Skip to content
2000
image of Parkinson's Disease: From Bench to Bedside-Advancements in Diagnosis and Therapeutics using Pharmacogenomic Approach

Abstract

This article provides a detailed look at Parkinson's disease (PD), a neurodegenerative ailment mostly known for movement difficulties such tremor, stiffness, and bradykinesia, which affects approximately 1% of persons over the age of 60. Although the precise cause of PD is still unknown, various factors such as pesticide exposure, genetics, and lifestyle choices like smoking and caffeine consumption are thought to play a role in its development. The presence of Lewy bodies characterizes the disease, the aggregation of alpha-synuclein, the loss of dopaminergic neurons in the substantia nigra, and disruptions in basal ganglia circuitry, resulting in both motor and non-motor symptoms. This review is structured into several key sections, beginning with an exploration of the pathophysiological mechanisms behind PD, including how genetic mutations can lead to deficits in the Ubiquitin Proteasome System and mitochondrial function, which are linked to familial cases of the disease. Following this, the article explores diagnostic methods, such as the UK Brain Bank Criteria, advanced imaging techniques, olfactory testing, and innovative technologies like machine learning, all of which support early detection and accurate diagnosis of PD. Treatment strategies are also comprehensively reviewed, focusing on traditional pharmacological options like levodopa and dopamine agonists, as well as surgical interventions such as deep brain stimulation. Additionally, the review discusses promising new therapies, including immunotherapy aimed at neuroinflammation and gene therapy for disease modification. The impact of lifestyle changes such as exercise and diet on reducing PD risk and enhancing symptom management are also considered. In conclusion, this review highlights the complex nature of Parkinson's disease and underscores the need for a holistic approach that combines pharmacotherapy, advanced treatments, and lifestyle adjustments. By addressing both symptom management and disease modification, these strategies provide hope for improving quality of life.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232342211250207064205
2025-02-12
2025-07-09
Loading full text...

Full text loading...

References

  1. Marsden C.D. Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1994 57 6 672 681 10.1136/jnnp.57.6.672 7755681
    [Google Scholar]
  2. Abbas M.M. Xu Z. Tan L.C.S. Epidemiology of parkinson’s disease—East Versus West. Mov. Disord. Clin. Pract. 2018 5 1 14 28 10.1002/mdc3.12568 30363342
    [Google Scholar]
  3. Tysnes O.B. Storstein A. Epidemiology of parkinson’s disease. J. Neural Transm. 2017 124 8 901 905 10.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  4. Ball N. Teo W.P. Chandra S. Chapman J. Parkinson’s disease and the environment. Front. Neurol. 2019 10 218 10.3389/fneur.2019.00218 30941085
    [Google Scholar]
  5. Verstraeten A. Theuns J. Van Broeckhoven C. Progress in unraveling the genetic etiology of parkinson disease in a genomic era. Trends Genet. 2015 31 3 140 149 10.1016/j.tig.2015.01.004 25703649
    [Google Scholar]
  6. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  7. Goyal V. Radhakrishnan D.M. Parkinson’s disease: A review. Neurol. India 2018 66 7 Suppl. 26 10.4103/0028‑3886.226451 29503325
    [Google Scholar]
  8. Dirkx M.F. den Ouden H. Aarts E. Timmer M. Bloem B.R. Toni I. Helmich R.C. The cerebral network of parkinson’s tremor: An effective connectivity fMRI study. J. Neurosci. 2016 36 19 5362 5372 10.1523/JNEUROSCI.3634‑15.2016 27170132
    [Google Scholar]
  9. Windels F. Thevathasan W. Silburn P. Sah P. Where and what is the PPN and what is its role in locomotion? Brain 2015 138 5 1133 1134 10.1093/brain/awv059 25907754
    [Google Scholar]
  10. Fearnley J.M. Lees A.J. Ageing and parkinson’s disease: Substantia nigra regional selectivity. Brain 1991 114 5 2283 2301 10.1093/brain/114.5.2283 1933245
    [Google Scholar]
  11. Wichmann T. DeLong M.R. Guridi J. Obeso J.A. Milestones in research on the pathophysiology of parkinson’s disease. Mov. Disord. 2011 26 6 1032 1041 10.1002/mds.23695 21626548
    [Google Scholar]
  12. Calabresi P. Picconi B. Tozzi A. Ghiglieri V. Di Filippo M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 2014 17 8 1022 1030 10.1038/nn.3743 25065439
    [Google Scholar]
  13. Gerfen C.R. Engber T.M. Mahan L.C. Susel Z. Chase T.N. Monsma F.J. Jr Sibley D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990 250 4986 1429 1432 10.1126/science.2147780 2147780
    [Google Scholar]
  14. Gerfen C.R. Surmeier D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 2011 34 1 441 466 10.1146/annurev‑neuro‑061010‑113641 21469956
    [Google Scholar]
  15. Escande M.V. Taravini I.R.E. Zold C.L. Belforte J.E. Murer M.G. Loss of homeostasis in the direct pathway in a mouse model of asymptomatic parkinson’s disease. J. Neurosci. 2016 36 21 5686 5698 10.1523/JNEUROSCI.0492‑15.2016 27225760
    [Google Scholar]
  16. Spillantini M.G. Schmidt M.L. Lee V.M.Y. Trojanowski J.Q. Jakes R. Goedert M. α-synuclein in lewy bodies. Nature 1997 388 6645 839 840 10.1038/42166 9278044
    [Google Scholar]
