Skip to content
2000
image of Gene Therapy and Gene Editing: Current Trends and Future Prospects of Molecular Medicine

Abstract

Gene therapy and genome editing have emerged as transformative approaches in the management of a diverse range of genetic and acquired diseases. This evaluation offers a thorough examination of the present state and prospects of these innovative technologies. Gene therapy is a prospective approach to the treatment and prevention of a variety of conditions, including complex cancers and inherited genetic disorders, which entail the introduction, removal, or modification of genetic material within a patient's cells. Genome editing, particularly through techniques such as CRISPR-Cas9, enables targeted corrections of genetic defects and opens new possibilities for personalized medicine by allowing for precise modifications at the DNA level. The review addresses the ethical implications, clinical applications, and significant advancements of these technologies. This article endeavors to underscore the substantial influence of gene therapy and genome editing on contemporary medicine by assessing the most recent research and clinical trials, thereby emphasizing their potential to revolutionize disease treatment and management.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232347734250211074241
2025-02-18
2025-04-23
Loading full text...

Full text loading...

References

  1. Anderson W.F. Human gene therapy. Nature 1998 392 6679 Suppl. 25 30 9579858
    [Google Scholar]
  2. Gaj T. Gersbach C.A. Barbas C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 31 7 397 405 10.1016/j.tibtech.2013.04.004 23664777
    [Google Scholar]
  3. Porteus M.H. A new class of medicines through DNA editing. N. Engl. J. Med. 2019 380 10 947 959 10.1056/NEJMra1800729 30855744
    [Google Scholar]
  4. Khan S.U. Khan M.U. Suleman M. Inam A. Din M.A.U. Hemophilia healing with AAV: Navigating the frontier of gene therapy. Curr. Gene Ther. 2024 24 4 265 277 10.2174/0115665232279893231228065540 38284735
    [Google Scholar]
  5. Naldini L. Gene therapy returns to centre stage. Nature 2015 526 7573 351 360 10.1038/nature15818 26469046
    [Google Scholar]
  6. Kay M.A. State-of-the-art gene-based therapies: The road ahead. Nat. Rev. Genet. 2011 12 5 316 328 10.1038/nrg2971 21468099
    [Google Scholar]
  7. Kim T.K. Eberwine J.H. Mammalian cell transfection: The present and the future. Anal. Bioanal. Chem. 2010 397 8 3173 3178 10.1007/s00216‑010‑3821‑6 20549496
    [Google Scholar]
  8. Blaese R.M. Culver K.W. Miller A.D. Carter C.S. Fleisher T. Clerici M. Shearer G. Chang L. Chiang Y. Tolstoshev P. Greenblatt J.J. Rosenberg S.A. Klein H. Berger M. Mullen C.A. Ramsey W.J. Muul L. Morgan R.A. Anderson W.F. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995 270 5235 475 480 10.1126/science.270.5235.475 7570001
    [Google Scholar]
  9. Hacein-Bey-Abina S. Von Kalle C. Schmidt M. McCormack M.P. Wulffraat N. Leboulch P. Lim A. Osborne C.S. Pawliuk R. Morillon E. Sorensen R. Forster A. Fraser P. Cohen J.I. de Saint Basile G. Alexander I. Wintergerst U. Frebourg T. Aurias A. Stoppa-Lyonnet D. Romana S. Radford-Weiss I. Gross F. Valensi F. Delabesse E. Macintyre E. Sigaux F. Soulier J. Leiva L.E. Wissler M. Prinz C. Rabbitts T.H. Le Deist F. Fischer A. Cavazzana-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003 302 5644 415 419 10.1126/science.1088547 14564000
    [Google Scholar]
  10. Milone M.C. O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018 32 7 1529 1541 10.1038/s41375‑018‑0106‑0 29654266
    [Google Scholar]
  11. Mingozzi F. High K.A. Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges. Nat. Rev. Genet. 2011 12 5 341 355 10.1038/nrg2988 21499295
