Skip to content
2000
image of CRISPR/Cas System: A Powerful Strategy to Improve Monogenic Human Diseases as Therapeutic Delivery; Current Applications and Challenges

Abstract

The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989. Monogenic diseases are good candidates for novel therapeutic technologies like gene editing approaches to repair gene mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)-based systems, the pioneer and effective gene editing tool, are utilized for and treatment of monogenic diseases. The current review provides an overview of recent therapeutic applications of CRISPR-based gene editing in monogenic diseases in and models. Furthermore, this review consolidates strategies aimed at providing new treatment options with gene therapy, thereby serving as a valuable reference for advancing the treatment landscape for patients with monogenic disorders.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232345516241119070150
2025-01-07
2025-07-03
Loading full text...

Full text loading...

References

  1. Shams F. Pourjabbar B. Hashemi N. Farahmandian N. Golchin A. Nuoroozi G. Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed. Pharmacother. 2023 167 115505 10.1016/j.biopha.2023.115505 37716113
    [Google Scholar]
  2. Im W. Moon J. Kim M. Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J. Mov. Disord. 2016 9 3 136 143 10.14802/jmd.16029 27667185
    [Google Scholar]
  3. Gaj T. Gersbach C.A. Barbas C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 31 7 397 405 10.1016/j.tibtech.2013.04.004 23664777
    [Google Scholar]
  4. Song G. Jia M. Chen K. Kong X. Khattak B. Xie C. Li A. Mao L. CRISPR/Cas9: A powerful tool for crop genome editing. Crop J. 2016 4 2 75 82 10.1016/j.cj.2015.12.002
    [Google Scholar]
  5. Cong L. Ran F.A. Cox D. Lin S. Barretto R. Habib N. Hsu P.D. Wu X. Jiang W. Marraffini L.A. Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 339 6121 819 823 10.1126/science.1231143 23287718
    [Google Scholar]
  6. Mali P. Yang L. Esvelt K.M. Aach J. Guell M. DiCarlo J.E. Norville J.E. Church G.M. RNA-guided human genome engineering via Cas9. Science 2013 339 6121 823 826 10.1126/science.1232033 23287722
    [Google Scholar]
  7. Shams F. Moravvej H. Hosseinzadeh S. Kazemi B. Rajabibazl M. Rahimpour A. Evaluation of in vitro fibroblast migration by electrospun triple-layered PU-CA/gelatin.PRGF/PU-CA scaffold using an AAVS1 targeted EGFP reporter cell line. Bioimpacts 2021 12 3 219 231 10.34172/bi.2021.43 35677672
    [Google Scholar]
  8. Li H. 2019 Design and specificity of long ssDNA donors for CRISPR-based knock-in. bioRxiv 178905 10.1101/178905
    [Google Scholar]
  9. Chiruvella K.K. Liang Z. Wilson T.E. Repair of double-strand breaks by end joining. Cold Spring Harb. Perspect. Biol. 2013 5 5 a012757 10.1101/cshperspect.a012757 23637284
    [Google Scholar]
  10. Dasgupta I. Flotte T.R. Keeler A.M. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum. Gene Ther. 2021 32 5-6 275 293 10.1089/hum.2021.013 33750221
    [Google Scholar]
  11. Bikard D. Jiang W. Samai P. Hochschild A. Zhang F. Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013 41 15 7429 7437 10.1093/nar/gkt520 23761437
    [Google Scholar]
  12. Komor A.C. Kim Y.B. Packer M.S. Zuris J.A. Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016 533 7603 420 424 10.1038/nature17946 27096365
    [Google Scholar]
  13. Qi L.S. Larson M.H. Gilbert L.A. Doudna J.A. Weissman J.S. Arkin A.P. Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013 152 5 1173 1183 10.1016/j.cell.2013.02.022 23452860
    [Google Scholar]
  14. Xu Y. Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020 18 2401 2415 10.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  15. Ali Z. Mahas A. Mahfouz M. CRISPR/Cas13 as a Tool for RNA Interference. Trends Plant Sci. 2018 23 5 374 378 10.1016/j.tplants.2018.03.003 29605099
    [Google Scholar]
  16. Gaudelli N.M. Komor A.C. Rees H.A. Packer M.S. Badran A.H. Bryson D.I. Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551 7681 464 471 10.1038/nature24644 29160308
    [Google Scholar]
  17. Anzalone A.V. Randolph P.B. Davis J.R. Sousa A.A. Koblan L.W. Levy J.M. Chen P.J. Wilson C. Newby G.A. Raguram A. Liu D.R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019 576 7785 149 157 10.1038/s41586‑019‑1711‑4 31634902
    [Google Scholar]
  18. Fujii W. Onuma A. Sugiura K. Naito K. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system. Biochem. Biophys. Res. Commun. 2014 445 4 791 794 10.1016/j.bbrc.2014.01.141 24491566
    [Google Scholar]
  19. Pavan E. Ormazabal M. Peruzzo P. Vaena E. Rozenfeld P. Dardis A. CRISPR/Cas9 Editing for Gaucher Disease Modelling. Int. J. Mol. Sci. 2020 21 9 3268 10.3390/ijms21093268 32380730
    [Google Scholar]
  20. Thein S.L. The molecular basis of β-thalassemia. Cold Spring Harb. Perspect. Med. 2013 3 5 a011700 10.1101/cshperspect.a011700 23637309
    [Google Scholar]
  21. Yin H. Song C.Q. Suresh S. Kwan S.Y. Wu Q. Walsh S. Ding J. Bogorad R.L. Zhu L.J. Wolfe S.A. Koteliansky V. Xue W. Langer R. Anderson D.G. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol. 2018 14 3 311 316 10.1038/nchembio.2559 29377001
    [Google Scholar]
  22. Li H.L. Fujimoto N. Sasakawa N. Shirai S. Ohkame T. Sakuma T. Tanaka M. Amano N. Watanabe A. Sakurai H. Yamamoto T. Yamanaka S. Hotta A. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015 4 1 143 154 10.1016/j.stemcr.2014.10.013 25434822
    [Google Scholar]
  23. Longhurst H. Fijen L. Lindsay K. Butler J. Golden A. Maag D. Xu Y. Cohn D. In vivo crispr/cas9 editing of klkb1 in patients with hereditary angioedema: a first-in-human study. Ann. Allergy Asthma Immunol. 2022 129 5 Suppl. S10 S11 10.1016/j.anai.2022.08.536
    [Google Scholar]
  24. Lyu C. Shen J. Wang R. Gu H. Zhang J. Xue F. Liu X. Liu W. Fu R. Zhang L. Li H. Zhang X. Cheng T. Yang R. Zhang L. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Res. Ther. 2018 9 1 92 10.1186/s13287‑018‑0839‑8 29625575
    [Google Scholar]
  25. Sürün D. Schwäble J. Tomasovic A. Ehling R. Stein S. Kurrle N. von Melchner H. Schnütgen F. High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol. Ther. Nucleic Acids 2018 10 1 8 10.1016/j.omtn.2017.11.001 29499925
