Skip to content
2000
image of Probing the Depths of Molecular Complexity: STAT3 as a Key Architect in Colorectal Cancer Pathogenesis

Abstract

Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies.STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232336447241010094744
2024-10-28
2025-01-18
Loading full text...

Full text loading...

References

  1. Bertram J.S. The molecular biology of cancer. Mol. Aspects Med. 2000 21 6 167 223 10.1016/S0098‑2997(00)00007‑8 11173079
    [Google Scholar]
  2. Kusumaningrum A.E. Makaba S. Ali E. Singh M. Fenjan M.N. Rasulova I. Misra N. Al- Musawi S.G. Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem. Funct. 2024 42 1 e3906 10.1002/cbf.3906 38269502
    [Google Scholar]
  3. Kishore C. Karunagaran D. Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol. Cell. Biochem. 2022 477 6 1817 1828 10.1007/s11010‑022‑04412‑5 35332394
    [Google Scholar]
  4. He M. Huan L. Wang X. Fan Y. Huang J. Nine dietary habits and risk of colorectal cancer: A Mendelian randomization study. BMC Med. Genomics 2024 17 1 21 10.1186/s12920‑023‑01782‑7 38233852
    [Google Scholar]
  5. Rawla P. Sunkara T. Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterol. Rev. 2019 14 89 103 10.5114/pg.2018.81072
    [Google Scholar]
  6. Paschke S. Jafarov S. Staib L. Kreuser E.D. Maulbecker-Armstrong C. Roitman M. Holm T. Harris C.C. Link K.H. Kornmann M. Are colon and rectal cancer two different tumor entities? A proposal to abandon the term colorectal cancer. Int. J. Mol. Sci. 2018 19 9 2577 10.3390/ijms19092577 30200215
    [Google Scholar]
  7. yadav G. Srinivasan G. jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol. Res. Pract. 2024 254 155136 10.1016/j.prp.2024.155136 38271784
    [Google Scholar]
  8. Douaiher J. Ravipati A. Grams B. Chowdhury S. Alatise O. Are C. Colorectal cancer—global burden, trends, and geographical variations. J. Surg. Oncol. 2017 115 5 619 630 10.1002/jso.24578 28194798
    [Google Scholar]
  9. Gargalionis A.N. Papavassiliou K.A. Papavassiliou A.G. Targeting STAT3 signaling pathway in colorectal cancer. Biomedicines 2021 9 8 1016 10.3390/biomedicines9081016 34440220
    [Google Scholar]
  10. Pandurangan A.K. Esa N.M. Signal transducer and activator of transcription 3 - a promising target in colitis-associated cancer. Asian Pac. J. Cancer Prev. 2014 15 2 551 560 10.7314/APJCP.2014.15.2.551 24568457
    [Google Scholar]
  11. Zhao Z. Lu L. Li W. TAGLN2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of colorectal cancer cells by activating STAT3 signaling through ANXA2. Oncol. Lett. 2021 22 4 737 10.3892/ol.2021.12998 34466149
    [Google Scholar]
  12. Jia Z. An J. Liu Z. Zhang F. Non-coding RNAs in colorectal cancer: Their functions and mechanisms. Front. Oncol. 2022 12 783079 10.3389/fonc.2022.783079 35186731
    [Google Scholar]
  13. Mao Z. Zhao H. Qin Y. Wei J. Sun J. Zhang W. Kang Y. Post-transcriptional dysregulation of microRNA and alternative polyadenylation in colorectal cancer. Front. Genet. 2020 11 64 10.3389/fgene.2020.00064 32153636
    [Google Scholar]
  14. Jothimani G. Sriramulu S. Chabria Y. Sun X.F. Banerjee A. Pathak S. A review on theragnostic applications of microRNAs and long non-coding RNAs in colorectal cancer. Curr. Top. Med. Chem. 2019 18 30 2614 2629 10.2174/1568026619666181221165344 30582478
    [Google Scholar]
  15. Chandramohan K. Balan D.J. Devi K.P. Nabavi S.F. Reshadat S. Khayatkashani M. Mahmoodifar S. Filosa R. Amirkhalili N. Pishvaei S. Sargazi-Aval O. Nabavi S.M. Short interfering RNA in colorectal cancer: Is it wise to shoot the messenger? Eur. J. Pharmacol. 2023 949 175699 10.1016/j.ejphar.2023.175699 37011722
    [Google Scholar]
  16. Sgrignani J. Garofalo M. Matkovic M. Merulla J. Catapano C.V. Cavalli A. Structural biology of STAT3 and its implications for anticancer therapies development. Int. J. Mol. Sci. 2018 19 6 1591 10.3390/ijms19061591 29843450
    [Google Scholar]
  17. Spitzner M. Ebner R. Wolff H. Ghadimi B. Wienands J. Grade M. STAT3: A novel molecular mediator of resistance to chemoradiotherapy. Cancers 2014 6 4 1986 2011 10.3390/cancers6041986 25268165
    [Google Scholar]
  18. Belo Y. Mielko Z. Nudelman H. Afek A. Ben-David O. Shahar A. Zarivach R. Gordan R. Arbely E. Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine. Biochim. Biophys. Acta, Gen. Subj. 2019 1863 9 1343 1350 10.1016/j.bbagen.2019.05.019 31170499
    [Google Scholar]
  19. Manoharan S. Saha S. Murugesan K. Santhakumar A. Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci. 2024 337 122351 10.1016/j.lfs.2023.122351 38103726