    [Google Scholar]
  12. Lanphier E. Urnov F. Haecker S.E. Werner M. Smolenski J. Don’t edit the human germ line. Nature 2015 519 7544 410 411 10.1038/519410a 25810189
    [Google Scholar]
  13. Gyngell C. Douglas T. Savulescu J. The ethics of germline gene editing. J. Appl. Philos. 2017 34 4 498 513 10.1111/japp.12249 28919655
    [Google Scholar]
  14. Collins M Thrasher A. Gene therapy: Progress and predictions. Proc. Biol. Sci. 1821 282 1821 20143003
    [Google Scholar]
  15. Sheridan C. Gene therapy finds its niche. Nat. Biotechnol. 2011 29 2 121 128 10.1038/nbt.1769 21301435
    [Google Scholar]
  16. Ginn S.L. Curtin J.A. Smyth C.M. Latham M. Cunningham S.C. Zheng M. Hobson L. Rowe P.B. Alexander I.E. Kramer B. Wong M. Kakakios A. McCowage G.B. Watson D. Alexander S.I. Fischer A. Cavazzana-Calvo M. Hacein-Bey-Abina S. Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia. Med. J. Aust. 2005 182 9 458 463 10.5694/j.1326‑5377.2005.tb06785.x 15865589
    [Google Scholar]
  17. Bulcha J.T. Wang Y. Ma H. Tai P.W.L. Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021 6 1 53 10.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  18. Munis A.M. Gene therapy applications of non-human lentiviral vectors. Viruses 2020 12 10 1106 10.3390/v12101106 33003635
    [Google Scholar]
  19. Costa V.H. Kuranda K. Mingozzi F. AAV vector immunogenicity in humans: A long journey to successful gene transfer. Mol. Ther. 2020 28 3 723 746 10.1016/j.ymthe.2019.12.010 31972133
    [Google Scholar]
  20. Crystal R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014 25 1 3 11 10.1089/hum.2013.2527 24444179
    [Google Scholar]
  21. Kay M.A. Glorioso J.C. Naldini L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001 7 1 33 40 10.1038/83324 11135613
    [Google Scholar]
  22. Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 1998 9 5 457 463 10.1016/S0958‑1669(98)80029‑3 9821272
    [Google Scholar]
  23. Lee C.S. Bishop E.S. Zhang R. Yu X. Farina E.M. Yan S. Zhao C. Zeng Z. Shu Y. Wu X. Lei J. Li Y. Zhang W. Yang C. Wu K. Wu Y. Ho S. Athiviraham A. Lee M.J. Wolf J.M. Reid R.R. He T.C. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes. Dis. 2017 4 2 43 63 10.1016/j.gendis.2017.04.001 28944281
    [Google Scholar]
  24. Dwivedi S. Purohit P. Misra R. Application of single-cell omics in breast cancer. Single-Cell Omics. Barh D. Azevedo V. Academic Press 2019 69 103 10.1016/B978‑0‑12‑817532‑3.00005‑0
    [Google Scholar]
  25. Wal P. Aziz N. Singh C.P. Rasheed A. Tyagi L.K. Agrawal A. Wal A. Current landscape of gene therapy for the treatment of cardiovascular disorders. Curr. Gene Ther. 2024 24 5 356 376 10.2174/0115665232268840231222035423 38288826
    [Google Scholar]
  26. Cavazzana-Calvo M. Hacein-Bey S. Basile G.S. Gross F. Yvon E. Nusbaum P. Selz F. Hue C. Certain S. Casanova J.L. Bousso P. Deist F.L. Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000 288 5466 669 672 10.1126/science.288.5466.669 10784449
    [Google Scholar]
  27. Biffi A. Montini E. Lorioli L. Cesani M. Fumagalli F. Plati T. Baldoli C. Martino S. Calabria A. Canale S. Benedicenti F. Vallanti G. Biasco L. Leo S. Kabbara N. Zanetti G. Rizzo W.B. Mehta N.A.L. Cicalese M.P. Casiraghi M. Boelens J.J. Del Carro U. Dow D.J. Schmidt M. Assanelli A. Neduva V. Di Serio C. Stupka E. Gardner J. von Kalle C. Bordignon C. Ciceri F. Rovelli A. Roncarolo M.G. Aiuti A. Sessa M. Naldini L. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013 341 6148 1233158 10.1126/science.1233158 23845948
    [Google Scholar]