    [Google Scholar]
  26. Park S.H. Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus. Apheresis Sci. 2021 60 1 103060 10.1016/j.transci.2021.103060 33455878
    [Google Scholar]
  27. Chang C.W. Lai Y.S. Westin E. Khodadadi-Jamayran A. Pawlik K.M. Lamb L.S. Jr Goldman F.D. Townes T.M. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep. 2015 12 10 1668 1677 10.1016/j.celrep.2015.08.013 26321643
    [Google Scholar]
  28. Li Y. Glass Z. Huang M. Chen Z.Y. Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020 234 119711 119711 10.1016/j.biomaterials.2019.119711 31945616
    [Google Scholar]
  29. Howden S.E. Maufort J.P. Duffin B.M. Elefanty A.G. Stanley E.G. Thomson J.A. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts. Stem Cell Reports 2015 5 6 1109 1118 10.1016/j.stemcr.2015.10.009 26584543
    [Google Scholar]
  30. Booth C. Gaspar H.B. Thrasher A.J. Treating Immunodeficiency through HSC Gene Therapy. Trends Mol. Med. 2016 22 4 317 327 10.1016/j.molmed.2016.02.002 26993219
    [Google Scholar]
  31. Rai R. Romito M. Rivers E. Turchiano G. Blattner G. Vetharoy W. Ladon D. Andrieux G. Zhang F. Zinicola M. Leon-Rico D. Santilli G. Thrasher A.J. Cavazza A. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott - Aldrich Syndrome. Nat. Commun. 2020 11 1 4034 10.1038/s41467‑020‑17626‑2 32788576
    [Google Scholar]
  32. Iyer S. Suresh S. Guo D. Daman K. Chen J.C.J. Liu P. Zieger M. Luk K. Roscoe B.P. Mueller C. King O.D. Emerson C.P. Jr Wolfe S.A. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Nature 2019 568 7753 561 565 10.1038/s41586‑019‑1076‑8 30944467
    [Google Scholar]
  33. Zhao H. Li Y. He L. Pu W. Yu W. Li Y. Wu Y.T. Xu C. Wei Y. Ding Q. Song B.L. Huang H. Zhou B. In Vivo AAV-CRISPR/Cas9–Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 2020 141 1 67 79 10.1161/CIRCULATIONAHA.119.042476 31779484
    [Google Scholar]
  34. Kim Y.K. Yu J.H. Min S.H. Park S.W. Generation of a GLA knock-out human-induced pluripotent stem cell line, KSBCi002-A-1, using CRISPR/Cas9. Stem Cell Res. (Amst.) 2020 42 101676 10.1016/j.scr.2019.101676 31841972
    [Google Scholar]
  35. Pereira E.M. Labilloy A. Eshbach M.L. Roy A. Subramanya A.R. Monte S. Labilloy G. Weisz O.A. Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology. Am. J. Physiol. Renal Physiol. 2016 311 5 F1015 F1024 10.1152/ajprenal.00283.2016 27681560
    [Google Scholar]
  36. Benati D. Miselli F. Cocchiarella F. Patrizi C. Carretero M. Baldassarri S. Ammendola V. Has C. Colloca S. Del Rio M. Larcher F. Recchia A. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient. Mol. Ther. 2018 26 11 2592 2603 10.1016/j.ymthe.2018.07.024 30122422
    [Google Scholar]
  37. Li Y. Song Y.H. Liu B. Yu X.Y. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research. Int. J. Cardiol. 2017 227 191 193 10.1016/j.ijcard.2016.11.177 27847153
    [Google Scholar]
  38. Fang B. Ren X. Wang Y. Li Z. Zhao L. Zhang M. Li C. Zhang Z. Chen L. Li X. Liu J. Xiong Q. Zhang L. Jin Y. Liu X. Li L. Wei H. Yang H. Li R. Dai Y. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis. Model. Mech. 2018 11 10 dmm036632 10.1242/dmm.036632 30305304
    [Google Scholar]
  39. Guo X. Gao M. Wang Y. Lin X. Yang L. Cong N. An X. Wang F. Qu K. Yu L. Wang Y. Wang J. Zhu H. Xian X. Liu G. LDL Receptor Gene-ablated Hamsters: A Rodent Model of Familial Hypercholesterolemia With Dominant Inheritance and Diet-induced Coronary Atherosclerosis. EBioMedicine 2018 27 214 224 10.1016/j.ebiom.2017.12.013 29289533
    [Google Scholar]
  40. Sim S.W. Park T.S. Kim S.J. Park B.C. Weinstein D.A. Lee Y.M. Jun H.S. Aberrant proliferation and differentiation of glycogen storage disease type Ib mesenchymal stem cells. FEBS Lett. 2018 592 2 162 171 10.1002/1873‑3468.12939 29238966
    [Google Scholar]
  41. Arnaoutova I. Zhang L. Chen H.D. Mansfield B.C. Chou J.Y. Correction of metabolic abnormalities in a mouse model of glycogen storage disease type Ia by CRISPR/Cas9-based gene editing. Mol. Ther. 2021 29 4 1602 1610 10.1016/j.ymthe.2020.12.027 33359667
    [Google Scholar]
  42. Huang J.Y. Kan S.H. Sandfeld E.K. Dalton N.D. Rangel A.D. Chan Y. Davis-Turak J. Neumann J. Wang R.Y. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness. Sci. Rep. 2020 10 1 10321 10.1038/s41598‑020‑65259‑8 32587263
    [Google Scholar]
  43. Ou L. Przybilla M.J. Tăbăran A.F. Overn P. O’Sullivan M.G. Jiang X. Sidhu R. Kell P.J. Ory D.S. Whitley C.B. A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases. Gene Ther. 2020 27 5 226 236 10.1038/s41434‑019‑0120‑5 31896760
    [Google Scholar]
  44. Shen S. Sanchez M.E. Blomenkamp K. Corcoran E.M. Marco E. Yudkoff C.J. Jiang H. Teckman J.H. Bumcrot D. Albright C.F. Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice. Hum. Gene Ther. 2018 29 8 861 873 10.1089/hum.2017.227 29641323
    [Google Scholar]
  45. Bjursell M. Porritt M.J. Ericson E. Taheri-Ghahfarokhi A. Clausen M. Magnusson L. Admyre T. Nitsch R. Mayr L. Aasehaug L. Seeliger F. Maresca M. Bohlooly-Y M. Wiseman J. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates α1-antitrypsin Deficiency Phenotype. EBioMedicine 2018 29 104 111 10.1016/j.ebiom.2018.02.015 29500128
    [Google Scholar]
  46. Ginn S.L. Amaya A.K. Liao S.H.Y. Zhu E. Cunningham S.C. Lee M. Hallwirth C.V. Logan G.J. Tay S.S. Cesare A.J. Pickett H.A. Grompe M. Dilworth K. Lisowski L. Alexander I.E. Efficient in vivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Reports 2020 2 1 100065 10.1016/j.jhepr.2019.100065 32039406
    [Google Scholar]
  47. Yang Y. Wang L. Bell P. McMenamin D. He Z. White J. Yu H. Xu C. Morizono H. Musunuru K. Batshaw M.L. Wilson J.M. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 2016 34 3 334 338 10.1038/nbt.3469 26829317
    [Google Scholar]
  48. Zhang Q.S. Tiyaboonchai A. Nygaard S. Baradar K. Major A. Balaji N. Grompe M. Induced liver regeneration enhances CRISPR/Cas9-mediated gene repair in tyrosinemia type 1. Hum. Gene Ther. 2021 32 5-6 294 301 10.1089/hum.2020.042 32729326
    [Google Scholar]