    [Google Scholar]
  20. Marino F. Orecchia V. Regis G. Musteanu M. Tassone B. Jon C. Forni M. Calautti E. Chiarle R. Eferl R. Poli V. STAT3β controls inflammatory responses and early tumor onset in skin and colon experimental cancer models. Am. J. Cancer Res. 2014 4 5 484 494 25232490
    [Google Scholar]
  21. Harada D. Takigawa N. Kiura K. The role of STAT3 in non-small cell lung cancer. Cancers 2014 6 2 708 722 10.3390/cancers6020708 24675568
    [Google Scholar]
  22. Dudka A.A. Sweet S.M.M. Heath J.K. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res. 2010 70 8 3391 3401 10.1158/0008‑5472.CAN‑09‑3033 20388777
    [Google Scholar]
  23. Loh C.Y. Arya A. Naema A.F. Wong W.F. Sethi G. Looi C.Y. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front. Oncol. 2019 9 48 10.3389/fonc.2019.00048 30847297
    [Google Scholar]
  24. Rokavec M. Öner M.G. Li H. Jackstadt R. Jiang L. Lodygin D. Kaller M. Horst D. Ziegler P.K. Schwitalla S. Slotta-Huspenina J. Bader F.G. Greten F.R. Hermeking H. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest. 2014 124 4 1853 1867 10.1172/JCI73531 24642471
    [Google Scholar]
  25. Buettner R. Mora L.B. Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 2002 8 4 945 954 11948098
    [Google Scholar]
  26. Kamran M.Z. Patil P. Gude R.P. Role of STAT3 in cancer metastasis and translational advances. Biomed. Res. Int. 2013 2013 10.1155/2013/421821
    [Google Scholar]
  27. Wegrzyn J. Potla R. Chwae Y.J. Sepuri N.B.V. Zhang Q. Koeck T. Derecka M. Szczepanek K. Szelag M. Gornicka A. Moh A. Moghaddas S. Chen Q. Bobbili S. Cichy J. Dulak J. Baker D.P. Wolfman A. Stuehr D. Hassan M.O. Fu X.Y. Avadhani N. Drake J.I. Fawcett P. Lesnefsky E.J. Larner A.C. Function of mitochondrial Stat3 in cellular respiration. Science 2009 323 5915 793 797 10.1126/science.1164551 19131594
    [Google Scholar]
  28. Hirano T. Ishihara K. Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000 19 21 2548 2556 10.1038/sj.onc.1203551 10851053
    [Google Scholar]
  29. Lindemann C. Hackmann O. Delic S. Schmidt N. Reifenberger G. Riemenschneider M.J. SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol. 2011 122 2 241 251 10.1007/s00401‑011‑0832‑0 21590492
    [Google Scholar]
  30. Brantley E.C. Nabors L.B. Gillespie G.Y. Choi Y.H. Palmer C.A. Harrison K. Roarty K. Benveniste E.N. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: Implications for STAT-3 activation and gene expression. Clin. Cancer Res. 2008 14 15 4694 4704 10.1158/1078‑0432.CCR‑08‑0618 18676737
    [Google Scholar]
  31. Kusaba T. Nakayama T. Yamazumi K. Yakata Y. Yoshizaki A. Inoue K. Nagayasu T. Sekine I. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol. Rep. 2006 15 6 1445 1451 10.3892/or.15.6.1445 16685378
    [Google Scholar]
  32. Zhang J. Genome-wide uncovering of STAT3-mediated miRNA expression profiles in colorectal cancer cell lines. Biomed. Res. Int. 2014 2014 10.1155/2014/187105
    [Google Scholar]
  33. Ji K. Zhang M. Chu Q. Gan Y. Ren H. Zhang L. Wang L. Li X. Wang W. The role of p-STAT3 as a prognostic and clinicopathological marker in colorectal cancer: A systematic review and meta-analysis. PLoS One 2016 11 8 e0160125 10.1371/journal.pone.0160125 27504822
    [Google Scholar]
  34. Johnson D.E. O’Keefe R.A. Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018 15 4 234 248 10.1038/nrclinonc.2018.8 29405201
    [Google Scholar]
  35. Fagard R. Metelev V. Souissi I. Baran-Marszak F. STAT3 inhibitors for cancer therapy. JAK-STAT 2013 2 1 e22882 10.4161/jkst.22882 24058788
    [Google Scholar]
  36. Buchert M. Burns C.J. Ernst M. Targeting JAK kinase in solid tumors: Emerging opportunities and challenges. Oncogene 2016 35 8 939 951 10.1038/onc.2015.150 25982279
    [Google Scholar]
  37. Wang Y. Shen Y. Wang S. Shen Q. Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett. 2018 415 117 128 10.1016/j.canlet.2017.12.003 29222039
    [Google Scholar]
  38. Geletu M. Arulanandam R. Chevalier S. Saez B. Larue L. Feracci H. Raptis L. Classical cadherins control survival through the gp130/Stat3 axis. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 8 1947 1959 10.1016/j.bbamcr.2013.03.014 23541910
    [Google Scholar]
  39. Huang G. Yan H. Ye S. Tong C. Ying Q.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014 32 5 1149 1160 10.1002/stem.1609 24302476
    [Google Scholar]
  40. Yu H. Lee H. Herrmann A. Buettner R. Jove R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer 2014 14 11 736 746 10.1038/nrc3818 25342631
    [Google Scholar]