  17. Marques O. Outeiro T.F. Alpha-synuclein: From secretion to dysfunction and death. Cell Death Dis. 2012 3 7 e350 10.1038/cddis.2012.94 22825468
    [Google Scholar]
  18. Spillantini M.G. Crowther R.A. Jakes R. Hasegawa M. Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. 1998 95 11 6469 6473 10.1073/pnas.95.11.6469 9600990
    [Google Scholar]
  19. Chandra S. Fornai F. Kwon H.B. Yazdani U. Atasoy D. Liu X. Hammer R.E. Battaglia G. German D.C. Castillo P.E. Südhof T.C. Double-knockout mice for α- and β-synucleins: Effect on synaptic functions. Proc. Natl. Acad. Sci. 2004 101 41 14966 14971 10.1073/pnas.0406283101 15465911
    [Google Scholar]
  20. Gibb W.R. Lees A.J. The relevance of the Lewy body to the pathogenesis of idiopathic parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988 51 6 745 752 10.1136/jnnp.51.6.745 2841426
    [Google Scholar]
  21. Beyer K. Domingo-Sàbat M. Ariza A. Molecular pathology of Lewy body diseases. Int. J. Mol. Sci. 2009 10 3 724 745 10.3390/ijms10030724 19399218
    [Google Scholar]
  22. Bridi J.C. Hirth F. Mechanisms of α-synuclein induced synaptopathy in parkinson’s disease. Front. Neurosci. 2018 12 80 10.3389/fnins.2018.00080 29515354
    [Google Scholar]
  23. Scott D.A. Tabarean I. Tang Y. Cartier A. Masliah E. Roy S. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J. Neurosci. 2010 30 24 8083 8095 10.1523/JNEUROSCI.1091‑10.2010 20554859
    [Google Scholar]
  24. Bartels A.L. Leenders K.L. Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology. Cortex 2009 45 8 915 921 10.1016/j.cortex.2008.11.010 19095226
    [Google Scholar]
  25. O’Gorman Tuura R.L. Baumann C.R. Baumann-Vogel H. Beyond dopamine: GABA, glutamate, and the axial symptoms of parkinson disease. Front. Neurol. 2018 9 806 10.3389/fneur.2018.00806 30319535
    [Google Scholar]
  26. Calabresi P. Picconi B. Parnetti L. Di Filippo M. A convergent model for cognitive dysfunctions in parkinson’s disease: The critical dopamine–acetylcholine synaptic balance. Lancet Neurol. 2006 5 11 974 983 10.1016/S1474‑4422(06)70600‑7 17052664
    [Google Scholar]
  27. Moore D.J. West A.B. Dawson V.L. Dawson T.M. Molecular pathophysiology of parkinson’s disease. Annu. Rev. Neurosci. 2005 28 1 57 87 10.1146/annurev.neuro.28.061604.135718 16022590
    [Google Scholar]
  28. Mizuno Y. Hattori N. Mori H. Suzuki T. Tanaka K. Parkin and parkinsonʼs disease. Curr. Opin. Neurol. 2001 14 4 477 482 10.1097/00019052‑200108000‑00008 11470964
    [Google Scholar]
  29. Lücking C.B. Dürr A. Bonifati V. Vaughan J. De Michele G. Gasser T. Harhangi B.S. Meco G. Denèfle P. Wood N.W. Agid Y. Nicholl D. Breteler M.M.B. Oostra B.A. De Mari M. Marconi R. Filla A. Bonnet A-M. Broussolle E. Pollak P. Rascol O. Rosier M. Arnould A. Brice A. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N. Engl. J. Med. 2000 342 21 1560 1567 10.1056/NEJM200005253422103 10824074
    [Google Scholar]
  30. Petrucelli L. O’Farrell C. Lockhart P.J. Baptista M. Kehoe K. Vink L. Choi P. Wolozin B. Farrer M. Hardy J. Cookson M.R. Parkin protects against the toxicity associated with mutant α-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002 36 6 1007 1019 10.1016/S0896‑6273(02)01125‑X 12495618
    [Google Scholar]
  31. Mata I.F. Lockhart P.J. Farrer M.J. Parkin genetics: One model for parkinson’s disease. Hum. Mol. Genet. 2004 13 90001 Suppl. 1 127R 133 10.1093/hmg/ddh089 14976155
    [Google Scholar]
  32. Mondello S. Constantinescu R. Zetterberg H. Andreasson U. Holmberg B. Jeromin A. CSF α-synuclein and UCH-L1 levels in parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat. Disord. 2014 20 4 382 387 10.1016/j.parkreldis.2014.01.011 24507721
    [Google Scholar]
  33. Liu Y. Fallon L. Lashuel H.A. Liu Z. Lansbury P.T. Jr The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and parkinson’s disease susceptibility. Cell 2002 111 2 209 218 10.1016/S0092‑8674(02)01012‑7 12408865
    [Google Scholar]
  34. Larsen C.N. Price J.S. Wilkinson K.D. Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues. Biochemistry 1996 35 21 6735 6744 10.1021/bi960099f 8639624
    [Google Scholar]
  35. Yang Y. Lu B. Mitochondrial morphogenesis, distribution, and Parkinson disease: Insights from PINK1. J. Neuropathol. Exp. Neurol. 2009 68 9 953 963 10.1097/NEN.0b013e3181b2048c 19680148
    [Google Scholar]
  36. Gandhi S. Muqit M.M. Stanyer L. Healy D.G. Abou-Sleiman P.M. Hargreaves I. Heales S. Ganguly M. Parsons L. Lees A.J. Latchman D.S. Holton J.L. Wood N.W. Revesz T. PINK1 protein in normal human brain and parkinson’s disease. Brain 2006 129 7 1720 1731 10.1093/brain/awl114 16702191
    [Google Scholar]
  37. Nuytemans K. Theuns J. Cruts M. Van Broeckhoven C. Genetic etiology of parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat. 2010 31 7 763 780 10.1002/humu.21277 20506312
    [Google Scholar]
  38. Lev N. Roncevich D. Ickowicz D. Melamed E. Offen D. Role of DJ-1 in parkinson’s disease. J. Mol. Neurosci. 2006 29 3 215 226 10.1385/JMN:29:3:215 17085780
    [Google Scholar]
  39. Dolgacheva L.P. Berezhnov A.V. Fedotova E.I. Zinchenko V.P. Abramov A.Y. Role of DJ-1 in the mechanism of pathogenesis of parkinson’s disease. J. Bioenerg. Biomembr. 2019 51 3 175 188 10.1007/s10863‑019‑09798‑4 31054074
    [Google Scholar]