  49. Estève J. Blouin J.M. Lalanne M. Azzi-Martin L. Dubus P. Bidet A. Harambat J. Llanas B. Moranvillier I. Bedel A. Moreau-Gaudry F. Richard E. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem. Biophys. Res. Commun. 2019 517 4 677 683 10.1016/j.bbrc.2019.07.109 31402115
    [Google Scholar]
  50. Lelieveld L.T. Mirzaian M. Kuo C.L. Artola M. Ferraz M.J. Peter R.E.A. Akiyama H. Greimel P. van den Berg R.J.B.H.N. Overkleeft H.S. Boot R.G. Meijer A.H. Aerts J.M.F.G. Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J. Lipid Res. 2019 60 11 1851 1867 10.1194/jlr.RA119000154 31562193
    [Google Scholar]
  51. Gentner B. Ex-vivo gene therapy for Hurler disease: initial results from a phase I/II clinical study. In: Molecular Therap Cell Press 2019
    [Google Scholar]
  52. Muenzer J. Prada C.E. Burton B. Lau H.A. Ficicioglu C. Foo C.W.P. Vaidya S.A. Whitley C.B. Harmatz P. CHAMPIONS: A phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome). Mol. Genet. Metab. 2019 126 2 S104 10.1016/j.ymgme.2018.12.263
    [Google Scholar]
  53. Tseng W.C. Loeb H.E. Pei W. Tsai-Morris C.H. Xu L. Cluzeau C.V. Wassif C.A. Feldman B. Burgess S.M. Pavan W.J. Porter F.D. Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds. Dis. Model. Mech. 2018 11 9 dmm034165 10.1242/dmm.034165 30135069
    [Google Scholar]
  54. Rebiai R. Rue E. Zaldua S. Nguyen D. Scesa G. Jastrzebski M. Foster R. Wang B. Jiang X. Tai L. Brady S.T. van Breemen R. Givogri M.I. Sands M.S. Bongarzone E.R. CRISPR-Cas9 Knock-In of T513M and G41S Mutations in the Murine β–Galactosyl-Ceramidase Gene Re-capitulates Early-Onset and Adult-Onset Forms of Krabbe Disease. Front. Mol. Neurosci. 2022 15 896314 10.3389/fnmol.2022.896314 35620447
    [Google Scholar]
  55. Przybilla M.J. Ou L. Tăbăran A.F. Jiang X. Sidhu R. Kell P.J. Ory D.S. O’Sullivan M.G. Whitley C.B. Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Mol. Genet. Metab. 2019 126 2 139 150 10.1016/j.ymgme.2018.11.002 30528226
    [Google Scholar]
  56. Zhang H. Shi J. Hachet M.A. Xue C. Bauer R.C. Jiang H. Li W. Tohyama J. Millar J. Billheimer J. Phillips M.C. Razani B. Rader D.J. Reilly M.P. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2017 37 11 2156 2160 10.1161/ATVBAHA.117.310023 28882870
    [Google Scholar]
  57. Tsai Y.T. Wu W.H. Lee T.T. Wu W.P. Xu C.L. Park K.S. Cui X. Justus S. Lin C.S. Jauregui R. Su P.Y. Tsang S.H. Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa. Ophthalmology 2018 125 9 1421 1430 10.1016/j.ophtha.2018.04.001 29759820
    [Google Scholar]
  58. Lin Q. Lv J.N. Wu K.C. Zhang C.J. Liu Q. Jin Z.B. Generation of Nonhuman Primate Model of Cone Dysfunction through In Situ AAV-Mediated CNGB3 Ablation. Mol. Ther. Methods Clin. Dev. 2020 18 869 879 10.1016/j.omtm.2020.08.007 32953936
    [Google Scholar]
  59. Jo D.H. Song D.W. Cho C.S. Kim U.G. Lee K.J. Lee K. Park S.W. Kim D. Kim J.H. Kim J.S. Kim S. Kim J.H. Lee J.M. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci. Adv. 2019 5 10 eaax1210 10.1126/sciadv.aax1210 31692906
    [Google Scholar]
  60. Chou S.J. Yang P. Ban Q. Yang Y.P. Wang M.L. Chien C.S. Chen S.J. Sun N. Zhu Y. Liu H. Hui W. Lin T.C. Wang F. Zhang R.Y. Nguyen V.Q. Liu W. Chen M. Jonas S.J. Weiss P.S. Tseng H.R. Chiou S.H. Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9‐Mediated Knockin of Retinoschisin 1 Gene—A Potential Nonviral Therapeutic Solution for X‐Linked Juvenile Retinoschisis. Adv. Sci. (Weinh.) 2020 7 10 1903432 10.1002/advs.201903432 32440478
    [Google Scholar]
  61. Fuster-García C. García-García G. González-Romero E. Jaijo T. Sequedo M.D. Ayuso C. Vázquez-Manrique R.P. Millán J.M. Aller E. USH2A Gene Editing Using the CRISPR System. Mol. Ther. Nucleic Acids 2017 8 529 541 10.1016/j.omtn.2017.08.003 28918053
    [Google Scholar]
  62. Sanjurjo Soriano C. CRISPR/Cas9-mediated correction of the most recurrent USH2A mutation in patient iPSC. Invest. Ophthalmol. Vis. Sci. 2019 60 9 4943 4943
    [Google Scholar]
  63. Trapani I. Somatic or germline ABCA4 editing to generate a pig model of Stargardt disease type 1. Invest. Ophthalmol. Vis. Sci. 2019 60 9 4230 4230
    [Google Scholar]
  64. Maldonado R. Jalil S. Keskinen T. Nieminen A.I. Hyvönen M.E. Lapatto R. Wartiovaara K. CRISPR correction of the Finnish ornithine delta-aminotransferase mutation restores metabolic homeostasis in iPSC from patients with gyrate atrophy. Mol. Genet. Metab. Rep. 2022 31 100863 10.1016/j.ymgmr.2022.100863 35782600
    [Google Scholar]
  65. Bonafont J. Mencía A. Chacón-Solano E. Srifa W. Vaidyanathan S. Romano R. Garcia M. Hervás-Salcedo R. Ugalde L. Duarte B. Porteus M.H. Del Rio M. Larcher F. Murillas R. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol. Ther. 2021 29 6 2008 2018 10.1016/j.ymthe.2021.02.019 33609734
    [Google Scholar]
  66. Gillmore J.D. Gane E. Taubel J. Kao J. Fontana M. Maitland M.L. Seitzer J. O’Connell D. Walsh K.R. Wood K. Phillips J. Xu Y. Amaral A. Boyd A.P. Cehelsky J.E. McKee M.D. Schiermeier A. Harari O. Murphy A. Kyratsous C.A. Zambrowicz B. Soltys R. Gutstein D.E. Leonard J. Sepp-Lorenzino L. Lebwohl D. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021 385 6 493 502 10.1056/NEJMoa2107454 34215024
    [Google Scholar]
  67. Zhou Z.P. Yang L.L. Cao H. Chen Z.R. Zhang Y. Wen X.Y. Hu J. In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs. Hum. Gene Ther. 2019 30 9 1101 1116 10.1089/hum.2019.074 31099266
    [Google Scholar]
  68. Wu J. Tang Y. Zhang C.L. Targeting N-Terminal Huntingtin with a Dual-sgRNA Strategy by CRISPR/Cas9. BioMed Res. Int. 2019 2019 1 10 10.1155/2019/1039623 31828084
    [Google Scholar]
  69. Azevedo A. Kovalenko M. Andrew M. Zhang F. Lee J. Wheeler V. Pinto M.R. Identification of genetic modifiers of somatic CAG instability in Huntington’s Disease by in vivo CRISPR – Cas9 genome editing. Porto Biomed. J. 2017 2 5 209 210 10.1016/j.pbj.2017.07.083 32258693
    [Google Scholar]
  70. Shin J.W. Kim K.H. Chao M.J. Atwal R.S. Gillis T. MacDonald M.E. Gusella J.F. Lee J.M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 2016 25 20 ddw286 10.1093/hmg/ddw286 28172889
    [Google Scholar]
  71. Ekman F.K. Ojala D.S. Adil M.M. Lopez P.A. Schaffer D.V. Gaj T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model. Mol. Ther. Nucleic Acids 2019 17 829 839 10.1016/j.omtn.2019.07.009 31465962