  41. Dasgupta M. Dermawan J.K.T. Willard B. Stark G.R. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc. Natl. Acad. Sci. USA 2015 112 13 3985 3990 10.1073/pnas.1503152112 25767098
    [Google Scholar]
  42. Zhou Z. Wang M. Li J. Xiao M. Chin Y.E. Cheng J. Yeh E.T.H. Yang J. Yi J. SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene 2016 35 45 5826 5838 10.1038/onc.2016.124 27181202
    [Google Scholar]
  43. Nadiminty N. Lou W. Lee S.O. Lin X. Trump D.L. Gao A.C. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc. Natl. Acad. Sci. USA 2006 103 19 7264 7269 10.1073/pnas.0509808103 16651533
    [Google Scholar]
  44. Wang R. Cherukuri P. Luo J. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J. Biol. Chem. 2005 280 12 11528 11534 10.1074/jbc.M413930200 15649887
    [Google Scholar]
  45. Su F. Ren F. Rong Y. Wang Y. Geng Y. Wang Y. Feng M. Ju Y. Li Y. Zhao Z.J. Meng K. Chang Z. Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res. 2012 14 2 R38 10.1186/bcr3134 22394684
    [Google Scholar]
  46. Kumar V. Cheng P. Condamine T. Mony S. Languino L.R. McCaffrey J.C. Hockstein N. Guarino M. Masters G. Penman E. Denstman F. Xu X. Altieri D.C. Du H. Yan C. Gabrilovich D.I. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 2016 44 2 303 315 10.1016/j.immuni.2016.01.014 26885857
    [Google Scholar]
  47. Kim D.J. Tremblay M.L. DiGiovanni J. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS One 2010 5 4 e10290 10.1371/journal.pone.0010290 20421975
    [Google Scholar]
  48. Zgheib C. Zouein F.A. Chidiac R. Kurdi M. Booz G.W. Calyculin A reveals serine/threonine phosphatase protein phosphatase 1 as a regulatory nodal point in canonical signal transducer and activator of transcription 3 signaling of human microvascular endothelial cells. J. Interferon Cytokine Res. 2012 32 2 87 94 10.1089/jir.2011.0059 22142222
    [Google Scholar]
  49. Lu D. Liu L. Ji X. Gao Y. Chen X. Liu Y. Liu Y. Zhao X. Li Y. Li Y. Jin Y. Zhang Y. McNutt M.A. Yin Y. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat. Immunol. 2015 16 12 1263 1273 10.1038/ni.3278 26479789
    [Google Scholar]
  50. Cheon M.G. Kim W. Choi M. Kim J.E. AK-1, a specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells. Cancer Lett. 2015 356 2 637 645 10.1016/j.canlet.2014.10.012 25312940
    [Google Scholar]
  51. Hu F. Sun X. Li G. Wu Q. Chen Y. Yang X. Luo X. Hu J. Wang G. Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis. 2018 10 1 9 10.1038/s41419‑018‑1260‑z 30584257
    [Google Scholar]
  52. Zou S. Tong Q. Liu B. Huang W. Tian Y. Fu X. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 2020 19 1 145 10.1186/s12943‑020‑01258‑7 32972405
    [Google Scholar]
  53. Huang Y. Wang J. Cao F. Jiang H. Li A. Li J. Qiu L. Shen H. Chang W. Zhou C. Pan Y. Lu Y. SHP2 associates with nuclear localization of STAT3: Significance in progression and prognosis of colorectal cancer. Sci. Rep. 2017 7 1 17597 10.1038/s41598‑017‑17604‑7 29242509
    [Google Scholar]
  54. Polimeno L. Francavilla A. Piscitelli D. Fiore M.G. Polimeno R. Topi S. Haxhirexha K. Ballini A. Daniele A. Santacroce L. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease. Eur. Rev. Med. Pharmacol. Sci. 2020 24 20 10496 10511 33155205
    [Google Scholar]
  55. Papierska K. Krajka-Kuźniak V. The role of STAT3 in the colorectal cancer therapy. J Med Sci 2020 89 3 e427 e427 10.20883/medical.e427
    [Google Scholar]
  56. Wang Y. Lu Z. Wang N. Zhang M. Zeng X. Zhao W. MicroRNA-1299 is a negative regulator of STAT3 in colon cancer. Oncol. Rep. 2017 37 6 3227 3234 10.3892/or.2017.5605 28498395
    [Google Scholar]
  57. Lassmann S. Schuster I. Walch A. Göbel H. Jütting U. Makowiec F. Hopt U. Werner M. STAT3 mRNA and protein expression in colorectal cancer: Effects on STAT3-inducible targets linked to cell survival and proliferation. J. Clin. Pathol. 2007 60 2 173 179 10.1136/jcp.2005.035113 17264243
    [Google Scholar]
  58. Li J. Liu Y.Y. Yang X.F. Shen D.F. Sun H.Z. Huang K.Q. Zheng H.C. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells. Oncol. Lett. 2018 16 5 5575 5582 10.3892/ol.2018.9368 30344711
    [Google Scholar]
  59. Shu Y. Sun X. Ye G. Xu M. Wu Z. Wu C. Li S. Tian J. Han H. Zhang J. DHOK exerts anti-cancer effect through autophagy inhibition in colorectal cancer. Front. Cell Dev. Biol. 2021 9 760022 10.3389/fcell.2021.760022 34977014
    [Google Scholar]
  60. Fu Y. Li F. Sun X. Zhu C. Fan B. Zhong K. KIF4 enforces the progression of colorectal cancer by inhibiting the autophagy via activating the Hedgehog signaling pathway. Arch. Biochem. Biophys. 2022 731 109423 10.1016/j.abb.2022.109423 36183846