  40. Bonifati V. Rizzu P. van Baren M.J. Schaap O. Breedveld G.J. Krieger E. Dekker M.C.J. Squitieri F. Ibanez P. Joosse M. van Dongen J.W. Vanacore N. van Swieten J.C. Brice A. Meco G. van Duijn C.M. Oostra B.A. Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003 299 5604 256 259 10.1126/science.1077209 12446870
    [Google Scholar]
  41. Braak H. Ghebremedhin E. Rüb U. Bratzke H. Del Tredici K. Stages in the development of parkinson’s disease-related pathology. Cell Tissue Res. 2004 318 1 121 134 10.1007/s00441‑004‑0956‑9 15338272
    [Google Scholar]
  42. Abeti R. Abramov A.Y. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol. Res. 2015 99 377 381 10.1016/j.phrs.2015.05.007 26013908
    [Google Scholar]
  43. Reichmann H. Clinical criteria for the diagnosis of parkinson’s disease. Neurodegener. Dis. 2010 7 5 284 290 10.1159/000314478 20616563
    [Google Scholar]
  44. Kobylecki C. Update on the diagnosis and management of parkinson’s disease. Clin. Med. 2020 20 4 393 398 10.7861/clinmed.2020‑0220 32675145
    [Google Scholar]
  45. Tolosa E. Wenning G. Poewe W. The diagnosis of parkinson’s disease. Lancet Neurol. 2006 5 1 75 86 10.1016/S1474‑4422(05)70285‑4 16361025
    [Google Scholar]
  46. Talitckii A. Kovalenko E. Anikina A. Zimniakova O. Semenov M. Bril E. Shcherbak A. Dylov D.V. Somov A. Avoiding misdiagnosis of parkinson’s disease with the use of wearable sensors and artificial intelligence. IEEE Sens. J. 2021 21 3 3738 3747 10.1109/JSEN.2020.3027564
    [Google Scholar]
  47. Wang L. Zhang Q. Li H. Zhang H. SPECT molecular imaging in parkinson’s disease. J. Biomed. Biotechnol. 2012 2012 1 11 10.1155/2012/412486 22529704
    [Google Scholar]
  48. Brücke T. Djamshidian S. Bencsits G. Pirker W. Asenbaum S. Podreka I. SPECT and PET imaging of the dopaminergic system in parkinson’s disease. J. Neurol. 2000 247 S4 Suppl. 4 IV2 IV7, 2-7 10.1007/PL00007769 11199811
    [Google Scholar]
  49. Marshall V. Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov. Disord. 2003 18 12 1415 1423 10.1002/mds.10592 14673877
    [Google Scholar]
  50. Thobois S. Guillouet S. Broussolle E. Contributions of PET and SPECT to the understanding of the pathophysiology of parkinson’s disease. Neurophysiol. Clin. 2001 31 5 321 340 10.1016/S0987‑7053(01)00273‑8 11817273
    [Google Scholar]
  51. Pagano G. Niccolini F. Politis M. Imaging in parkinson’s disease. Clin. Med. 2016 16 4 371 375 10.7861/clinmedicine.16‑4‑371 27481384
    [Google Scholar]
  52. Niccolini F. Su P. Politis M. Dopamine receptor mapping with PET imaging in parkinson’s disease. J. Neurol. 2014 261 12 2251 2263 10.1007/s00415‑014‑7302‑2 24627109
    [Google Scholar]
  53. Zimmer L. Luxen A. PET radiotracers for molecular imaging in the brain: Past, present and future. Neuroimage 2012 61 2 363 370 10.1016/j.neuroimage.2011.12.037 22222719
    [Google Scholar]
  54. Heim B. Krismer F. De Marzi R. Seppi K. Magnetic resonance imaging for the diagnosis of parkinson’s disease. J. Neural Transm. 2017 124 8 915 964 10.1007/s00702‑017‑1717‑8 28378231
    [Google Scholar]
  55. Ibarretxe-Bilbao N. Tolosa E. Junque C. Marti M.J. MRI and cognitive impairment in parkinson’s disease. Mov. Disord. 2009 24 S2 Suppl. 2 S748 S753 10.1002/mds.22670 19877242
    [Google Scholar]
  56. Meijer FJ Goraj BM Brain MRI in parkinson's disease. Front. Biosci. (Elite Ed.) 2014 6 2 360 369 10.2741/711
    [Google Scholar]
  57. Rajput A.H. Rozdilsky B. Rajput A. Accuracy of clinical diagnosis in parkinsonism--A prospective study. Can. J. Neurol. Sci. 1991 18 3 275 278 10.1017/S0317167100031814 1913360
    [Google Scholar]
  58. Haehner A. Hummel T. Reichmann H. Olfactory dysfunction as a diagnostic marker for Parkinson’s disease. Expert Rev. Neurother. 2009 9 12 1773 1779 10.1586/ern.09.115 19951136
    [Google Scholar]
  59. Fullard M.E. Morley J.F. Duda J.E. Olfactory dysfunction as an early biomarker in parkinson’s disease. Neurosci. Bull. 2017 33 5 515 525 10.1007/s12264‑017‑0170‑x 28831680
    [Google Scholar]
  60. Huisman E. Uylings H.B.M. Hoogland P.V. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in parkinson’s disease. Mov. Disord. 2004 19 6 687 692 10.1002/mds.10713 15197709
    [Google Scholar]
  61. Yanamandra K. Gruden M.A. Casaite V. Meskys R. Forsgren L. Morozova-Roche L.A. α-synuclein reactive antibodies as diagnostic biomarkers in blood sera of parkinson’s disease patients. PLoS One 2011 6 4 e18513 10.1371/journal.pone.0018513 21541339
    [Google Scholar]
  62. Kulenkampff K. Emin D. Staats R. Zhang Y.P. Sakhnini L. Kouli A. Rimon O. Lobanova E. Williams-Gray C.H. Aprile F.A. Sormanni P. Klenerman D. Vendruscolo M. An antibody scanning method for the detection of α-synuclein oligomers in the serum of parkinson’s disease patients. Chem. Sci. 2022 13 46 13815 13828 10.1039/D2SC00066K 36544716
    [Google Scholar]
  63. Sulzer D. Alcalay R.N. Garretti F. Cote L. Kanter E. Agin-Liebes J. Liong C. McMurtrey C. Hildebrand W.H. Mao X. Dawson V.L. Dawson T.M. Oseroff C. Pham J. Sidney J. Dillon M.B. Carpenter C. Weiskopf D. Phillips E. Mallal S. Peters B. Frazier A. Lindestam Arlehamn C.S. Sette A. T cells from patients with parkinson’s disease recognize α-synuclein peptides. Nature 2017 546 7660 656 661 10.1038/nature22815 28636593
    [Google Scholar]
  64. Scott K.M. Kouli A. Yeoh S.L. Clatworthy M.R. Williams-Gray C.H. A systematic review and meta-analysis of alpha synuclein auto-antibodies in parkinson’s disease. Front. Neurol. 2018 9 815 10.3389/fneur.2018.00815 30333787