    [Google Scholar]
  72. Dabrowska M. Juzwa W. Krzyzosiak W.J. Olejniczak M. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front. Neurosci. 2018 12 75 10.3389/fnins.2018.00075 29535594
    [Google Scholar]
  73. Merienne N. Vachey G. de Longprez L. Meunier C. Zimmer V. Perriard G. Canales M. Mathias A. Herrgott L. Beltraminelli T. Maulet A. Dequesne T. Pythoud C. Rey M. Pellerin L. Brouillet E. Perrier A.L. du Pasquier R. Déglon N. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep. 2017 20 12 2980 2991 10.1016/j.celrep.2017.08.075 28930690
    [Google Scholar]
  74. Ali G. Tariq M.A. Shahid K. Ahmad F.J. Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther. 2021 28 1-2 6 15 10.1038/s41434‑020‑0153‑9 32355226
    [Google Scholar]
  75. Ajami M. Atashi A. Kaviani S. Kiani J. Soleimani M. Generation of an in vitro model of β‐thalassemia using the CRISPR/Cas9 genome editing system. J. Cell. Biochem. 2020 121 2 1420 1430 10.1002/jcb.29377 31596028
    [Google Scholar]
  76. Song B. Fan Y. He W. Zhu D. Niu X. Wang D. Ou Z. Luo M. Sun X. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015 24 9 1053 1065 10.1089/scd.2014.0347 25517294
    [Google Scholar]
  77. Gabr H. El Ghamrawy M.K. Almaeen A.H. Abdelhafiz A.S. Hassan A.O.S. El Sissy M.H. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res. Ther. 2020 11 1 390 10.1186/s13287‑020‑01876‑4 32912325
    [Google Scholar]
  78. Mettananda S. Genetic and Epigenetic Therapies for β-Thalassaemia by Altering the Expression of α-Globin Gene. Frontiers in Genome Editing 2021 3 752278 10.3389/fgeed.2021.752278 34713267
    [Google Scholar]
  79. Demirci S. Uchida N. Tisdale J.F. Gene therapy for sickle cell disease: An update. Cytotherapy 2018 20 7 899 910 10.1016/j.jcyt.2018.04.003 29859773
    [Google Scholar]
  80. Park S.H. Lee C.M. Dever D.P. Davis T.H. Camarena J. Srifa W. Zhang Y. Paikari A. Chang A.K. Porteus M.H. Sheehan V.A. Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019 47 15 7955 7972 10.1093/nar/gkz475 31147717
    [Google Scholar]
  81. Anurogo D. Yuli Prasetyo Budi N. Thi Ngo M.H. Huang Y.H. Pawitan J.A. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. Int. J. Mol. Sci. 2021 22 12 6275 10.3390/ijms22126275 34200975
    [Google Scholar]
  82. Skvarova Kramarzova K. Osborn M. Webber B. DeFeo A. McElroy A. Kim C. Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int. J. Mol. Sci. 2017 18 6 1269 10.3390/ijms18061269 28613254
    [Google Scholar]
  83. Osborn M.J. Gabriel R. Webber B.R. DeFeo A.P. McElroy A.N. Jarjour J. Starker C.G. Wagner J.E. Joung J.K. Voytas D.F. von Kalle C. Schmidt M. Blazar B.R. Tolar J. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum. Gene Ther. 2015 26 2 114 126 10.1089/hum.2014.111 25545896
    [Google Scholar]
  84. Berntorp E. Shapiro A.D. Modern haemophilia care. Lancet 2012 379 9824 1447 1456 10.1016/S0140‑6736(11)61139‑2 22456059
    [Google Scholar]
  85. Morishige S. Mizuno S. Ozawa H. Nakamura T. Mazahery A. Nomura K. Seki R. Mouri F. Osaki K. Yamamura K. Okamura T. Nagafuji K. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int. J. Hematol. 2020 111 2 225 233 10.1007/s12185‑019‑02765‑0 31664646
    [Google Scholar]
  86. Park C.Y. Sung J.J. Cho S.R. Kim J. Kim D.W. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2019 12 6 1242 1249 10.1016/j.stemcr.2019.04.016 31105049
    [Google Scholar]
  87. Flynn R. Grundmann A. Renz P. Hänseler W. James W.S. Cowley S.A. Moore M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp. Hematol. 2015 43 10 838 848.e3 10.1016/j.exphem.2015.06.002 26101162
    [Google Scholar]
  88. Klatt D. Cheng E. Hoffmann D. Santilli G. Thrasher A.J. Brendel C. Schambach A. Differential Transgene Silencing of Myeloid-Specific Promoters in the AAVS1 Safe Harbor Locus of Induced Pluripotent Stem Cell-Derived Myeloid Cells. Hum. Gene Ther. 2020 31 3-4 199 210 10.1089/hum.2019.194 31773990
    [Google Scholar]
  89. De Ravin S.S. Li L. Wu X. Choi U. Allen C. Koontz S. Lee J. Theobald-Whiting N. Chu J. Garofalo M. Sweeney C. Kardava L. Moir S. Viley A. Natarajan P. Su L. Kuhns D. Zarember K.A. Peshwa M.V. Malech H.L. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 2017 9 372 eaah3480 10.1126/scitranslmed.aah3480 28077679
    [Google Scholar]
  90. Klatt D. Cheng E. Philipp F. Selich A. Dahlke J. Schmidt R.E. Schott J.W. Büning H. Hoffmann D. Thrasher A.J. Schambach A. Targeted Repair of p47-CGD in iPSCs by CRISPR/Cas9: Functional Correction without Cleavage in the Highly Homologous Pseudogenes. Stem Cell Reports 2019 13 4 590 598 10.1016/j.stemcr.2019.08.008 31543470
    [Google Scholar]
  91. Sweeney C.L. Merling R.K. De Ravin S.S. Choi U. Malech H.L. Gene Editing in Chronic Granulomatous Disease. Methods Mol. Biol. 2019 1982 623 665 10.1007/978‑1‑4939‑9424‑3_36 31172498
    [Google Scholar]
  92. Sweeney C.L. Zou J. Choi U. Merling R.K. Liu A. Bodansky A. Burkett S. Kim J.W. De Ravin S.S. Malech H.L. Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction. Mol. Ther. 2017 25 2 321 330 10.1016/j.ymthe.2016.11.012 28153086
    [Google Scholar]
  93. Wrona D. Pastukhov O. Pritchard R.S. Raimondi F. Tchinda J. Jinek M. Siler U. Reichenbach J. CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. Mol. Ther. Methods Clin. Dev. 2020 17 936 943 10.1016/j.omtm.2020.04.015 32420407
    [Google Scholar]
  94. Gutierrez-Guerrero A. Sanchez-Hernandez S. Galvani G. Pinedo-Gomez J. Martin-Guerra R. Sanchez-Gilabert A. Aguilar-González A. Cobo M. Gregory P. Holmes M. Benabdellah K. Martin F. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus. Hum. Gene Ther. 2018 29 3 366 380 10.1089/hum.2017.047 28922955
    [Google Scholar]
  95. Fijen L.M. Petersen R.S. Levi M. Lakeman P. Henneman L. Cohn D.M. Patient perspectives on reproductive options for hereditary angioedema: A cross-sectional survey study. J. Allergy Clin. Immunol. Pract. 2022 10 9 2483 2486.e1 10.1016/j.jaip.2022.05.030 35690368
    [Google Scholar]
  96. Nicola S. Rolla G. Brussino L. Breakthroughs in hereditary angioedema management: a systematic review of approved drugs and those under research. Drugs Context 2019 8 1 11 10.7573/dic.212605 31645881