    [Google Scholar]
  61. Wang L.N. Zhang Z.T. Wang L. Wei H.X. Zhang T. Zhang L.M. Lin H. Zhang H. Wang S.Q. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis. 2022 13 5 472 10.1038/s41419‑022‑04890‑x 35589677
    [Google Scholar]
  62. Chen H. Guo Q. Chu Y. Li C. Zhang Y. Liu P. Zhao Z. Wang Y. Luo Y. Zhou Z. Zhang T. Song H. Li X. Li C. Su B. You H. Sun T. Jiang C. Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer. Biomaterials 2022 287 121599 10.1016/j.biomaterials.2022.121599 35777332
    [Google Scholar]
  63. Zhang B. Gao S. Bao Z. Pan C. Tian Q. Tang Q. MicroRNA-656-3p inhibits colorectal cancer cell migration, invasion, and chemo-resistance by targeting sphingosine-1-phosphate phosphatase 1. Bioengineered 2022 13 2 3810 3826 10.1080/21655979.2022.2031420 35081855
    [Google Scholar]
  64. Xu Y. Zhang Y. Hao W. Zhao W. Yang G. Jing C. Hypoxia-induced circular RNA hsa_circ_0006508 promotes the Warburg effect in colorectal cancer cells. Balkan Med. J. 2023 40 1 21 27 10.4274/balkanmedj.galenos.2022.2022‑7‑80 36397308
    [Google Scholar]
  65. Li C. Gao X. Zhao Y. Chen X. High expression of circ_0001821 promoted colorectal cancer progression through miR-600/ISOC1 axis. Biochem. Genet. 2023 61 1 410 427 10.1007/s10528‑022‑10262‑z 35943670
    [Google Scholar]
  66. Jing C. Li Y. Gao Z. Wang R. Antitumor activity of Koningic acid in thyroid cancer by inhibiting cellular glycolysis. Endocrine 2022 75 1 169 177 10.1007/s12020‑021‑02822‑x 34264510
    [Google Scholar]
  67. Shen Y. Zhao P. Dong K. Wang J. Li H. Li M. Li R. Chen S. Shen Y. Liu Z. Xie M. Shen P. Zhang J. Tadalafil increases the antitumor activity of 5-FU through inhibiting PRMT5-mediated glycolysis and cell proliferation in colorectal cancer. Cancer Metab. 2022 10 1 22 10.1186/s40170‑022‑00299‑4 36474242
    [Google Scholar]
  68. Zhao B. Wang Y. Zhao X. Ni J. Zhu X. Fu Y. Yang F. SIRT1 enhances oxaliplatin resistance in colorectal cancer through microRNA‐20b‐3p/DEPDC1 axis. Cell Biol. Int. 2022 46 12 2107 2117 10.1002/cbin.11905 36200529
    [Google Scholar]
  69. Liu Y. Tang W. Ren L. Liu T. Yang M. Wei Y. Chen Y. Ji M. Chen G. Chang W. Xu J. Activation of miR-500a-3p/CDK6 axis suppresses aerobic glycolysis and colorectal cancer progression. J. Transl. Med. 2022 20 1 106 10.1186/s12967‑022‑03308‑8 35241106
    [Google Scholar]
  70. Yang P. Li Z. Fu R. Wu H. Li Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell. Signal. 2014 26 9 1853 1862 10.1016/j.cellsig.2014.03.020 24686087
    [Google Scholar]
  71. Wang A. Deng S. Chen X. Yu C. Du Q. Wu Y. Chen G. Hu L. Hu C. Li Y. miR-29a-5p/STAT3 positive feedback loop regulates TETs in colitis-associated colorectal cancer. Inflamm. Bowel Dis. 2020 26 4 524 533 10.1093/ibd/izz281 31750910
    [Google Scholar]
  72. Heichler C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 2019 31685519
    [Google Scholar]
  73. Fang X. Hong Y. Dai L. Qian Y. Zhu C. Wu B. Li S. CRH promotes human colon cancer cell proliferation via IL‐6/JAK2/STAT3 signaling pathway and VEGF‐induced tumor angiogenesis. Mol. Carcinog. 2017 56 11 2434 2445 10.1002/mc.22691 28618089
    [Google Scholar]
  74. Han C. Sun B. Zhao X. Zhang Y. Gu Q. Liu F. Zhao N. Wu L. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer. Technol. Cancer Res. Treat. 2017 16 6 1209 1219 10.1177/1533034617742312 29333928
    [Google Scholar]
  75. Ahmad R. Kumar B. Chen Z. Chen X. Müller D. Lele S.M. Washington M.K. Batra S.K. Dhawan P. Singh A.B. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling. Oncogene 2017 36 47 6592 6604 10.1038/onc.2017.259 28783170
    [Google Scholar]
  76. Cheng C.C. Liao P.N. Ho A.S. Lim K.H. Chang J. Su Y.W. Chen C.G.S. Chiang Y.W. Yang B.L. Lin H.C. Chang Y.C. Chang C.C. Chang Y.F. STAT3 exacerbates survival of cancer stem-like tumorspheres in EGFR-positive colorectal cancers: RNAseq analysis and therapeutic screening. J. Biomed. Sci. 2018 25 1 60 10.1186/s12929‑018‑0456‑y 30068339
    [Google Scholar]
  77. Gomes M.D. Lecker S.H. Jagoe R.T. Navon A. Goldberg A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 2001 98 25 14440 14445 10.1073/pnas.251541198 11717410
    [Google Scholar]
  78. Guadagnin E. Mázala D. Chen Y.W. STAT3 in skeletal muscle function and disorders. Int. J. Mol. Sci. 2018 19 8 2265 10.3390/ijms19082265 30072615
    [Google Scholar]
  79. Silva K.A.S. Dong J. Dong Y. Dong Y. Schor N. Tweardy D.J. Zhang L. Mitch W.E. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J. Biol. Chem. 2015 290 17 11177 11187 10.1074/jbc.M115.641514 25787076
    [Google Scholar]