    [Google Scholar]
  65. Saravanan S. Ramkumar K. Adalarasu K. Sivanandam V. Kumar S.R. Stalin S. Amirtharajan R. A systematic review of artificial intelligence (AI) based approaches for the diagnosis of parkinson’s disease. Arch. Comput. Methods Eng. 2022 29 6 3639 3653 10.1007/s11831‑022‑09710‑1
    [Google Scholar]
  66. Niazi M.K.K. Parwani A.V. Gurcan M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019 20 5 e253 e261 10.1016/S1470‑2045(19)30154‑8 31044723
    [Google Scholar]
  67. Palumbo B. Bianconi F. Nuvoli S. Spanu A. Fravolini M.L. Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of parkinson’s disease and parkinsonian syndromes. Clin. Transl. Imaging 2021 9 1 19 35 10.1007/s40336‑020‑00404‑x
    [Google Scholar]
  68. Karapinar Senturk Z. Early diagnosis of parkinson’s disease using machine learning algorithms. Med. Hypotheses 2020 138 109603 10.1016/j.mehy.2020.109603 32028195
    [Google Scholar]
  69. Habuza T. Navaz A.N. Hashim F. Alnajjar F. Zaki N. Serhani M.A. Statsenko Y. AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Inform. Med. Unlocked 2021 24 100596 10.1016/j.imu.2021.100596
    [Google Scholar]
  70. Belić M. Bobić V. Badža M. Šolaja N. Đurić-Jovičić M. Kostić V.S. Artificial intelligence for assisting diagnostics and assessment of parkinson’s disease—A review. Clin. Neurol. Neurosurg. 2019 184 105442 10.1016/j.clineuro.2019.105442 31351213
    [Google Scholar]
  71. Albin RL Parkinson's disease: Background, diagnosis, and initial management. Clin Geriatr Med 2006 22 4 735 751 10.1016/j.cger.2006.06.003
    [Google Scholar]
  72. Korczyn A.D. Drug treatment of parkinson’s disease. Dialogues Clin. Neurosci. 2004 6 3 315 322 10.31887/DCNS.2004.6.3/akorczyn 22033779
    [Google Scholar]
  73. Tandra G. Yoone A. Mathew R. Wang M. Hales C.M. Mitchell C.S. Literature-based discovery predicts antihistamines are a promising repurposed adjuvant therapy for parkinson’s disease. Int. J. Mol. Sci. 2023 24 15 12339 10.3390/ijms241512339 37569714
    [Google Scholar]
  74. Jenner P. Treatment of the later stages of Parkinson’s disease – Pharmacological approaches now and in the future. Transl. Neurodegener. 2015 4 1 3 10.1186/2047‑9158‑4‑3 25973178
    [Google Scholar]
  75. Oertel W.H. Recent advances in treating parkinson’s disease. F1000 Res. 2017 6 260 10.12688/f1000research.10100.1 28357055
    [Google Scholar]
  76. Walter B.L. Vitek J.L. Surgical treatment for parkinson's disease. Lancet Neurol. 2004 3 12 719 728 10.1016/S1474‑4422(04)00934‑2 15556804
    [Google Scholar]
  77. Politis M. Lindvall O. Clinical application of stem cell therapy in parkinson’s disease. BMC Med. 2012 10 1 1 7 10.1186/1741‑7015‑10‑1 22216957
    [Google Scholar]
  78. Hornykiewicz O. A brief history of levodopa. J. Neurol. 2010 257 S2 Suppl. 2 249 252 10.1007/s00415‑010‑5741‑y 21080185
    [Google Scholar]
  79. Hauser R.A. Levodopa: Past, present, and future. Eur. Neurol. 2009 62 1 1 8 10.1159/000215875 19407449
    [Google Scholar]
  80. Nagatsu T. Levitt M. Udenfriend S. Tyrosine Hydroxylase. J. Biol. Chem. 1964 239 9 2910 2917 10.1016/S0021‑9258(18)93832‑9 14216443
    [Google Scholar]
  81. Nutt J.G. Woodward W.R. Anderson J.L. The effect of carbidopa on the pharmacokinetics of intravenously administered levodopa: The mechanism of action in the treatment of parkinsonism. Ann. Neurol. 1985 18 5 537 543 10.1002/ana.410180505 4073849
    [Google Scholar]
  82. Nutt J.G. Pharmacokinetics and pharmacodynamics of levodopa. Mov. Disord. 2008 23 S3 Suppl. 3 S580 S584 10.1002/mds.22037 18781675
    [Google Scholar]
  83. Reichmann H. Emre M. Optimizing levodopa therapy to treat wearing-off symptoms in Parkinson’s disease: Focus on levodopa/carbidopa/entacapone. Expert Rev. Neurother. 2012 12 2 119 131 10.1586/ern.11.203 22288667
    [Google Scholar]
  84. Ngwuluka N. Pillay V. Du Toit L.C. Ndesendo V. Choonara Y. Modi G. Naidoo D. Levodopa delivery systems: Advancements in delivery of the gold standard. Expert Opin. Drug Deliv. 2010 7 2 203 224 10.1517/17425240903483166 20095943
    [Google Scholar]
  85. van Rumund A. Pavelka L. Esselink R.A.J. Geurtz B.P.M. Wevers R.A. Mollenhauer B. Krüger R. Bloem B.R. Verbeek M.M. Peripheral decarboxylase inhibitors paradoxically induce aromatic L-amino acid decarboxylase. NPJ Parkinsons Dis. 2021 7 1 29 10.1038/s41531‑021‑00172‑z 33741988
    [Google Scholar]
  86. Whitfield A.C. Moore B.T. Daniels R.N. Classics in chemical neuroscience: Levodopa. ACS Chem. Neurosci. 2014 5 12 1192 1197 10.1021/cn5001759 25270271
    [Google Scholar]
  87. Fahn S. Oakes D. Shoulson I. Kieburtz K. Rudolph A. Lang A. Olanow C.W. Tanner C. Marek K. Levodopa and the progression of parkinson’s disease. N. Engl. J. Med. 2004 351 24 2498 2508 10.1056/NEJMoa033447 15590952
    [Google Scholar]
  88. Rinne U.K. Sonninen V. Siirtola T. Treatment of parkinson’s disease with l-DOPA and decarboxylase inhibitor. J. Neurol. 1972 202 1 1 20 10.1007/BF00316422 4114458
    [Google Scholar]
  89. Bartholini G. Pletscher A. Decarboxylase inhibitors. Pharmacol. Ther. [B] 1975 1 3 407 421 10.1016/0306‑039X(75)90047‑1 772711
    [Google Scholar]