    [Google Scholar]
  97. Betschel S.D. Banerji A. Busse P.J. Cohn D.M. Magerl M. Hereditary Angioedema: A Review of the Current and Evolving Treatment Landscape. J. Allergy Clin. Immunol. Pract. 2023 11 8 2315 2325 https://doi.org/https://doi.org/10.1016/j.jaip.2023.04.017 10.1016/j.jaip.2023.04.017 37116793
    [Google Scholar]
  98. Aslesh T. Maruyama R. Yokota T. Skipping Multiple Exons to Treat DMD—Promises and Challenges. Biomedicines 2018 6 1 1 10.3390/biomedicines6010001 29301272
    [Google Scholar]
  99. Lattanzi A. Duguez S. Moiani A. Izmiryan A. Barbon E. Martin S. Mamchaoui K. Mouly V. Bernardi F. Mavilio F. Bovolenta M. Correction of the Exon 2 Duplication in DMD Myoblasts by a Single CRISPR/Cas9 System. Mol. Ther. Nucleic Acids 2017 7 11 19 10.1016/j.omtn.2017.02.004 28624187
    [Google Scholar]
  100. Kyrychenko V. Kyrychenko S. Tiburcy M. Shelton J.M. Long C. Schneider J.W. Zimmermann W.H. Bassel-Duby R. Olson E.N. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2017 2 18 e95918 10.1172/jci.insight.95918 28931764
    [Google Scholar]
  101. Yuan J. Ma Y. Huang T. Chen Y. Peng Y. Li B. Li J. Zhang Y. Song B. Sun X. Ding Q. Song Y. Chang X. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Mol. Cell 2018 72 2 380 394.e7 10.1016/j.molcel.2018.09.002 30293782
    [Google Scholar]
  102. Sengupta K. Mishra M.K. Loro E. Spencer M.J. Pyle A.D. Khurana T.S. Genome Editing-Mediated Utrophin Upregulation in Duchenne Muscular Dystrophy Stem Cells. Mol. Ther. Nucleic Acids 2020 22 500 509 10.1016/j.omtn.2020.08.031 33230452
    [Google Scholar]
  103. Cotta A. Paim J.F. da-Cunha-Junior A.L. Neto R.X. Nunes S.V. Navarro M.M. Valicek J. Carvalho E. Yamamoto L.U. Almeida C.F. Braz S.V. Takata R.I. Vainzof M. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern. BMC Clin. Pathol. 2014 14 1 41 10.1186/1472‑6890‑14‑41 25298746
    [Google Scholar]
  104. Nigro V. Aurino S. Piluso G. Limb girdle muscular dystrophies. Curr. Opin. Neurol. 2011 24 5 429 436 10.1097/WCO.0b013e32834aa38d 21825984
    [Google Scholar]
  105. Bertz M. Wilmanns M. Rief M. The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proc. Natl. Acad. Sci. USA 2009 106 32 13307 133310 10.1073/pnas.0902312106 19622741
    [Google Scholar]
  106. Shams F. Bayat H. Mohammadian O. Mahboudi S. Vahidnezhad H. Soosanabadi M. Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts 2022 12 4 371 391 10.34172/bi.2022.23871 35975201
    [Google Scholar]
  107. Do H.S. Park S.W. Im I. Seo D. Yoo H.W. Go H. Kim Y.H. Koh G.Y. Lee B.H. Han Y.M. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-induced pluripotent stem cells. EBioMedicine 2020 52 102633 10.1016/j.ebiom.2020.102633 31981984
    [Google Scholar]
  108. Borges J.B. Oliveira V.F. Ferreira G.M. Los B. Barbosa T.K.A.A. Marçal E.S.R. Dagli-Hernandez C. de Freitas R.C.C. Bortolin R.H. Mori A.A. Hirata T.D.C. Nakaya H.T.I. Bastos G.M. Thurow H.S. Gonçalves R.M. Araujo D.B. Zatz H.P. Bertolami A. Faludi A.A. Bertolami M.C. Sousa A.G.M.R. França J.Í.D. Jannes C.E. Pereira A.C. Nakazone M.A. Souza D.R.S. Carmo T.S. Sampaio M.F. Gorjão R. Pithon-Curi T.C. Moriel P. Silbiger V.N. Luchessi A.D. de Araújo J.N.G. Naslavsky M.S. Wang J.Y.T. Kronenberger T. Cerda A. Lin-Wang H.T. Garofalo A.R. Fajardo C.M. Hirata R.D.C. Hirata M.H. Genomics, epigenomics and pharmacogenomics of familial hypercholesterolemia (FHBGEP): A study protocol. Res. Social Adm. Pharm. 2021 17 7 1347 1355 10.1016/j.sapharm.2020.10.007 33129683
    [Google Scholar]
  109. Okada H. Nakanishi C. Yoshida S. Shimojima M. Yokawa J. Mori M. Tada H. Yoshimuta T. Hayashi K. Yamano T. Hanayama R. Yamagishi M. Kawashiri M. Function and Immunogenicity of Gene-corrected iPSC-derived Hepatocyte-Like Cells in Restoring Low Density Lipoprotein Uptake in Homozygous Familial Hypercholesterolemia. Sci. Rep. 2019 9 1 4695 10.1038/s41598‑019‑41056‑w 30886174
    [Google Scholar]
  110. Lu R. Yuan T. Wang Y. Zhang T. Yuan Y. Wu D. Zhou M. He Z. Lu Y. Chen Y. Fan J. Liang J. Cheng Y. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7. EBioMedicine 2018 36 29 38 10.1016/j.ebiom.2018.09.020 30243490
    [Google Scholar]
  111. Palmer R.E. Amartino H.M. Niizawa G. Blanco M. Pomponio R.J. Chamoles N.A. Pompe disease (glycogen storage disease type II) in Argentineans: Clinical manifestations and identification of 9 novel mutations. Neuromuscul. Disord. 2007 17 1 16 22 10.1016/j.nmd.2006.09.004 17056254
    [Google Scholar]
  112. Kishnani P.S. Howell R.R. Pompe disease in infants and children. J. Pediatr. 2004 144 5 Suppl. S35 S43 10.1016/j.jpeds.2004.01.053 15126982
    [Google Scholar]
  113. Bibi F. Ullah A. Bourinaris T. Efthymiou S. Kriouile Y. Sultan T. Haider S. Salpietro V. Houlden H. Kaukab Raja G. Tay-Sachs Disease: Two Novel Rare HEXA Mutations from Pakistan and Morocco. Klin. Padiatr. 2021 233 5 226 230 10.1055/a‑1371‑1561 33831955
    [Google Scholar]
  114. Santos R. Amaral O. Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. Int. J. Mol. Sci. 2019 20 23 5897 10.3390/ijms20235897 31771289
    [Google Scholar]
  115. Janciauskiene S.M. Bals R. Koczulla R. Vogelmeier C. Köhnlein T. Welte T. The discovery of α1-antitrypsin and its role in health and disease. Respir. Med. 2011 105 8 1129 1139 10.1016/j.rmed.2011.02.002 21367592
    [Google Scholar]
  116. Borel F. Sun H. Zieger M. Cox A. Cardozo B. Li W. Oliveira G. Davis A. Gruntman A. Flotte T.R. Brodsky M.H. Hoffman A.M. Elmallah M.K. Mueller C. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc. Natl. Acad. Sci. USA 2018 115 11 2788 2793 10.1073/pnas.1713689115 29453277
    [Google Scholar]
  117. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  118. Schneller J.L. Lee C.M. Bao G. Venditti C.P. Genome editing for inborn errors of metabolism: advancing towards the clinic. BMC Med. 2017 15 1 43 10.1186/s12916‑017‑0798‑4 28238287
    [Google Scholar]
  119. Wang L. Yang Y. Breton C. Bell P. Li M. Zhang J. Che Y. Saveliev A. He Z. White J. Latshaw C. Xu C. McMenamin D. Yu H. Morizono H. Batshaw M.L. Wilson J.M. A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci. Adv. 2020 6 7 eaax5701 10.1126/sciadv.aax5701 32095520
    [Google Scholar]