  80. Takano Y. Kodera K. Tsukihara S. Takahashi S. Yasunobu K. Kanno H. Ishiyama S. Saito R. Hanyu N. Eto K. Association of a newly developed Cancer Cachexia Score with survival in Stage I–III colorectal cancer. Langenbecks Arch. Surg. 2023 408 1 145 10.1007/s00423‑023‑02883‑8 37043018
    [Google Scholar]
  81. Gurunathan S. Qasim M. Park C. Yoo H. Kim J.H. Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci. 2018 19 8 2269 10.3390/ijms19082269 30072642
    [Google Scholar]
  82. Huot J.R. Novinger L.J. Pin F. Bonetto A. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. Dis. Model. Mech. 2020 13 1 dmm043166 10.1242/dmm.043166 31915140
    [Google Scholar]
  83. Shang A.Q. Wu J. Bi F. Zhang Y.J. Xu L.R. Li L.L. Chen F.F. Wang W.W. Zhu J.J. Liu Y.Y. Relationship between HER2 and JAK/STAT-SOCS3 signaling pathway and clinicopathological features and prognosis of ovarian cancer. Cancer Biol. Ther. 2017 18 5 314 322 10.1080/15384047.2017.1310343 28448787
    [Google Scholar]
  84. Dong X. Wang J. Tang B. Hao Y.X. Li P.Y. Li S.Y. Yu P.W. The role and gene expression profile of SOCS3 in colorectal carcinoma. Oncotarget 2018 9 22 15984 15996 10.18632/oncotarget.23477 29662621
    [Google Scholar]
  85. Santos F.P.S. Kantarjian H.M. Jain N. Manshouri T. Thomas D.A. Garcia-Manero G. Kennedy D. Estrov Z. Cortes J. Verstovsek S. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 2010 115 6 1131 1136 10.1182/blood‑2009‑10‑246363 20008298
    [Google Scholar]
  86. Du W. Hong J. Wang Y.C. Zhang Y.J. Wang P. Su W.Y. Lin Y.W. Lu R. Zou W.P. Xiong H. Fang J.Y. Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway. J. Cell. Mol. Med. 2012 16 8 1878 1888 10.1111/j.1582‑4934.2011.01483.x 22050790
    [Google Scholar]
  87. Gao S. Hu J. Wu X. Liang Z. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway. Biomed. Pharmacother. 2018 108 618 624 10.1016/j.biopha.2018.09.067 30243096
    [Google Scholar]
  88. Lin L. Liu A. Peng Z. Lin H.J. Li P.K. Li C. Lin J. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011 71 23 7226 7237 10.1158/0008‑5472.CAN‑10‑4660 21900397
    [Google Scholar]
  89. Morrow C.J. Ghattas M. Smith C. Bönisch H. Bryce R.A. Hickinson D.M. Green T.P. Dive C. Src family kinase inhibitor Saracatinib (AZD0530) impairs oxaliplatin uptake in colorectal cancer cells and blocks organic cation transporters. Cancer Res. 2010 70 14 5931 5941 10.1158/0008‑5472.CAN‑10‑0694 20551056
    [Google Scholar]
  90. Turkson J. Ryan D. Kim J.S. Zhang Y. Chen Z. Haura E. Laudano A. Sebti S. Hamilton A.D. Jove R. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J. Biol. Chem. 2001 276 48 45443 45455 10.1074/jbc.M107527200 11579100
    [Google Scholar]
  91. Turkson J. Kim J.S. Zhang S. Yuan J. Huang M. Glenn M. Haura E. Sebti S. Hamilton A.D. Jove R. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther. 2004 3 3 261 269 10.1158/1535‑7163.261.3.3 15026546
    [Google Scholar]
  92. Li Y. Rogoff H.A. Keates S. Gao Y. Murikipudi S. Mikule K. Leggett D. Li W. Pardee A.B. Li C.J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl. Acad. Sci. USA 2015 112 6 1839 1844 10.1073/pnas.1424171112 25605917
    [Google Scholar]
  93. Souissi I. Ladam P. Cognet J.A.H. Le Coquil S. Varin-Blank N. Baran-Marszak F. Metelev V. Fagard R. A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol. Cancer 2012 11 1 12 10.1186/1476‑4598‑11‑12 22423663
    [Google Scholar]
  94. Jahangiri A. Dadmanesh M. Ghorban K. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses. J. Cell. Physiol. 2020 235 12 9457 9463 10.1002/jcp.29750 32401358
    [Google Scholar]
  95. Marciani D.J. Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol. Sci. 2018 39 6 573 585 10.1016/j.tips.2018.03.005 29655658
    [Google Scholar]
  96. Liao C. Li M. Li X. Li N. Zhao X. Wang X. Song Y. Quan J. Cheng C. Liu J. Bode A.M. Cao Y. Luo X. Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020 1865 2 158540 10.1016/j.bbalip.2019.158540 31678511
    [Google Scholar]
  97. Fang K. Zhan Y. Zhu R. Wang Y. Wu C. Sun M. Qiu Y. Yuan Z. Liang X. Yin P. Xu K. Bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway. J. Transl. Med. 2021 19 1 383 10.1186/s12967‑021‑03058‑z 34496870
    [Google Scholar]
  98. Lin L. Deangelis S. Foust E. Fuchs J. Li C. Li P.K. Schwartz E.B. Lesinski G.B. Benson D. Lü J. Hoyt D. Lin J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer 2010 9 1 217 10.1186/1476‑4598‑9‑217 20712901
    [Google Scholar]
  99. Kim E.S. Hong S.Y. Lee H.K. Kim S.W. An M.J. Kim T.I. Lee K.R. Kim W.H. Cheon J.H. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol. Rep. 2008 20 6 1321 1327 19020709