  90. Pilleri M. Antonini A. Novel levodopa formulations in the treatment of parkinson’s disease. Expert Rev. Neurother. 2014 14 2 143 149 10.1586/14737175.2014.877840 24428803
    [Google Scholar]
  91. Rivest J. Barclay C.L. Suchowersky O. COMT inhibitors in parkinson’s disease. Can. J. Neurol. Sci. 1999 26 S2 Suppl. 2 S34 S38 10.1017/S031716710000007X 10451758
    [Google Scholar]
  92. Haasio K. Toxicology and safety of COMT inhibitors. Int. Rev. Neurobiol. 2010 95 163 189 10.1016/B978‑0‑12‑381326‑8.00007‑7 21095462
    [Google Scholar]
  93. Kaakkola S. Clinical pharmacology, therapeutic use and potential of COMT inhibitors in parkinson’s disease. Drugs 2000 59 6 1233 1250 10.2165/00003495‑200059060‑00004 10882160
    [Google Scholar]
  94. Bonifácio M.J. Archer M. Rodrigues M.L. Matias P.M. Learmonth D.A. Carrondo M.A. Soares-da-Silva P. Kinetics and crystal structure of catechol-o-methyltransferase complex with co-substrate and a novel inhibitor with potential therapeutic application. Mol. Pharmacol. 2002 62 4 795 805 10.1124/mol.62.4.795 12237326
    [Google Scholar]
  95. Davis T.L. Catechol-O-methyltransferase inhibitors in Parkinson’s disease: Guidelines for effective use. CNS Drugs 1998 10 4 239 246 10.2165/00023210‑199810040‑00002
    [Google Scholar]
  96. Fabbri M. Ferreira J.J. Rascol O. COMT inhibitors in the management of parkinson’s disease. CNS Drugs 2022 36 3 261 282 10.1007/s40263‑021‑00888‑9 35217995
    [Google Scholar]
  97. Yamada M. Yasuhara H. Clinical pharmacology of MAO inhibitors: Safety and future. Neurotoxicology 2004 25 1-2 215 221 10.1016/S0161‑813X(03)00097‑4 14697896
    [Google Scholar]
  98. Tan Y.Y. Jenner P. Chen S.D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  99. Finberg J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther. 2014 143 2 133 152 10.1016/j.pharmthera.2014.02.010 24607445
    [Google Scholar]
  100. Jones D.N. Raghanti M.A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat. 2021 114 101957 10.1016/j.jchemneu.2021.101957 33836221
    [Google Scholar]
  101. Naidoo D. Roy A. Slavětínská L.P. Chukwujekwu J.C. Gupta S. Van Staden J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. J. Ethnopharmacol. 2020 248 112305 10.1016/j.jep.2019.112305 31639490
    [Google Scholar]
  102. Schapira A.H. Monoamine oxidase B inhibitors for the treatment of parkinson’s disease: A review of symptomatic and potential disease-modifying effects. CNS Drugs 2011 25 12 1061 1071 10.2165/11596310‑000000000‑00000 22133327
    [Google Scholar]
  103. Finberg J.P.M. Rabey J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol. 2016 7 340 10.3389/fphar.2016.00340 27803666
    [Google Scholar]
  104. Yamamoto M. Schapira A.H.V. Dopamine agonists in parkinson’s disease. Expert Rev. Neurother. 2008 8 4 671 677 10.1586/14737175.8.4.671 18416667
    [Google Scholar]
  105. Alonso Cánovas A. Luquin Piudo R. García Ruiz-Espiga P. Burguera J.A. Campos Arillo V. Castro A. Linazasoro G. López Del Val J. Vela L. Martínez Castrillo J.C. Dopaminergic agonists in parkinson’s disease. Neurología 2014 29 4 230 241 10.1016/j.nrl.2011.04.012 21724302
    [Google Scholar]
  106. Jenner P. Pharmacology of dopamine agonists in the treatment of parkinson’s disease. Neurology 2002 58 4 Suppl. 1 S1 S8 10.1212/WNL.58.suppl_1.S1 11909980
    [Google Scholar]
  107. Tintner R. Jankovic J. Dopamine agonists in parkinson’s disease. Expert Opin. Investig. Drugs 2003 12 11 1803 1820 10.1517/13543784.12.11.1803 14585056
    [Google Scholar]
  108. Stocchi F. Torti M. Fossati C. Advances in dopamine receptor agonists for the treatment of parkinson’s disease. Expert Opin. Pharmacother. 2016 17 14 1889 1902 10.1080/14656566.2016.1219337 27561098
    [Google Scholar]
  109. Katzenschlager R. Sampaio C. Costa J. Lees A. Anticholinergics for symptomatic management of parkinson´s disease. Cochrane Libr. 2002 2010 1 10.1002/14651858.CD003735 12804486
    [Google Scholar]
  110. Brocks D.R. Anticholinergic drugs used in Parkinson’s disease: An overlooked class of drugs from a pharmacokinetic perspective. J. Pharm. Pharm. Sci. 1999 2 2 39 46 10952768
    [Google Scholar]
  111. Tiwari P. Dwivedi S. Singh M.P. Mishra R. Chandy A. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis. 2013 3 5 413 420 10.1016/S2222‑1808(13)60094‑8
    [Google Scholar]
  112. Paz R.M. Murer M.G. Mechanisms of antiparkinsonian anticholinergic therapy revisited. Neuroscience 2021 467 201 217 10.1016/j.neuroscience.2021.05.026 34048797
    [Google Scholar]
  113. Singer C. Adverse effects in the treatment of parkinson’s disease. Expert Rev. Neurother. 2002 2 1 105 118 10.1586/14737175.2.1.105 19811020
    [Google Scholar]
  114. Perez-Lloret S. Peralta M.C. Barrantes F.J. Pharmacotherapies for parkinson’s disease symptoms related to cholinergic degeneration. Expert Opin. Pharmacother. 2016 17 18 2405 2415 10.1080/14656566.2016.1254189 27785919
    [Google Scholar]
  115. Cohen S.G. Criep L.H. Observations on the use of antihistaminics in parkinson’s disease (paralysis agitans). J. Nerv. Ment. Dis. 1952 115 1 57 63 10.1097/00005053‑195201000‑00005 14908593
    [Google Scholar]
  116. van Nuland A.J.M. den Ouden H.E.M. Zach H. Dirkx M.F.M. van Asten J.J.A. Scheenen T.W.J. Toni I. Cools R. Helmich R.C. GABAergic changes in the thalamocortical circuit in parkinson’s disease. Hum. Brain Mapp. 2020 41 4 1017 1029 10.1002/hbm.24857 31721369