  120. Morrow G. Tanguay R.M. Biochemical and clinical aspects of hereditary tyrosinemia Type 1. Adv. Exp. Med. Biol. 2017 959 9 21 10.1007/978‑3‑319‑55780‑9_2 28755181
    [Google Scholar]
  121. Chen Y. The metabolic and molecular bases of inherited disease. JAMA. 2001 286 18 2329 10.1001/jama.286.18.2329
    [Google Scholar]
  122. Konishi C.T. Long C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J. Biomed. Res. 2021 35 2 148 162 10.7555/JBR.34.20200105 33402545
    [Google Scholar]
  123. Zabaleta N. Barberia M. Martin-Higueras C. Zapata-Linares N. Betancor I. Rodriguez S. Martinez-Turrillas R. Torella L. Vales A. Olagüe C. Vilas-Zornoza A. Castro-Labrador L. Lara-Astiaso D. Prosper F. Salido E. Gonzalez-Aseguinolaza G. Rodriguez-Madoz J.R. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat. Commun. 2018 9 1 5454 10.1038/s41467‑018‑07827‑1 30575740
    [Google Scholar]
  124. Salido E. Pey A.L. Rodriguez R. Lorenzo V. Primary hyperoxalurias: Disorders of glyoxylate detoxification. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 9 1453 1464 10.1016/j.bbadis.2012.03.004 22446032
    [Google Scholar]
  125. Zheng R. Fang X. Chen X. Huang Y. Xu G. He L. Li Y. Niu X. Yang L. Wang L. Li D. Geng H. Knockdown of lactate dehydrogenase by adeno‐associated virus‐delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin. Transl. Med. 2020 10 8 e261 10.1002/ctm2.261 33377632
    [Google Scholar]
  126. Saville J.T. McDermott B.K. Chin S.J. Fletcher J.M. Fuller M. Expanding the clinical utility of glucosylsphingosine for Gaucher disease. J. Inherit. Metab. Dis. 2020 43 3 558 563 10.1002/jimd.12192 31707742
    [Google Scholar]
  127. Giugliani R. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries. Genet. Mol. Biol. 2012 35 4 suppl 1 924 931 10.1590/S1415‑47572012000600006 23411665
    [Google Scholar]
  128. Giugliani R. Federhen A. Muñoz Rojas M.V. Vieira T. Artigalás O. Lapagesse Pinto L. Azevedo A.C. Acosta A. Bonfim C. Lourenço C.M. Chong Ae K. Horovitz D. Bonfim D. Norato D. Marinho D. Palhares D. Santos E.S. Ribeiro E. Valadares E. Guarany F. Lucca G.R. Pimentel H. Souza I.N. Correa Neto J. Fraga J.C. Goes J.E. Cabral J.M. Simionato J. Llerena J. Jr Jardim L. Giuliani L. Silva L.C.S. Santos M.L. Moreira M.A. Kerstenetzky M. Ribeiro M. Ruas N. Barrios P. Aranda P. Honjo R. Boy R. Costa R. Souza C. Alcantara F.F. Avilla S.G.A. Fagondes S. Martins A.M. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet. Mol. Biol. 2010 33 4 589 604 10.1590/S1415‑47572010005000093 21637564
    [Google Scholar]
  129. Hollak C.E.M. Wijburg F.A. Treatment of lysosomal storage disorders: successes and challenges. J. Inherit. Metab. Dis. 2014 37 4 587 598 10.1007/s10545‑014‑9718‑3 24820227
    [Google Scholar]
  130. Patel P. Suzuki Y. Tanaka A. Yabe H. Kato S. Shimada T. Mason R.W. Orii K.E. Fukao T. Orii T. Tomatsu S. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol. Genet. Metab. Rep. 2014 1 184 196 10.1016/j.ymgmr.2014.04.001 25061571
    [Google Scholar]
  131. Schuh R.S. de Carvalho T.G. Giugliani R. Matte U. Baldo G. Teixeira H.F. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur. J. Pharm. Biopharm. 2018 122 158 166 10.1016/j.ejpb.2017.10.017 29122734
    [Google Scholar]
  132. Settembre C. Fraldi A. Medina D.L. Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013 14 5 283 296 10.1038/nrm3565 23609508
    [Google Scholar]
  133. Martin R. Beck M. Eng C. Giugliani R. Harmatz P. Muñoz V. Muenzer J. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics 2008 121 2 e377 e386 10.1542/peds.2007‑1350 18245410
    [Google Scholar]
  134. D’Avanzo F. Rigon L. Zanetti A. Tomanin R. Mucopolysaccharidosis type II: One hundred years of research, diagnosis, and treatment. Int. J. Mol. Sci. 2020 21 4 1258 10.3390/ijms21041258 32070051
    [Google Scholar]
  135. Laoharawee K. Podetz-Pedersen K.M. Nguyen T.T. Evenstar L.B. Kitto K.F. Nan Z. Fairbanks C.A. Low W.C. Kozarsky K.F. McIvor R.S. Prevention of Neurocognitive Deficiency in Mucopolysaccharidosis Type II Mice by Central Nervous System–Directed, AAV9-Mediated Iduronate Sulfatase Gene Transfer. Hum. Gene Ther. 2017 28 8 626 638 10.1089/hum.2016.184 28478695
    [Google Scholar]
  136. Bellesso S. Salvalaio M. Lualdi S. Tognon E. Costa R. Braghetta P. Giraudo C. Stramare R. Rigon L. Filocamo M. Tomanin R. Moro E. FGF signaling deregulation is associated with early developmental skeletal defects in animal models for mucopolysaccharidosis type II (MPSII). Hum. Mol. Genet. 2018 27 13 2262 2275 10.1093/hmg/ddy131 29648648
    [Google Scholar]
  137. Kemp S. Pujol A. Waterham H.R. van Geel B.M. Boehm C.D. Raymond G.V. Cutting G.R. Wanders R.J.A. Moser H.W. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations. Hum. Mutat. 2001 18 6 499 515 10.1002/humu.1227 11748843
    [Google Scholar]
  138. Kemp S. Huffnagel I.C. Linthorst G.E. Wanders R.J. Engelen M. Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 2016 12 10 606 615 10.1038/nrendo.2016.90 27312864
    [Google Scholar]
  139. Raymond G.V. Aubourg P. Paker A. Escolar M. Fischer A. Blanche S. Baruchel A. Dalle J.H. Michel G. Prasad V. Miller W. Paadre S. Balser J. Kurtzberg J. Nascene D.R. Orchard P.J. Lund T. Survival and functional outcomes in boys with cerebral adrenoleukodystrophy with and without hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2019 25 3 538 548 10.1016/j.bbmt.2018.09.036 30292747
    [Google Scholar]
  140. Jung E.S. 2020 Successful Correction of ALD Patient-derived iPSCs Using CRISPR/Cas9. bioRxiv 10.1101/2020.02.23.962118
    [Google Scholar]
  141. Du X. Lukmantara I. Yang H. CRISPR/Cas9-Mediated Generation of Niemann–Pick C1 Knockout Cell Line. Methods Mol. Biol. 2017 1583 73 83 10.1007/978‑1‑4939‑6875‑6_7 28205168
    [Google Scholar]
  142. Latour Y.L. Yoon R. Thomas S.E. Grant C. Li C. Sena-Esteves M. Allende M.L. Proia R.L. Tifft C.J. Human GLB1 knockout cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol. Genet. Metab. Rep. 2019 21 100513 10.1016/j.ymgmr.2019.100513 31534909
    [Google Scholar]
  143. Przybilla M.J. Models and gene therapy for gm1-gangliosidosis and morquio syndrome Type B. Thesis, University Digital Conservancy, 2018.