  28. Aiuti A. Cattaneo F. Galimberti S. Benninghoff U. Cassani B. Callegaro L. Scaramuzza S. Andolfi G. Mirolo M. Brigida I. Tabucchi A. Carlucci F. Eibl M. Aker M. Slavin S. Al-Mousa H. Al Ghonaium A. Ferster A. Duppenthaler A. Notarangelo L. Wintergerst U. Buckley R.H. Bregni M. Marktel S. Valsecchi M.G. Rossi P. Ciceri F. Miniero R. Bordignon C. Roncarolo M.G. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 2009 360 5 447 458 10.1056/NEJMoa0805817 19179314
    [Google Scholar]
  29. Rols M.P. Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim. Biophys. Acta Biomembr. 2006 1758 3 423 428 10.1016/j.bbamem.2006.01.005 16483538
    [Google Scholar]
  30. Heller L.C. Heller R. Electroporation gene therapy preclinical and clinical trials for melanoma. Curr. Gene Ther. 2010 10 4 312 317 10.2174/156652310791823489 20557286
    [Google Scholar]
  31. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  32. Lee R.J. Huang L. Lipidic vector systems for gene transfer. Crit. Rev. Ther. Drug Carrier Syst. 1997 14 2 34 10.1615/CritRevTherDrugCarrierSyst.v14.i2.30 9107521
    [Google Scholar]
  33. Zhao Y. Huang L. Lipid nanoparticles for gene delivery. In: Advances in Genetics. Academic Press 2014 13 36
    [Google Scholar]
  34. Aljabali A.A.A. El-Tanani M. Tambuwala M.M. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. J. Drug Deliv. Sci. Technol. 2024 92 105338 10.1016/j.jddst.2024.105338
    [Google Scholar]
  35. Niu J. Zhang B. Chen H. Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol. Biotechnol. 2014 56 8 681 688 10.1007/s12033‑014‑9771‑z 24870618
    [Google Scholar]
  36. Chandrasegaran S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell. Gene. Ther. Insights 2017 3 1 33 41 10.18609/cgti.2017.005 29270315
    [Google Scholar]
  37. Marcaida M.J. Muñoz I.G. Blanco F.J. Prieto J. Montoya G. Homing endonucleases: From basics to therapeutic applications. Cell. Mol. Life Sci. 2010 67 5 727 748 10.1007/s00018‑009‑0188‑y 19915993
    [Google Scholar]
  38. Gaj T. Sirk S.J. Shui S. Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb. Perspect. Biol. 2016 8 12 a023754 10.1101/cshperspect.a023754 27908936
    [Google Scholar]
  39. Chandrasegaran S. Carroll D. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 2016 428 5 5 Pt B 963 989 10.1016/j.jmb.2015.10.014 26506267
    [Google Scholar]
  40. Rodríguez-Rodríguez D.R. Ramírez-Solís R. Garza-Elizondo M.A. Garza-Rodríguez M.L. Barrera-Saldaña H.A. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int. J. Mol. Med. 2019 43 4 1559 1574 30816503
    [Google Scholar]
  41. Xu Y. Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020 18 2401 2415 10.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  42. Singh K. Bhushan B. Kumar S. Singh S. Macadangdang R.R. Pandey E. Varma A.K. Kumar S. Precision genome editing techniques in gene therapy: Current state and future prospects. Curr. Gene Ther. 2024 24 5 377 394 10.2174/0115665232279528240115075352 38258771
    [Google Scholar]
  43. Dwivedi S. Purohit P. Vasudeva A. Gene therapy and gene editing in healthcare. Biotechnology in Healthcare. Barh D. Academic Press 2022 147 175 10.1016/B978‑0‑323‑89837‑9.00006‑1
    [Google Scholar]
  44. Wei C. Liu J. Yu Z. Zhang B. Gao G. Jiao R. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J. Genet. Genomics 2013 40 6 281 289 10.1016/j.jgg.2013.03.013 23790627
    [Google Scholar]
  45. Sharma P. Dwivedi S. Nutrigenomics and nutrigenetics: New insight in disease prevention and cure. Indian J. Clin. Biochem. 2017 32 4 371 373 10.1007/s12291‑017‑0699‑5 29062169
    [Google Scholar]
  46. LaFountaine J.S. Fathe K. Smyth H.D.C. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 2015 494 1 180 194 10.1016/j.ijpharm.2015.08.029 26278489
    [Google Scholar]