    [Google Scholar]
  100. Jiang F. Liu M. Wang H. Shi G. Chen B. Chen T. Yuan X. Zhu P. Zhou J. Wang Q. Chen Y. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed. Pharmacother. 2020 125 109982 10.1016/j.biopha.2020.109982 32119646
    [Google Scholar]
  101. Papierska K. Krajka-Kuźniak V. Paluszczak J. Kleszcz R. Skalski M. Studzińska-Sroka E. Baer-Dubowska W. Lichen-derived depsides and depsidones modulate the Nrf2, NF-κB and STAT3 signaling pathways in colorectal cancer cells. Molecules 2021 26 16 4787 10.3390/molecules26164787 34443375
    [Google Scholar]
  102. Jin Y. Chen Z. Dong J. Wang B. Fan S. Yang X. Cui M. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open Bio 2021 11 5 1343 1352 10.1002/2211‑5463.13137 33665967
    [Google Scholar]
  103. Liu L.Q. Nie S.P. Shen M.Y. Hu J.L. Yu Q. Gong D. Xie M.Y. Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway. J. Agric. Food Chem. 2018 66 17 4384 4393 10.1021/acs.jafc.8b00710 29656647
    [Google Scholar]
  104. Yao D. Bao Z. Qian X. Yang Y. Mao Z. ETV4 transcriptionally activates HES1 and promotes Stat3 phosphorylation to promote malignant behaviors of colon adenocarcinoma. Cell Biol. Int. 2021 45 10 2129 2139 10.1002/cbin.11669 34270850
    [Google Scholar]
  105. Jin G. Yang Y. Liu K. Zhao J. Chen X. Liu H. Bai R. Li X. Jiang Y. Zhang X. Lu J. Dong Z. Combination curcumin and (−)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 2017 6 10 e384 e384 10.1038/oncsis.2017.84 28967875
    [Google Scholar]
  106. Zhong L. Feng-liao-chang-wei-kang combined with 5-fluorouracil synergistically suppresses colitis-associated colorectal cancer via the IL-6/STAT3 signalling pathway. Evidence-Based Complementary Altern. Med. 2020 2020
    [Google Scholar]
  107. Li M. Yue G.G.L. Song L.H. Huang M.B. Lee J.K.M. Tsui S.K.W. Fung K.P. Tan N.H. Lau C.B.S. Natural small molecule bigelovin suppresses orthotopic colorectal tumor growth and inhibits colorectal cancer metastasis via IL6/STAT3 pathway. Biochem. Pharmacol. 2018 150 191 201 10.1016/j.bcp.2018.02.017 29454618
    [Google Scholar]
  108. Zhang B. Xu Y. Liu S. Lv H. Hu Y. Wang Y. Li Z. Wang J. Ji X. Ma H. Wang X. Wang S. Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway. Nutrients 2020 12 8 2367 10.3390/nu12082367 32784751
    [Google Scholar]
  109. Chung S.S. Dutta P. Chard N. Wu Y. Chen Q.H. Chen G. Vadgama J. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 2019 10 44 4516 4531 10.18632/oncotarget.27000 31360301
    [Google Scholar]
  110. Xia Y. Chen J. Liu G. Huang W. Wei X. Wei Z. He Y. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway. Chem. Biol. Interact. 2021 341 109446 10.1016/j.cbi.2021.109446 33766539
    [Google Scholar]
  111. Hou L. Zhong T. Cheng P. Long B. Shi L. Meng X. Yao H. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer. Front. Bioeng. Biotechnol. 2022 10 938662 10.3389/fbioe.2022.938662 36246349
    [Google Scholar]
  112. Li L. Lin J. Sun G. Wei L. Shen A. Zhang M. Peng J. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways. Mol. Med. Rep. 2016 13 6 5276 5282 10.3892/mmr.2016.5171 27108756
    [Google Scholar]
  113. Al-Asmari A.K. Riyasdeen A. Islam M. Scorpion venom causes upregulation of p53 and downregulation of Bcl-xL and BID protein expression by modulating signaling proteins Erk1/2 and STAT3, and DNA damage in breast and colorectal cancer cell lines. Integr. Cancer Ther. 2018 17 2 271 281 10.1177/1534735417704949 28438053
    [Google Scholar]
  114. Meng L.Q. Wang Y. Luo Y.H. Piao X.J. Liu C. Wang Y. Zhang Y. Wang J.R. Wang H. Xu W.T. Liu Y. Wu Y.Q. Sun H.N. Han Y.H. Jin M.H. Shen G.N. Fang N.Z. Jin C.H. Quinalizarin induces apoptosis through reactive oxygen species (ROS)-mediated mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways in colorectal cancer cells. Med. Sci. Monit. 2018 24 3710 3719 10.12659/MSM.907163 29860266
    [Google Scholar]
  115. Su T. Bai J.X. Chen Y.J. Wang X.N. Fu X.Q. Li T. Guo H. Zhu P.L. Wang Y. Yu Z.L. An ethanolic extract of Ampelopsis Radix exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling in vitro. Front. Pharmacol. 2017 8 227 10.3389/fphar.2017.00227 28503147
    [Google Scholar]
  116. Zhao J. Feng Z. Meng S. Zhou X. Ma X. Zhao Z. Isolation and anticancer effect of brucine in human colon adenocarcinoma cells HT-29. Pharmacogn. Mag. 2021 17 74 367 372 10.4103/pm.pm_95_20
    [Google Scholar]
  117. Ji X.L. He M. Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma. Aging 2019 11 15 5848 5863 10.18632/aging.102193 31422383