    [Google Scholar]
  117. Chase T.N. Serotonergic mechanisms and extrapyramidal function in man. Adv. Neurol. 1974 5 31 39 4280243
    [Google Scholar]
  118. Cohen M.M. Scheife R.T. Pharmacotherapy of parkinson’s disease. Am. J. Hosp. Pharm. 1977 34 5 531 538 326045
    [Google Scholar]
  119. Shin H.W. Chung S.J. Drug-induced parkinsonism. J. Clin. Neurol. 2012 8 1 15 21 10.3988/jcn.2012.8.1.15 22523509
    [Google Scholar]
  120. Yadav D. In silico analysis of antihistamine drugs as neuroprotectants targeting dopamine D2-like receptors in parkinson’s disease. Doctoral dissertation
    [Google Scholar]
  121. Church M. Church D. Pharmacology of antihistamines. Indian J. Dermatol. 2013 58 3 219 224 10.4103/0019‑5154.110832 23723474
    [Google Scholar]
  122. Schwab R.S. England A.C. Jr Poskanzer D.C. Young R.R. Amantadine in the treatment of parkinson’s disease. JAMA 1969 208 7 1168 1170 10.1001/jama.1969.03160070046011 5818715
    [Google Scholar]
  123. Crosby N.J. Deane K. Clarke C.E. Amantadine in parkinson’s disease. Cochrane Database Syst. Rev. 1996 2010 1
    [Google Scholar]
  124. Metman L.V. Del Dotto P. van den Munckhof P. Fang J. Mouradian M.M. Chase T.N. Amantadine as treatment for dyskinesias and motor fluctuations in parkinson’s disease. Neurology 1998 50 5 1323 1326 10.1212/WNL.50.5.1323 9595981
    [Google Scholar]
  125. Obeso J.A. Luquín M.R. Artieda J. Marinez-Lage J.M. Amantadine may be useful in essential tremor. Ann. Neurol. 1986 19 1 99 100 10.1002/ana.410190125 3947045
    [Google Scholar]
  126. Greulich W. Fenger E. Amantadine in parkinson’s disease: Pro and contra. J. Neural Transm. Suppl. 1995 46 415 421 8821077
    [Google Scholar]
  127. Danielczyk W. Twenty-five years of amantadine therapy in parkinson’s disease. J. Neural Transm. Suppl. 1995 46 399 405 8821075
    [Google Scholar]
  128. Kulisevsky J Tolosa E. Therapy of parkinson's disease. CRC Press 2004 281 296
    [Google Scholar]
  129. Standaert DG Young AB Treatment of central nervous system degenerative disorders. Goodman & Gilaman’sThe Pharmacological Basis of Therapeutics McGraw Hill 2006
    [Google Scholar]
  130. Park A. Stacy M. Istradefylline for the treatment of parkinson’s disease. Expert Opin. Pharmacother. 2012 13 1 111 114 10.1517/14656566.2012.643869 22149371
    [Google Scholar]
  131. Torti M. Vacca L. Stocchi F. Istradefylline for the treatment of parkinson’s disease: Is it a promising strategy? Expert Opin. Pharmacother. 2018 19 16 1821 1828 10.1080/14656566.2018.1524876 30232916
    [Google Scholar]
  132. Jenner P. Mori A. Aradi S.D. Hauser R.A. Istradefylline – a first generation adenosine A 2A antagonist for the treatment of parkinson’s disease. Expert Rev. Neurother. 2021 21 3 317 333 10.1080/14737175.2021.1880896 33507105
    [Google Scholar]
  133. Calon F. Dridi M. Hornykiewicz O. Bédard P.J. Rajput A.H. Di Paolo T. Increased adenosine A2A receptors in the brain of parkinson’s disease patients with dyskinesias. Brain 2004 127 5 1075 1084 10.1093/brain/awh128 15033896
    [Google Scholar]
  134. Koch J. Management of OFF condition in parkinson disease. Ment. Health Clin. 2023 13 6 289 297 10.9740/mhc.2023.12.289 38058599
    [Google Scholar]
  135. Hauser R.A. Shulman L.M. Trugman J.M. Roberts J.W. Mori A. Ballerini R. Sussman N.M. Study of istradefylline in patients with parkinson’s disease on levodopa with motor fluctuations. Mov. Disord. 2008 23 15 2177 2185 10.1002/mds.22095 18831530
    [Google Scholar]
  136. Sako W. Murakami N. Motohama K. Izumi Y. Kaji R. The effect of istradefylline for parkinson’s disease: A meta-analysis. Sci. Rep. 2017 7 1 18018 10.1038/s41598‑017‑18339‑1 29269791
    [Google Scholar]
  137. Schwab A.D. Thurston M.J. Machhi J. Olson K.E. Namminga K.L. Gendelman H.E. Mosley R.L. Immunotherapy for parkinson’s disease. Neurobiol. Dis. 2020 137 104760 10.1016/j.nbd.2020.104760 31978602
    [Google Scholar]
  138. Farzanehfar P. Comparative review of adult midbrain and striatum neurogenesis with classical neurogenesis. Neurosci. Res. 2018 134 1 9 10.1016/j.neures.2018.01.002 29339103
    [Google Scholar]
  139. Hutter-Saunders J.A.L. Mosley R.L. Gendelman H.E. Pathways towards an effective immunotherapy for parkinson’s disease. Expert Rev. Neurother. 2011 11 12 1703 1715 10.1586/ern.11.163 22091596
    [Google Scholar]
  140. Fernández-Valle T. Gabilondo I. Gómez-Esteban J.C. New therapeutic approaches to target alpha-synuclein in parkinson’s disease: The role of immunotherapy. Int. Rev. Neurobiol. 2019 146 191 205 10.1016/bs.irn.2019.06.014 31349931
    [Google Scholar]
  141. Jankovic J. Goodman I. Safirstein B. Marmon T.K. Schenk D.B. Koller M. Zago W. Ness D.K. Griffith S.G. Grundman M. Soto J. Ostrowitzki S. Boess F.G. Martin-Facklam M. Quinn J.F. Isaacson S.H. Omidvar O. Ellenbogen A. Kinney G.G. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti–α-synuclein monoclonal antibody, in patients with Parkinson disease: A randomized clinical trial. JAMA Neurol. 2018 75 10 1206 1214 10.1001/jamaneurol.2018.1487 29913017
    [Google Scholar]
  142. Sardi S.P. Cedarbaum J.M. Brundin P. Targeted therapies for Parkinson’s disease: From genetics to the clinic. Mov. Disord. 2018 33 5 684 696 10.1002/mds.27414 29704272
    [Google Scholar]