  47. Hu J.H. Davis K.M. Liu D.R. Chemical biology approaches to genome editing: Understanding, controlling, and delivering programmable nucleases. Cell Chem. Biol. 2016 23 1 57 73 10.1016/j.chembiol.2015.12.009 26933736
    [Google Scholar]
  48. Urnov F.D. Rebar E.J. Holmes M.C. Zhang H.S. Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010 11 9 636 646 10.1038/nrg2842 20717154
    [Google Scholar]
  49. Anzalone A.V. Randolph P.B. Davis J.R. Sousa A.A. Koblan L.W. Levy J.M. Chen P.J. Wilson C. Newby G.A. Raguram A. Liu D.R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019 576 7785 149 157 10.1038/s41586‑019‑1711‑4 31634902
    [Google Scholar]
  50. Komor A.C. Kim Y.B. Packer M.S. Zuris J.A. Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016 533 7603 420 424 10.1038/nature17946 27096365
    [Google Scholar]
  51. Zhang H.X. Zhang Y. Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 2019 27 4 735 746 10.1016/j.ymthe.2019.01.014 30803822
    [Google Scholar]
  52. Sivanandhan G. Selvaraj N. Lim Y.P. Ganapathi A. Targeted genome editing using site-specific nucleases: ZFNs, TALENs, and the CRISPR/Cas9 system Springer Tokyo 2016 10.1007/978‑4‑431‑55227‑7
    [Google Scholar]
  53. Osakabe Y. Osakabe K. Genome editing with engineered nucleases in plants. Plant. Cell. Physiol. 2015 56 3 389 400 10.1093/pcp/pcu170 25416289
    [Google Scholar]
  54. Saifaldeen M. Al-Ansari D.E. Ramotar D. Aouida M. CRISPR FokI dead Cas9 system: Principles and applications in genome engineering. Cells 2020 9 11 2518 10.3390/cells9112518 33233344
    [Google Scholar]
  55. Cho A. Neuromuscular diseases: Genomics-driven advances. Genomics Inform. 2024 22 1 24 10.1186/s44342‑024‑00027‑y 39593150
    [Google Scholar]
  56. Kapoor M. Rossor A.M. Laura M. Reilly M.M. Clinical presentation, diagnosis and treatment of TTR amyloidosis. J. Neuromuscul. Dis. 2019 6 2 189 199 10.3233/JND‑180371 30829617
    [Google Scholar]
  57. Ledford H. Landmark CRISPR trial shows promise against deadly disease. Nature 2021 Epub ahead of print. 10.1038/d41586‑021‑01776‑4
    [Google Scholar]
  58. Mahajan R. Onasemnogene abeparvovec for spinal muscular atrophy: The costlier drug ever. Int. J. Appl. Basic Med. Res. 2019 9 3 127 128 10.4103/ijabmr.IJABMR_190_19 31392173
    [Google Scholar]
  59. Naso M.F. Tomkowicz B. Perry W.L. III Strohl W.R. Adeno-Associated Virus (AAV) as a vector for gene therapy. Bio. Drugs. 2017 31 4 317 334 10.1007/s40259‑017‑0234‑5 28669112
    [Google Scholar]
  60. Li S. Holguin L. Burnett J.C. CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Mol. Ther. Methods Clin. Dev. 2022 24 321 331 10.1016/j.omtm.2022.01.012 35229006
    [Google Scholar]
  61. Ren J. Liu X. Fang C. Jiang S. June C.H. Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 2017 23 9 2255 2266 10.1158/1078‑0432.CCR‑16‑1300 27815355
    [Google Scholar]
  62. Eyquem J. Mansilla-Soto J. Giavridis T. van der Stegen S.J.C. Hamieh M. Cunanan K.M. Odak A. Gönen M. Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017 543 7643 113 117 10.1038/nature21405 28225754
    [Google Scholar]
  63. Kumar S.V. Sen A. Anand A. Unlocking the role of virus-like particles (VLPs) for cancer treatment. Curr. Cancer Ther. Rev. 2024 10.2174/0115733947308351240514182503
    [Google Scholar]
  64. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  65. Dwivedi S. Sharma P. Cancer stem cells: Future possibilities for cancer therapy. Indian J. Clin. Biochem. 2023 38 2 149 150 10.1007/s12291‑023‑01133‑4 37025432
    [Google Scholar]
  66. Ma H. Marti-Gutierrez N. Park S.W. Wu J. Lee Y. Suzuki K. Koski A. Ji D. Hayama T. Ahmed R. Darby H. Van Dyken C. Li Y. Kang E. Park A.R. Kim D. Kim S.T. Gong J. Gu Y. Xu X. Battaglia D. Krieg S.A. Lee D.M. Wu D.H. Wolf D.P. Heitner S.B. Belmonte J.C.I. Amato P. Kim J.S. Kaul S. Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature 2017 548 7668 413 419 10.1038/nature23305 28783728