    [Google Scholar]
  144. Pavani G. Laurent M. Fabiano A. Cantelli E. Sakkal A. Corre G. Lenting P.J. Concordet J.P. Toueille M. Miccio A. Amendola M. Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins. Nat. Commun. 2020 11 1 3778 10.1038/s41467‑020‑17552‑3 32728076
    [Google Scholar]
  145. Hartong D.T. Berson E.L. Dryja T.P. Retinitis pigmentosa. Lancet 2006 368 9549 1795 1809 10.1016/S0140‑6736(06)69740‑7 17113430
    [Google Scholar]
  146. Gorbatyuk M.S. Gorbatyuk O.S. LaVail M.M. Lin J.H. Hauswirth W.W. Lewin A.S. Functional rescue of P23H rhodopsin photoreceptors by gene delivery. Adv. Exp. Med. Biol. 2012 723 191 197 10.1007/978‑1‑4614‑0631‑0_26 22183333
    [Google Scholar]
  147. Lewin A.S. Rossmiller B. Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb. Perspect. Med. 2014 4 9 a017400 10.1101/cshperspect.a017400 25037104
    [Google Scholar]
  148. Millington-Ward S. Chadderton N. O’Reilly M. Palfi A. Goldmann T. Kilty C. Humphries M. Wolfrum U. Bennett J. Humphries P. Kenna P.F. Farrar G.J. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol. Ther. 2011 19 4 642 649 10.1038/mt.2010.293 21224835
    [Google Scholar]
  149. Gorbatyuk M. Justilien V. Liu J. Hauswirth W.W. Lewin A.S. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp. Eye Res. 2007 84 1 44 52 10.1016/j.exer.2006.08.014 17083931
    [Google Scholar]
  150. Gorbatyuk M.S. Pang J.J. Thomas J. Jr Hauswirth W.W. Lewin A.S. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol. Vis. 2005 11 648 656 16145542
    [Google Scholar]
  151. Mao H. Gorbatyuk M.S. Rossmiller B. Hauswirth W.W. Lewin A.S. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum. Gene Ther. 2012 23 4 356 366 10.1089/hum.2011.213 22289036
    [Google Scholar]
  152. Mayer A.K. Cauwenbergh C. Rother C. Baumann B. Reuter P. Baere E. Wissinger B. Kohl S. ACHM Study Group CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 2017 38 11 1579 1591 https://doi.org/https://doi.org/10.1002/humu.23311 10.1002/humu.23311 28795510
    [Google Scholar]
  153. Hassall M.M. Barnard A.R. MacLaren R.E. Gene Therapy for Color Blindness. Yale J. Biol. Med. 2017 90 4 543 551 29259520
    [Google Scholar]
  154. Ahmadi S. Rabiee N. Fatahi Y. Bagherzadeh M. Gachpazan M. Baheiraei N. Nasseri B. Karimi M. Webster T.J. Hamblin M.R. Controlled Gene Delivery Systems: Nanomaterials and Chemical Approaches. J. Biomed. Nanotechnol. 2020 16 5 553 582 10.1166/jbn.2020.2927 32919478
    [Google Scholar]
  155. Varnum M.D. Generation of a zebrafish model of achromatopsia using CRISPR/Cas9 genome editing. Invest. Ophthalmol. Vis. Sci. 2016 57 12 81 81
    [Google Scholar]
  156. den Hollander A.I. Roepman R. Koenekoop R.K. Cremers F.P.M. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008 27 4 391 419 10.1016/j.preteyeres.2008.05.003 18632300
    [Google Scholar]
  157. Zhong H. Chen Y. Li Y. Chen R. Mardon G. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Sci. Rep. 2015 5 1 8366 10.1038/srep08366 25666713
    [Google Scholar]
  158. Schacker M. Seimetz D. From fiction to science: clinical potentials and regulatory considerations of gene editing. Clin. Transl. Med. 2019 8 1 e27 10.1186/s40169‑019‑0244‑7 31637541
    [Google Scholar]
  159. Sauer C.G. Gehrig A. Warneke-Wittstock R. Marquardt A. Ewing C.C. Gibson A. Lorenz B. Jurklies B. Weber B.H.F. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat. Genet. 1997 17 2 164 170 10.1038/ng1097‑164 9326935
    [Google Scholar]
  160. Tantri A. Vrabec T.R. Cu-Unjieng A. Frost A. Annesley W.H. Jr Donoso L.A. X-linked retinoschisis: A clinical and molecular genetic review. Surv. Ophthalmol. 2004 49 2 214 230 https://doi.org/https://doi.org/10.1016/j.survophthal.2003.12.007 10.1016/j.survophthal.2003.12.007 14998693
    [Google Scholar]
  161. Li X. Ma X. Tao Y. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene. Mol. Vis. 2007 13 804 812 17615541
    [Google Scholar]
  162. Wu W.W.H. Molday R.S. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis. J. Biol. Chem. 2003 278 30 28139 28146 https://doi.org/https://doi.org/10.1074/jbc.M302464200 10.1074/jbc.M302464200 12746437
    [Google Scholar]
  163. Rodrigues G.A. Shalaev E. Karami T.K. Cunningham J. Slater N.K.H. Rivers H.M. Pharmaceutical Development of AAV-Based Gene Therapy Products for the Eye. Pharm. Res. 2019 36 2 29 10.1007/s11095‑018‑2554‑7 30591984
    [Google Scholar]
  164. Yang T.C. Chang C.Y. Yarmishyn A.A. Mao Y.S. Yang Y.P. Wang M.L. Hsu C.C. Yang H.Y. Hwang D.K. Chen S.J. Tsai M.L. Lai Y.H. Tzeng Y. Chang C.C. Chiou S.H. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020 101 484 494 https://doi.org/https://doi.org/10.1016/j.actbio.2019.10.037 10.1016/j.actbio.2019.10.037 31672582
    [Google Scholar]
  165. French L.S. Mellough C.B. Chen F.K. Carvalho L.S. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front. Cell. Neurosci. 2020 14 183 183 10.3389/fncel.2020.00183 32733204
    [Google Scholar]
  166. Toms M. Pagarkar W. Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther. Adv. Ophthalmol. 2020 12 2515841420952194 2515841420952194 10.1177/2515841420952194 32995707
    [Google Scholar]
  167. Overlack N. Goldmann T. Wolfrum U. Nagel-Wolfrum K. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination. Invest. Ophthalmol. Vis. Sci. 2012 53 7 4140 4146 10.1167/iovs.12‑9812 22661463
    [Google Scholar]
  168. Zou J. Luo L. Shen Z. Chiodo V.A. Ambati B.K. Hauswirth W.W. Yang J. Whirlin replacement restores the formation of the USH2 protein complex in whirlin knockout photoreceptors. Invest. Ophthalmol. Vis. Sci. 2011 52 5 2343 2351 10.1167/iovs.10‑6141 21212183
    [Google Scholar]
  169. Slijkerman R.W.N. Vaché C. Dona M. García-García G. Claustres M. Hetterschijt L. Peters T.A. Hartel B.P. Pennings R.J.E. Millan J.M. Aller E. Garanto A. Collin R.W.J. Kremer H. Roux A.F. Van Wijk E. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. Mol. Ther. Nucleic Acids 2016 5 10 e381 10.1038/mtna.2016.89 27802265
    [Google Scholar]
  170. Zallocchi M. Binley K. Lad Y. Ellis S. Widdowson P. Iqball S. Scripps V. Kelleher M. Loader J. Miskin J. Peng Y.W. Wang W.M. Cheung L. Delimont D. Mitrophanous K.A. Cosgrove D. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat. PLoS One 2014 9 4 e94272 10.1371/journal.pone.0094272 24705452
    [Google Scholar]
  171. Sun D. Sun W. Gao S.Q. Wei C. Naderi A. Schilb A.L. Scheidt J. Lee S. Kern T.S. Palczewski K. Lu Z.R. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. J. Control. Release 2021 330 329 340 https://doi.org/https://doi.org/10.1016/j.jconrel.2020.12.010 10.1016/j.jconrel.2020.12.010 33358976
    [Google Scholar]
  172. Simell O. Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet 1973 301 7811 1031 1033 10.1016/S0140‑6736(73)90667‑3 4122112
    [Google Scholar]
  173. Strecker H.J. Hammar U.B. Volpe P. Methionine toxicity and ornithine delta-aminotransferase in Chang’s liver cells. J. Biol. Chem. 1970 245 13 3328 3334 10.1016/S0021‑9258(18)62999‑0 5459637
    [Google Scholar]
  174. Montioli R. Molecular and cellular basis of ornithine δ-aminotransferase deficiency caused by the V332M mutation associated with gyrate atrophy of the choroid and retina. Biochimica et Biophysica Acta (BBA) 2018 1864 3629 3638 10.1016/j.bbadis.2018.08.032
    [Google Scholar]
  175. Shams F. Rahimpour A. Vahidnezhad H. Hosseinzadeh S. Moravvej H. Kazemi B. Rajabibazl M. Abdollahimajd F. Uitto J. The utility of dermal fibroblasts in treatment of skin disorders: A paradigm of recessive dystrophic epidermolysis bullosa. Dermatol. Ther. 2021 34 4 e15028 10.1111/dth.15028 34145697
    [Google Scholar]