  143. Zella S.M.A. Metzdorf J. Ciftci E. Ostendorf F. Muhlack S. Gold R. Tönges L. Emerging immunotherapies for parkinson disease. Neurol. Ther. 2019 8 1 29 44 10.1007/s40120‑018‑0122‑z 30539376
    [Google Scholar]
  144. Chatterjee D. Kordower J.H. Immunotherapy in parkinson’s disease: Current status and future directions. Neurobiol. Dis. 2019 132 104587 10.1016/j.nbd.2019.104587 31454546
    [Google Scholar]
  145. Lindvall O. Stem cells for cell therapy in parkinson’s disease. Pharmacol. Res. 2003 47 4 279 287 10.1016/S1043‑6618(03)00037‑9 12644384
    [Google Scholar]
  146. Nasrolahi A. Shabani Z. Sadigh-Eteghad S. Salehi-Pourmehr H. Mahmoudi J. Stem cell therapy for the treatment of parkinson’s disease: What promise does it hold? Curr. Stem Cell Res. Ther. 2024 19 2 185 199 10.2174/1574888X18666230222144116 36815638
    [Google Scholar]
  147. Gugliandolo A. Bramanti P. Mazzon E. Mesenchymal stem cell therapy in parkinson’s disease animal models. Curr. Res. Transl. Med. 2017 65 2 51 60 10.1016/j.retram.2016.10.007 28466824
    [Google Scholar]
  148. Master Z. McLeod M. Mendez I. Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in parkinson’s disease. J. Med. Ethics 2007 33 3 169 173 10.1136/jme.2005.013169 17329391
    [Google Scholar]
  149. Parmar M. Grealish S. Henchcliffe C. The future of stem cell therapies for parkinson disease. Nat. Rev. Neurosci. 2020 21 2 103 115 10.1038/s41583‑019‑0257‑7 31907406
    [Google Scholar]
  150. Roybon L. Christophersen N.S. Brundin P. Li J.Y. Stem cell therapy for parkinson?s disease: Where do we stand? Cell Tissue Res. 2004 318 1 261 273 10.1007/s00441‑004‑0946‑y 15309619
    [Google Scholar]
  151. Bjorklund T. Kordower J.H. Gene therapy for parkinson’s disease. Mov. Disord. 2010 25 S1 Suppl. 1 S161 S173 10.1002/mds.22785 20187249
    [Google Scholar]
  152. Axelsen T.M. Woldbye D.P.D. Gene therapy for parkinson’s disease, an update. J. Parkinsons Dis. 2018 8 2 195 215 10.3233/JPD‑181331 29710735
    [Google Scholar]
  153. Freund H.J. Long-term effects of deep brain stimulation in parkinson’s disease. Brain 2005 128 10 2222 2223 10.1093/brain/awh634 16183664
    [Google Scholar]
  154. Denyer R Douglas MR Gene therapy for parkinson's disease. Mov. Disord. 2010 25 Suppl 1 S161 S173 10.1155/2012/757305
    [Google Scholar]
  155. Huang R Han L Li J Ren F Ke W Jiang C Pei Y. Neuroprotection in a 6-hydroxydopamine-lesioned parkinson model using lactoferrin-modified nanoparticles. J. Gene Med. 2009 11 9 754 763
    [Google Scholar]
  156. LeWitt P.A. Rezai A.R. Leehey M.A. Ojemann S.G. Flaherty A.W. Eskandar E.N. Kostyk S.K. Thomas K. Sarkar A. Siddiqui M.S. Tatter S.B. Schwalb J.M. Poston K.L. Henderson J.M. Kurlan R.M. Richard I.H. Van Meter L. Sapan C.V. During M.J. Kaplitt M.G. Feigin A. AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011 10 4 309 319 10.1016/S1474‑4422(11)70039‑4 21419704
    [Google Scholar]
  157. Freese A. Stern M. Kaplitt M.G. O’Connor W.M. Abbey M.V. O’Connor M.J. During M.J. Prospects for gene therapy in parkinson’s disease. Mov. Disord. 1996 11 5 469 488 10.1002/mds.870110502 8866488
    [Google Scholar]
  158. Mani S. Jindal D. Singh M. Gene therapy, a potential therapeutic tool for neurological and neuropsychiatric disorders: Applications, challenges and future perspective. Curr. Gene Ther. 2023 23 1 20 40 10.2174/1566523222666220328142427 35345999
    [Google Scholar]
  159. Pearson T.S. Gupta N. San Sebastian W. Imamura-Ching J. Viehoever A. Grijalvo-Perez A. Fay A.J. Seth N. Lundy S.M. Seo Y. Pampaloni M. Hyland K. Smith E. de Oliveira Barbosa G. Heathcock J.C. Minnema A. Lonser R. Elder J.B. Leonard J. Larson P. Bankiewicz K.S. Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat. Commun. 2021 12 1 4251 10.1038/s41467‑021‑24524‑8 34253733
    [Google Scholar]
  160. Barker R.A. Björklund A. Gash D.M. Whone A. Van Laar A. Kordower J.H. Bankiewicz K. Kieburtz K. Saarma M. Booms S. Huttunen H.J. Kells A.P. Fiandaca M.S. Stoessl A.J. Eidelberg D. Federoff H. Voutilainen M.H. Dexter D.T. Eberling J. Brundin P. Isaacs L. Mursaleen L. Bresolin E. Carroll C. Coles A. Fiske B. Matthews H. Lungu C. Wyse R.K. Stott S. Lang A.E. GDNF and parkinson’s disease: Where next? A summary from a recent workshop. J. Parkinsons Dis. 2020 10 3 875 891 10.3233/JPD‑202004 32508331
    [Google Scholar]
  161. Li D. Mastaglia F.L. Yau W.Y. Chen S. Wilton S.D. Akkari P.A. Targeted molecular therapeutics for parkinson’s disease: A role for antisense oligonucleotides? Mov. Disord. 2022 37 11 2184 2190 10.1002/mds.29201 36036206
    [Google Scholar]
  162. Arango D. Bittar A. Esmeral N.P. Ocasión C. Muñoz-Camargo C. Cruz J.C. Reyes L.H. Bloch N.I. Understanding the potential of genome editing in parkinson’s disease. int. j. mol. sci. 2021 22 17 9241 10.3390/ijms22179241 34502143
    [Google Scholar]
  163. Wang D. Tai P.W.L. Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019 18 5 358 378 10.1038/s41573‑019‑0012‑9 30710128
    [Google Scholar]
  164. Hwu P.W.L. Kiening K. Anselm I. Compton D.R. Nakajima T. Opladen T. Pearl P.L. Roubertie A. Roujeau T. Muramatsu S. Gene therapy in the putamen for curing AADC deficiency and parkinson’s disease. EMBO Mol. Med. 2021 13 9 e14712 10.15252/emmm.202114712 34423905
    [Google Scholar]