    [Google Scholar]
  67. Frangoul H. Altshuler D. Cappellini M.D. Chen Y.S. Domm J. Eustace B.K. Foell J. de la Fuente J. Grupp S. Handgretinger R. Ho T.W. Kattamis A. Kernytsky A. Lekstrom-Himes J. Li A.M. Locatelli F. Mapara M.Y. de Montalembert M. Rondelli D. Sharma A. Sheth S. Soni S. Steinberg M.H. Wall D. Yen A. Corbacioglu S. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021 384 3 252 260 10.1056/NEJMoa2031054 33283989
    [Google Scholar]
  68. Li J. Ni H. Wang X. Cheng W. Li L. Cheng Y. Liu C. Li Y. Deng A. Association of a novel frameshift variant and a known deleterious variant in MMR genes with Lynch syndrome in Chinese families. World J. Surg. Oncol. 2024 22 1 36 10.1186/s12957‑024‑03309‑5 38280988
    [Google Scholar]
  69. Li T. Yang Y. Qi H. Cui W. Zhang L. Fu X. He X. Liu M. Li P. Yu T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal. Transduct. Target. Ther. 2023 8 1 36 10.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  70. Sen A. Mohanraj P.S. Ranjan A. Rajendran V. ArulVijayaVani S. Balan Y. Bansal A. Unraveling the role of tumor necrosis factor-alpha in diabetic peripheral neuropathy: A systematic review and meta-analysis. Cureus 2023 15 12 e49926 10.7759/cureus.49926 38179375
    [Google Scholar]
  71. Li H. Yang Y. Hong W. Huang M. Wu M. Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020 5 1 1 10.1038/s41392‑019‑0089‑y 32296011
    [Google Scholar]
  72. Tebas P. Stein D. Tang W.W. Frank I. Wang S.Q. Lee G. Spratt S.K. Surosky R.T. Giedlin M.A. Nichol G. Holmes M.C. Gregory P.D. Ando D.G. Kalos M. Collman R.G. Binder-Scholl G. Plesa G. Hwang W.T. Levine B.L. June C.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 2014 370 10 901 910 10.1056/NEJMoa1300662 24597865
    [Google Scholar]
  73. Kohn D.B. Booth C. Shaw K.L. Xu-Bayford J. Garabedian E. Trevisan V. Carbonaro-Sarracino D.A. Soni K. Terrazas D. Snell K. Ikeda A. Leon-Rico D. Moore T.B. Buckland K.F. Shah A.J. Gilmour K.C. De Oliveira S. Rivat C. Crooks G.M. Izotova N. Tse J. Adams S. Shupien S. Ricketts H. Davila A. Uzowuru C. Icreverzi A. Barman P. Campo Fernandez B. Hollis R.P. Coronel M. Yu A. Chun K.M. Casas C.E. Zhang R. Arduini S. Lynn F. Kudari M. Spezzi A. Zahn M. Heimke R. Labik I. Parrott R. Buckley R.H. Reeves L. Cornetta K. Sokolic R. Hershfield M. Schmidt M. Candotti F. Malech H.L. Thrasher A.J. Gaspar H.B. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N. Engl. J. Med. 2021 384 21 2002 2013 10.1056/NEJMoa2027675 33974366
    [Google Scholar]
  74. Russell S. Bennett J. Wellman J.A. Chung D.C. Yu Z.F. Tillman A. Wittes J. Pappas J. Elci O. McCague S. Cross D. Marshall K.A. Walshire J. Kehoe T.L. Reichert H. Davis M. Raffini L. George L.A. Hudson F.P. Dingfield L. Zhu X. Haller J.A. Sohn E.H. Mahajan V.B. Pfeifer W. Weckmann M. Johnson C. Gewaily D. Drack A. Stone E. Wachtel K. Simonelli F. Leroy B.P. Wright J.F. High K.A. Maguire A.M. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017 390 10097 849 860 10.1016/S0140‑6736(17)31868‑8 28712537
    [Google Scholar]
  75. Wilson J.M. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol. Genet. Metab. 2009 96 4 151 157 10.1016/j.ymgme.2008.12.016 19211285
    [Google Scholar]
  76. Kosicki M. Tomberg K. Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018 36 8 765 771 10.1038/nbt.4192 30010673
    [Google Scholar]
  77. Ormond K.E. Mortlock D.P. Scholes D.T. Bombard Y. Brody L.C. Faucett W.A. Garrison N.A. Hercher L. Isasi R. Middleton A. Musunuru K. Shriner D. Virani A. Young C.E. Human germline genome editing. Am. J. Hum. Genet. 2017 101 2 167 176 10.1016/j.ajhg.2017.06.012 28777929