  176. Woodley D.T. Atha T. Huang Y. Chen M. Krueger G.G. Jorgensen C.M. Fairley J.A. Chan L. Keene D.R. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J. Invest. Dermatol. 2003 121 5 1021 1028 10.1046/j.1523‑1747.2003.12571.x 14708601
    [Google Scholar]
  177. Fine J.D. Inherited epidermolysis bullosa. Orphanet J. Rare Dis. 2010 5 1 12 10.1186/1750‑1172‑5‑12 20507631
    [Google Scholar]
  178. Jacków J. Guo Z. Hansen C. Abaci H.E. Doucet Y.S. Shin J.U. Hayashi R. DeLorenzo D. Kabata Y. Shinkuma S. Salas-Alanis J.C. Christiano A.M. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc. Natl. Acad. Sci. USA 2019 116 52 26846 26852 10.1073/pnas.1907081116 31818947
    [Google Scholar]
  179. Shams F. Moravvej H. Hosseinzadeh S. Mostafavi E. Bayat H. Kazemi B. Bandehpour M. Rostami E. Rahimpour A. Moosavian H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci. Rep. 2022 12 1 18529 10.1038/s41598‑022‑23304‑8 36323953
    [Google Scholar]
  180. Graham C. Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin. Biol. Ther. 2021 21 6 767 780 10.1080/14712598.2021.1869208 33412935
    [Google Scholar]
  181. Firth A.L. Menon T. Parker G.S. Qualls S.J. Lewis B.M. Ke E. Dargitz C.T. Wright R. Khanna A. Gage F.H. Verma I.M. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015 12 9 1385 1390 10.1016/j.celrep.2015.07.062 26299960
    [Google Scholar]
  182. Urnov F. An ode to gene edits that prevent deafness. Nature 2018 553 7687 162 163 10.1038/d41586‑017‑08645‑z
    [Google Scholar]
  183. Gao X. Tao Y. Lamas V. Huang M. Yeh W.H. Pan B. Hu Y.J. Hu J.H. Thompson D.B. Shu Y. Li Y. Wang H. Yang S. Xu Q. Polley D.B. Liberman M.C. Kong W.J. Holt J.R. Chen Z.Y. Liu D.R. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018 553 7687 217 221 10.1038/nature25164 29258297
    [Google Scholar]
  184. Kirschner J. Cathomen T. Gene therapy for monogenic inherited disorders: Opportunities and challenges. Dtsch. Arztebl. Int. 2020 117 51-52 878 885 10.3238/arztebl.2020.0878 33637169
    [Google Scholar]
  185. Uddin F. Rudin C.M. Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 2020 10 1387 10.3389/fonc.2020.01387 32850447
    [Google Scholar]
  186. Frangoul H. Altshuler D. Cappellini M.D. Chen Y.S. Domm J. Eustace B.K. Foell J. de la Fuente J. Grupp S. Handgretinger R. Ho T.W. Kattamis A. Kernytsky A. Lekstrom-Himes J. Li A.M. Locatelli F. Mapara M.Y. de Montalembert M. Rondelli D. Sharma A. Sheth S. Soni S. Steinberg M.H. Wall D. Yen A. Corbacioglu S. CRISPR-cas9 gene editing for sickle cell Disease and β-Thalassemia. N. Engl. J. Med. 2021 384 3 252 260 10.1056/NEJMoa2031054 33283989
    [Google Scholar]
  187. Modarai S.R. Kanda S. Bloh K. Opdenaker L.M. Kmiec E.B. Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther. 2021 28 1-2 105 113 10.1038/s41434‑020‑00192‑z 32873924
    [Google Scholar]
  188. Brusson M. Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog. Mol. Biol. Transl. Sci. 2021 182 153 183 10.1016/bs.pmbts.2021.01.025 34175041
    [Google Scholar]
  189. Harvey J.P. Sladen P.E. Yu-Wai-Man P. Cheetham M.E. Induced pluripotent stem cells for inherited optic neuropathies—disease modeling and therapeutic development. J. Neuroophthalmol. 2022 42 1 35 44 10.1097/WNO.0000000000001375 34629400
    [Google Scholar]
  190. Zhang X. Zhang D. Thompson J.A. Chen S.C. Huang Z. Jennings L. McLaren T.L. Lamey T.M. De Roach J.N. Chen F.K. McLenachan S. Gene correction of the CLN3 c.175G>A variant in patient‐derived induced pluripotent stem cells prevents pathological changes in retinal organoids. Mol. Genet. Genomic Med. 2021 9 3 e1601 10.1002/mgg3.1601 33497524
    [Google Scholar]
  191. Anliker B. Childs L. Rau J. Renner M. Schüle S. Schuessler-Lenz M. Sebe A. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products. CRISPR J. 2022 5 3 364 376 10.1089/crispr.2021.0148 35452274
    [Google Scholar]
  192. Guo C. Ma X. Gao F. Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023 11 1143157 10.3389/fbioe.2023.1143157 36970624
    [Google Scholar]
  193. Zhang G. Luo Y. Dai X. Dai Z. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities. Brief. Bioinform. 2023 24 6 bbad333 10.1093/bib/bbad333 37775147
    [Google Scholar]
  194. González Castro N.G. Bjelic J. Malhotra G. Huang C. Alsaffar S.H. Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int. J. Mol. Sci. 2021 22 19 10355 10.3390/ijms221910355 34638696
    [Google Scholar]
  195. Zhang L. Zuris J.A. Viswanathan R. Edelstein J.N. Turk R. Thommandru B. Rube H.T. Glenn S.E. Collingwood M.A. Bode N.M. Beaudoin S.F. Lele S. Scott S.N. Wasko K.M. Sexton S. Borges C.M. Schubert M.S. Kurgan G.L. McNeill M.S. Fernandez C.A. Myer V.E. Morgan R.A. Behlke M.A. Vakulskas C.A. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 2021 12 1 3908 10.1038/s41467‑021‑24017‑8 34162850
    [Google Scholar]
  196. Zarghamian P. Klermund J. Cathomen T. Clinical genome editing to treat sickle cell disease—A brief update. Front. Med. (Lausanne) 2023 9 1065377 10.3389/fmed.2022.1065377 36698803
    [Google Scholar]
  197. Fu Y. Sander J.D. Reyon D. Cascio V.M. Joung J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014 32 3 279 284 10.1038/nbt.2808 24463574
    [Google Scholar]
  198. Lennox K.A. Behlke M.A. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol. Biol. 2020 2115 23 55 10.1007/978‑1‑0716‑0290‑4_2 32006393
    [Google Scholar]
  199. Lu X. Zhang M. Li G. Zhang S. Zhang J. Fu X. Sun F. Applications and Research Advances in the Delivery of CRISPR/Cas9 Systems for the Treatment of Inherited Diseases. Int. J. Mol. Sci. 2023 24 17 13202 10.3390/ijms241713202 37686009
    [Google Scholar]
  200. Antoniou P. Miccio A. Brusson M. Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing 2021 3 618406 10.3389/fgeed.2021.618406 34713251
    [Google Scholar]
  201. Liu M. Rehman S. Tang X. Gu K. Fan Q. Chen D. Ma W. Methodologies for Improving HDR Efficiency. Front. Genet. 2019 9 691 10.3389/fgene.2018.00691 30687381
    [Google Scholar]
  202. Tabassum T. Pietrogrande G. Healy M. Wolvetang E.J. CRISPR-Cas9 Direct Fusions for Improved Genome Editing via Enhanced Homologous Recombination. Int. J. Mol. Sci. 2023 24 19 14701 10.3390/ijms241914701 37834150
    [Google Scholar]
  203. Kosicki M. Tomberg K. Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018 36 8 765 771 10.1038/nbt.4192 30010673
    [Google Scholar]
  204. Zhang S. Shen J. Li D. Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021 11 2 614 648 10.7150/thno.47007 33391496
    [Google Scholar]
  205. Khoshandam M. Soltaninejad H. Mousazadeh M. Hamidieh A.A. Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis. 2024 11 1 268 282 10.1016/j.gendis.2023.02.027 37588217
    [Google Scholar]
  206. Cromer M.K. Vaidyanathan S. Ryan D.E. Curry B. Lucas A.B. Camarena J. Kaushik M. Hay S.R. Martin R.M. Steinfeld I. Bak R.O. Dever D.P. Hendel A. Bruhn L. Porteus M.H. Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic Stem and Progenitor Cells. Mol. Ther. 2018 26 10 2431 2442 10.1016/j.ymthe.2018.06.002 30005866
    [Google Scholar]
  207. Huang Y.Y. Zhang X.Y. Zhu P. Ji L. Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications. World J. Clin. Cases 2022 10 18 5934 5945 10.12998/wjcc.v10.i18.5934 35949837
    [Google Scholar]
  208. Sethi Y. Mahtani A.U. Khehra N. Padda I. Patel N. Sebastian S.A. Malhi G. Kaiwan O. Saith S. Johal G. Gene Editing as the Future of Cardiac Amyloidosis Therapeutics. Curr. Probl. Cardiol. 2023 48 8 101741 10.1016/j.cpcardiol.2023.101741 37059345
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232345516241119070150
Loading
/content/journals/cgt/10.2174/0115665232345516241119070150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test