  165. Singh G. Sikder A. Phatale V. Srivastava S. Singh S.B. Khatri D.K. Therapeutic potential of GDNF in neuroinflammation: Targeted delivery approaches for precision treatment in neurological diseases. J. Drug Deliv. Sci. Technol. 2023 87 104876 10.1016/j.jddst.2023.104876
    [Google Scholar]
  166. Siwecka N. Saramowicz K. Galita G. Rozpędek-Kamińska W. Majsterek I. Inhibition of protein aggregation and endoplasmic reticulum stress as a targeted therapy for α-synucleinopathy. Pharmaceutics 2023 15 8 2051 10.3390/pharmaceutics15082051 37631265
    [Google Scholar]
  167. Barazesh M. Mohammadi S. Bahrami Y. Mokarram P. Morowvat M.H. Saidijam M. Karimipoor M. Kavousipour S. Vosoughi A.R. Khanaki K. CRISPR/Cas9 technology as a modern genetic manipulation tool for recapitulating of neurodegenerative disorders in large animal models. Curr. Gene Ther. 2021 21 2 130 148 10.2174/1566523220666201214115024 33319680
    [Google Scholar]
  168. Senkevich K. Rudakou U. Gan-Or Z. New therapeutic approaches to parkinson’s disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2022 202 108822 10.1016/j.neuropharm.2021.108822 34626666
    [Google Scholar]
  169. Hvingelby V.S. Pavese N. Surgical advances in parkinson’s disease. Curr. Neuropharmacol. 2024 22 6 1033 1046 10.2174/1570159X21666221121094343 36411569
    [Google Scholar]
  170. Benabid A.L. Deep brain stimulation for parkinson’s disease. Curr. Opin. Neurobiol. 2003 13 6 696 706 10.1016/j.conb.2003.11.001 14662371
    [Google Scholar]
  171. Vizcarra J.A. Situ-Kcomt M. Artusi C.A. Duker A.P. Lopiano L. Okun M.S. Espay A.J. Merola A. Subthalamic deep brain stimulation and levodopa in Parkinson’s disease: A meta-analysis of combined effects. J. Neurol. 2019 266 2 289 297 10.1007/s00415‑018‑8936‑2 29909467
    [Google Scholar]
  172. Hariz M. Blomstedt P. Deep brain stimulation for parkinson’s disease. J. Intern. Med. 2022 292 5 764 778 10.1111/joim.13541 35798568
    [Google Scholar]
  173. Harmsen I.E. Wolff Fernandes F. Krauss J.K. Lozano A.M. Where are we with deep brain stimulation? A review of scientific publications and ongoing research. Stereotact. Funct. Neurosurg. 2022 100 3 184 197 10.1159/000521372 35104819
    [Google Scholar]
  174. Sierra M. Carnicella S. Strafella A.P. Bichon A. Lhommée E. Castrioto A. Chabardes S. Thobois S. Krack P. Apathy and impulse control disorders: Yin & Yang offen dopamine dependent behaviors. J. Parkinsons Dis. 2015 5 3 625 636 10.3233/JPD‑150535 25870025
    [Google Scholar]
  175. Krishnan S. Shetty K. Puthanveedu D.K. Kesavapisharady K. Thulaseedharan J.V. Sarma G. Kishore A. Apraxia of lid opening in subthalamic nucleus deep brain stimulation for parkinson’s disease—Frequency, risk factors and response to treatment. Mov. Disord. Clin. Pract. 2021 8 4 587 593 10.1002/mdc3.13206 33981792
    [Google Scholar]
  176. Senevirathne D.K.L. Mahboob A. Zhai K. Paul P. Kammen A. Lee D.J. Yousef M.S. Chaari A. Deep brain stimulation beyond the clinic: Navigating the future of parkinson’s and alzheimer’s disease therapy. Cells 2023 12 11 1478 10.3390/cells12111478 37296599
    [Google Scholar]
  177. Rohringer C.R. Sewell I.J. Gandhi S. Isen J. Davidson B. McSweeney M. Swardfager W. Scantlebury N. Swartz R.H. Hamani C. Giacobbe P. Nestor S.M. Yunusova Y. Lam B. Schwartz M.L. Lipsman N. Abrahao A. Rabin J.S. Cognitive effects of unilateral thalamotomy for tremor: A meta-analysis. Brain Commun. 2022 4 6 fcac287 10.1093/braincomms/fcac287 36440102
    [Google Scholar]
  178. Tasker R.R. Thalamotomy. Neurosurg. Clin. N. Am. 1990 1 4 841 864 10.1016/S1042‑3680(18)30776‑9 2136173
    [Google Scholar]
  179. Rossi M Cerquetti D Mandolesi J Merello M Thalamotomy, pallidotomy and subthalamotomy in the management of parkinson’s disease. University Press 2016 175 186
    [Google Scholar]
  180. Tasker R.R. Munz M. Junn F.S. Kiss Z.H. Davis K. Dostrovsky J.O. Lozano A.M. Deep brain stimulation and thalamotomy for tremor compared. Acta Neurochir. Suppl. 1997 68 49 53 10.1007/978‑3‑7091‑6513‑3_9
    [Google Scholar]
  181. Lozano A.M. Lang A.E. Pallidotomy for parkinson’s disease. Neurosurg. Clin. N. Am. 1998 9 2 325 336 10.1016/S1042‑3680(18)30268‑7 9495895
    [Google Scholar]
  182. Parent A. Hazrati L.N. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res. Brain Res. Rev. 1995 20 1 128 154 10.1016/0165‑0173(94)00008‑D 7711765
    [Google Scholar]
  183. Cif L. Hariz M. Seventy years of pallidotomy for movement disorders. Mov. Disord. 2017 32 7 972 982 10.1002/mds.27054 28590521
    [Google Scholar]
  184. Munhoz R.P. Cerasa A. Okun M.S. Surgical treatment of dyskinesia in parkinson’s disease. Front. Neurol. 2014 5 65 10.3389/fneur.2014.00065 24808889
    [Google Scholar]
  185. Favre J. Burchiel K.J. Taha J.M. Hammerstad J. Outcome of unilateral and bilateral pallidotomy for parkinson’s disease: Patient assessment. Neurosurgery 2000 46 2 344 355 10.1097/00006123‑200002000‑00017 10690723
    [Google Scholar]
  186. Zibetti M. Merola A. Rizzi L. Ricchi V. Angrisano S. Azzaro C. Artusi C.A. Arduino N. Marchisio A. Lanotte M. Rizzone M. Lopiano L. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in parkinson’s disease. Mov. Disord. 2011 26 13 2327 2334 10.1002/mds.23903 22012750
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232342211250207064205
Loading
/content/journals/cgt/10.2174/0115665232342211250207064205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test