez-Ospina N. Mantri S. Pavel-Dinu M. Weinberg K.I. Porteus M.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019 25 2 249 254 10.1038/s41591‑018‑0326‑x 30692695
    [Google Scholar]
  174. Lee A. Nadofaragene firadenovec: First approval. Drugs 2023 83 353 357
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232351747241113050243
Loading
/content/journals/cgt/10.2174/0115665232351747241113050243
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: TME ; hallmarks of cancer ; Glioblastoma ; gene therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test