    [Google Scholar]
  78. de Lecuona I. Casado M. Marfany G. Lopez Baroni M. Escarrabill M. Gene editing in humans: Towards a global and inclusive debate for responsible research. Yale J. Biol. Med. 2017 90 4 673 681 29259532
    [Google Scholar]
  79. Sen A. Chatterjee A. Confronting the health impacts of climate change: A comprehensive exploration. Preserving Health, Preserving Earth: The Path to Sustainable Healthcare. Prabhakar P.K. Leal Filho W. Switzerland Springer Nature 2024 1 9 10.1007/978‑3‑031‑60545‑1_1
    [Google Scholar]
  80. Cavaliere G. Devolder K. Giubilini A. Regulating genome editing: For an enlightened democratic governance. Camb. Q. Healthc. Ethics 2019 28 1 76 88 10.1017/S0963180118000403 30570466
    [Google Scholar]
  81. National Academies of Sciences, Engineering, and Medicine National Academy of Medicine National Academy of Sciences Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations. Human Genome Editing: Science, Ethics, and Governance National Academies Press US 2017
    [Google Scholar]
  82. National Academies of Sciences, Engineering, and Medicine. Policy and Global Affairs Olson S. Third International Summit on Human Genome Editing National Academies Press US 2023 10.17226/27066
    [Google Scholar]
  83. Kohn D.B. Porteus M.H. Scharenberg A.M. Ethical and regulatory aspects of genome editing. Blood 2016 127 21 2553 2560 10.1182/blood‑2016‑01‑678136 27053531
    [Google Scholar]
  84. Lei R. Qiu R. Ethical and regulatory issues in human gene editing: Chinese perspective. Biotechnol. Appl. Biochem. 2020 67 6 880 891 10.1002/bab.2032 33011985
    [Google Scholar]
  85. Gao Y. Gao K. Yang H. CRISPR/Cas: A potential gene-editing tool in the nervous system. Cell Regen. (Lond.) 2020 9 1 12 10.1186/s13619‑020‑00044‑6 32761306
    [Google Scholar]
  86. Klompe S.E. Vo P.L.H. Halpin-Healy T.S. Sternberg S.H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 2019 571 7764 219 225 10.1038/s41586‑019‑1323‑z 31189177
    [Google Scholar]
  87. Wittrup A. Lieberman J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet. 2015 16 9 543 552 10.1038/nrg3978 26281785
    [Google Scholar]
  88. Dwivedi S. Samdariya S. Chikara G. Molecular biotechnology for diagnostics. Applied Mol Biotechnol CRC Press 2016 10.1201/b19543‑16
    [Google Scholar]
  89. Barbosa S. Pare Toe L. Thizy D. Vaz M. Carter L. Engagement and social acceptance in genome editing for human benefit: Reflections on research and practice in a global context. Wellcome Open Res. 2020 5 244 10.12688/wellcomeopenres.16260.2 34095505
    [Google Scholar]
  90. Dunbar C.E. High K.A. Joung J.K. Kohn D.B. Ozawa K. Sadelain M. Gene therapy comes of age. Science 2018 359 6372 eaan4672 10.1126/science.aan4672 29326244
    [Google Scholar]
  91. Sharma P. Dwivedi S. Prospects of molecular biotechnology in diagnostics: Step towards precision medicine. Indian. J. Clin. Biochem. 2017 32 2 121 123 10.1007/s12291‑017‑0650‑9.
    [Google Scholar]
  92. Dwivedi S. Purohit P. Mittal Y. Genetic engineering: Towards gene therapy and molecular medicine. In: Omics Technologies and Bio-Engineering. Barh D. Azevedo V. Academic Press 2018 507 532 10.1016/B978‑0‑12‑804659‑3.00022‑1
    [Google Scholar]
  93. Dwivedi S. Purohit P. Misra R. Pareek P. Goel A. Khattri S. Pant K.K. Misra S. Sharma P. Diseases and molecular diagnostics: A step closer to precision medicine. Indian J. Clin. Biochem. 2017 32 4 374 398 10.1007/s12291‑017‑0688‑8 29062170
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232347734250211074241
Loading
/content/journals/cgt/10.2174/0115665232347734250211074241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test