    [Google Scholar]
  118. Ismail N.I. Othman I. Abas F. H Lajis N. Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int. J. Mol. Sci. 2019 20 10 2454 10.3390/ijms20102454 31108984
    [Google Scholar]
  119. Sun D. Shen W. Zhang F. Fan H. Xu C. Li L. Tan J. Miao Y. Zhang H. Yang Y. Cheng H. α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells. Biomed. Pharmacother. 2018 101 107 114 10.1016/j.biopha.2018.02.062 29477470
    [Google Scholar]
  120. Johnston P.A. Grandis J.R. STAT3 signaling: Anticancer strategies and challenges. Mol. Interv. 2011 11 1 18 26 10.1124/mi.11.1.4 21441118
    [Google Scholar]
  121. Son D.J. Zheng J. Jung Y.Y. Hwang C.J. Lee H.P. Woo J.R. Baek S.Y. Ham Y.W. Kang M.W. Shong M. Kweon G.R. Song M.J. Jung J.K. Han S.B. Kim B.Y. Yoon D.Y. Choi B.Y. Hong J.T. MMPP attenuates non-small cell lung cancer growth by inhibiting the STAT3 DNA-binding activity via direct binding to the STAT3 DNA-binding domain. Theranostics 2017 7 18 4632 4642 10.7150/thno.18630 29158850
    [Google Scholar]
  122. Turkson J. Zhang S. Palmer J. Kay H. Stanko J. Mora L.B. Sebti S. Yu H. Jove R. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol. Cancer Ther. 2004 3 12 1533 1542 10.1158/1535‑7163.1533.3.12 15634646
    [Google Scholar]
  123. Feng K.R. Wang F. Shi X.W. Tan Y.X. Zhao J.Y. Zhang J.W. Li Q.H. Lin G.Q. Gao D. Tian P. Design, synthesis and biological evaluation of novel potent STAT3 inhibitors based on BBI608 for cancer therapy. Eur. J. Med. Chem. 2020 201 112428 10.1016/j.ejmech.2020.112428 32603980
    [Google Scholar]
  124. Zuo C. Hong Y. Qiu X. Yang D. Liu N. Sheng X. Zhou K. Tang B. Xiong S. Ma M. Liu Z. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3 / NF-kB and L1CAM activities. Pancreatology 2018 18 3 328 333 10.1016/j.pan.2018.02.006 29525378
    [Google Scholar]
  125. Shiah J.V. Grandis J.R. Johnson D.E. Targeting STAT3 with proteolysis targeting chimeras and next-generation antisense oligonucleotides. Mol. Cancer Ther. 2021 20 2 219 228 10.1158/1535‑7163.MCT‑20‑0599 33203730
    [Google Scholar]
  126. Vo H.H. Cartwright C. Song I.W. Karp D.D. Nogueras Gonzalez G.M. Xie Y. Karol M. Hitron M. Vining D. Tsimberidou A.M. Ipilimumab, pembrolizumab, or nivolumab in combination with bbi608 in patients with advanced cancers treated at MD anderson cancer center. Cancers 2022 14 5 1330 10.3390/cancers14051330 35267638
    [Google Scholar]
  127. Santoni M. Miccini F. Cimadamore A. Piva F. Massari F. Cheng L. Lopez-Beltran A. Montironi R. Battelli N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin. Investig. Drugs 2021 30 3 245 251 10.1080/13543784.2021.1891222 33599169
    [Google Scholar]
  128. Wong A.L.A. Hirpara J.L. Pervaiz S. Eu J.Q. Sethi G. Goh B.C. Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin. Investig. Drugs 2017 26 8 883 887 10.1080/13543784.2017.1351941 28714740
    [Google Scholar]
  129. Thilakasiri P.S. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Seminars in cancer biology. Elsevier 2021 10.1016/j.semcancer.2019.09.022
    [Google Scholar]
  130. Ming T. Lei J. Peng Y. Wang M. Liang Y. Tang S. Tao Q. Wang M. Tang X. He Z. Liu X. Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother. Res. 2024 38 8 3954 3972 10.1002/ptr.8258 38837315
    [Google Scholar]
  131. Zhu J. Jiang X. Luo X. Zhao R. Li J. Cai H. Ye X.Y. Bai R. Xie T. Combination of chemotherapy and gaseous signaling molecular therapy: Novel β ‐elemene nitric oxide donor derivatives against leukemia. Drug Dev. Res. 2023 84 4 718 735 10.1002/ddr.22051 36988106
    [Google Scholar]
  132. Chen L. He Y. Zhu J. Zhao S. Qi S. Chen X. Zhang H. Ni Z. Zhou Y. Chen G. Liu S. Xie T. The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed. Pharmacother. 2023 163 114839 10.1016/j.biopha.2023.114839 37156113
    [Google Scholar]
  133. Chen L. Jiang Z. Yang L. Fang Y. Lu S. Akakuru O.U. Huang S. Li J. Ma S. Wu A. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque. Chin. J. Chem. 2023 41 2 199 206 10.1002/cjoc.202200406
    [Google Scholar]
  134. Schust J. Sperl B. Hollis A. Mayer T.U. Berg T. Stattic: A small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 2006 13 11 1235 1242 10.1016/j.chembiol.2006.09.018 17114005
    [Google Scholar]
  135. Alnoud M.A.H. Chen W. Liu N. Zhu W. Qiao J. Chang S. Wu Y. Wang S. Yang Y. Sun Q. Kang J. Sirt7-p21 signaling pathway mediates glucocorticoid-induced inhibition of mouse neural stem cell proliferation. Neurotox. Res. 2021 39 2 444 455 10.1007/s12640‑020‑00294‑x 33025360
    [Google Scholar]
  136. Spitzner M. Roesler B. Bielfeld C. Emons G. Gaedcke J. Wolff H.A. Rave-Fränk M. Kramer F. Beissbarth T. Kitz J. Wienands J. Ghadimi B.M. Ebner R. Ried T. Grade M. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int. J. Cancer 2014 134 4 997 1007 10.1002/ijc.28429 23934972
    [Google Scholar]
  137. Li F. Zhan L. Dong Q. Wang Q. Wang Y. Li X. Zhang Y. Zhang J. Tumor-derived exosome-educated hepatic stellate cells regulate lactate metabolism of hypoxic colorectal tumor cells via the IL-6/STAT3 pathway to confer drug resistance. OncoTargets Ther. 2020 13 7851 7864 10.2147/OTT.S253485 32821126
    [Google Scholar]
  138. Wu T. Wang Z. Liu Y. Mei Z. Wang G. Liang Z. Cui A. Hu X. Cui L. Yang Y. Liu C.Y. Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8. Clin. Immunol. 2014 154 2 116 126 10.1016/j.clim.2014.07.005 25063444
    [Google Scholar]
  139. Liu Z. Wang H. Guan L. Lai C. Yu W. Lai M. LL1, a novel and highly selective STAT3 inhibitor, displays anti‐colorectal cancer activities in v itro and in vivo. Br. J. Pharmacol. 2020 177 2 298 313 10.1111/bph.14863 31499589
    [Google Scholar]
  140. Gonçalves-Ribeiro S. Díaz-Maroto N.G. Berdiel-Acer M. Soriano A. Guardiola J. Martínez-Villacampa M. Salazar R. Capellà G. Villanueva A. Martínez-Balibrea E. Molleví D.G. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget 2016 7 37 59766 59780 10.18632/oncotarget.11121 27517495
    [Google Scholar]
  141. Li C. Chen C. An Q. Yang T. Sang Z. Yang Y. Ju Y. Tong A. Luo Y. A novel series of napabucasin derivatives as orally active inhibitors of signal transducer and activator of transcription 3 (STAT3). Eur. J. Med. Chem. 2019 162 543 554 10.1016/j.ejmech.2018.10.067 30472602
    [Google Scholar]
  142. Zhuang Y. Bai Y. Hu Y. Guo Y. Xu L. Hu W. Yang L. Zhao C. Li X. Zhao H. Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. OncoTargets Ther. 2019 12 5281 5291 10.2147/OTT.S206833 31308698
    [Google Scholar]
  143. Knapper S. Russell N. Gilkes A. Hills R.K. Gale R.E. Cavenagh J.D. Jones G. Kjeldsen L. Grunwald M.R. Thomas I. Konig H. Levis M.J. Burnett A.K. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood 2017 129 9 1143 1154 10.1182/blood‑2016‑07‑730648 27872058
    [Google Scholar]
  144. Brown P.A. Kairalla J.A. Hilden J.M. Dreyer Z.E. Carroll A.J. Heerema N.A. Wang C. Devidas M. Gore L. Salzer W.L. Winick N.J. Carroll W.L. Raetz E.A. Borowitz M.J. Small D. Loh M.L. Hunger S.P. FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children’s Oncology Group trial AALL0631. Leukemia 2021 35 5 1279 1290 10.1038/s41375‑021‑01177‑6 33623141
    [Google Scholar]
  145. Argiris A. Duffy A.G. Kummar S. Simone N.L. Arai Y. Kim S.W. Rudy S.F. Kannabiran V.R. Yang X. Jang M. Chen Z. Suksta N. Cooley-Zgela T. Ramanand S.G. Ahsan A. Nyati M.K. Wright J.J. Van Waes C. Early tumor progression associated with enhanced EGFR signaling with bortezomib, cetuximab, and radiotherapy for head and neck cancer. Clin. Cancer Res. 2011 17 17 5755 5764 10.1158/1078‑0432.CCR‑11‑0861 21750205
    [Google Scholar]
  146. Harari P.M. Harris J. Kies M.S. Myers J.N. Jordan R.C. Gillison M.L. Foote R.L. Machtay M. Rotman M. Khuntia D. Straube W. Zhang Q. Ang K. Postoperative chemoradiotherapy and cetuximab for high-risk squamous cell carcinoma of the head and neck: Radiation Therapy Oncology Group RTOG-0234. J. Clin. Oncol. 2014 32 23 2486 2495 10.1200/JCO.2013.53.9163 25002723
    [Google Scholar]
  147. Sen M. Thomas S.M. Kim S. Yeh J.I. Ferris R.L. Johnson J.T. Duvvuri U. Lee J. Sahu N. Joyce S. Freilino M.L. Shi H. Li C. Ly D. Rapireddy S. Etter J.P. Li P.K. Wang L. Chiosea S. Seethala R.R. Gooding W.E. Chen X. Kaminski N. Pandit K. Johnson D.E. Grandis J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov. 2012 2 8 694 705 10.1158/2159‑8290.CD‑12‑0191 22719020
    [Google Scholar]
  148. Reilley M.J. McCoon P. Cook C. Lyne P. Kurzrock R. Kim Y. Woessner R. Younes A. Nemunaitis J. Fowler N. Curran M. Liu Q. Zhou T. Schmidt J. Jo M. Lee S.J. Yamashita M. Hughes S.G. Fayad L. Piha-Paul S. Nadella M.V.P. Xiao X. Hsu J. Revenko A. Monia B.P. MacLeod A.R. Hong D.S. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. J. Immunother. Cancer 2018 6 1 119 10.1186/s40425‑018‑0436‑5 30446007
    [Google Scholar]
  149. Bharadwaj U. Kasembeli M.M. Robinson P. Tweardy D.J. Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev. 2020 72 2 486 526 10.1124/pr.119.018440 32198236
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232336447241010094744
Loading
/content/journals/cgt/10.2174/0115665232336447241010094744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test