Skip to content
2000
image of O-substituted Tertiary Amine-chitosans as Promising Nanocarriers for siRNA Delivery

Abstract

Introduction

The clinical translation of chitosan-based formulations for siRNA delivery has been partially limited by their poor stability/solubility at physiological conditions, although they have good biocompatibility and cost-effectiveness.

Method

In this study, the chitosan was -substituted with diisopropylethylamine (DIPEA) groups, which improved its solubility at pH 7.4 by increasing the degree of ionization and enhanced the ability of chitosan to load siRNA at very low amine/phosphate (N/P) ratios. The -DIPEA-chitosan/siRNA nanopolyplexes were self-assembled by complexation and presented positive Zeta potentials (ζ = +8 to +10 mV), spherical-like morphology, 200-300 nm size, low polydispersity index (PDI < 0.2), and were able to protect the siRNA from degradation by RNAse. Also, the resistance to albumin-induced disassembly and aggregation revealed both good structural and colloidal stabilities of the siRNA nanopolyplexes.

Result

The nanopolyplexes displayed low cytotoxicities in RAW 264.7 macrophages and were successfully uptaken by both macrophages and HeLa cells achieving internalization efficiency similar to Lipofectamine. A positive correlation was observed between the physicochemical properties of the siRNA nanocarrier and its transfection efficiency.

Conclusion

A knockdown of about 60-70% of tumor necrosis factor alpha (TNFα) was reached in lipopolysaccharide-stimulated macrophages treated with -DIPEA-chitosan/siTNFα nanopolyplexes. Overall, the results confirmed that -DIPEA chitosans are promising carriers for siRNA delivery.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232335957241122164034
2025-01-10
2025-07-14
Loading full text...

Full text loading...

References

  1. Santos-Carballal B. Fernández Fernández E. Goycoolea F. Chitosan in non-viral gene delivery: Role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers 2018 10 4 444 10.3390/polym10040444 30966479
    [Google Scholar]
  2. Lara-Velazquez M. Alkharboosh R. Norton E.S. Chitosan-based non-viral gene and drug delivery systems for brain cancer. Front. Neurol. 2020 11 740 10.3389/fneur.2020.00740 32849207
    [Google Scholar]
  3. Dong L Li Y Cong H Yu B Shen Y A review of chitosan in gene therapy: Developments and challenges Carbohydr. Polym. 2024 324 121562 10.1016/j.carbpol.2023.121562 37985064
    [Google Scholar]
  4. Cao Y. Tan Y.F. Wong Y.S. Liew M.W.J. Venkatraman S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs 2019 17 6 381 10.3390/md17060381 31242678
    [Google Scholar]
  5. Al-Absi M.Y. Caprifico A.E. Calabrese G. Chitosan and its structural modifications for siRNA delivery. Adv. Pharm. Bull. 2023 13 2 275 282 10.34172/apb.2023.030 37342385
    [Google Scholar]
  6. Hu B. Zhong L. Weng Y. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020 5 1 101 10.1038/s41392‑020‑0207‑x 32561705
    [Google Scholar]
  7. Zhang C. Zhu W. Liu Y. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci. Rep. 2016 6 1 23859 10.1038/srep23859 27030638
    [Google Scholar]
  8. Noh S.M. Park M.O. Shim G. Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J. Control. Release 2010 145 2 159 164 10.1016/j.jconrel.2010.04.005 20385182
    [Google Scholar]
  9. Martinez AM Junior de Souza RHFV Petrônio MS Martins GO Fernandes JC Benderdour M Double-grafted chitosans as siRNA nanocarriers: Effects of diisopropylethylamine substitution and labile-PEG coating. J. Nanostructure Chem. 2022 10.1007/s40097‑022‑00487‑0
    [Google Scholar]
  10. Xiao B. Ma P. Viennois E. Merlin D. Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids Surf. B Biointerfaces 2016 143 186 193 10.1016/j.colsurfb.2016.03.035 27011348
    [Google Scholar]
  11. de Souza R.H.F.V. Picola I.P.D. Shi Q. Diethylaminoethyl- chitosan as an efficient carrier for siRNA delivery: Improving the condensation process and the nanoparticles properties. Int. J. Biol. Macromol. 2018 119 186 197 10.1016/j.ijbiomac.2018.07.072 30031084
    [Google Scholar]
  12. Sadio A. Gustafsson J.K. Pereira B. Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier. PLoS One 2014 9 6 e99449 10.1371/journal.pone.0099449 24925340
    [Google Scholar]
  13. Chang P.K.C. Prestidge C.A. Bremmell K.E. PAMAM versus PEI complexation for siRNA delivery: Interaction with model lipid membranes and cellular uptake. Pharm. Res. 2022 39 6 1151 1163 10.1007/s11095‑022‑03229‑7 35318566
    [Google Scholar]
  14. Li T. Chen Q. Zheng Y. PAMAM-cRGD mediating efficient siRNA delivery to spermatogonial stem cells. Stem Cell Res. Ther. 2019 10 1 399 10.1186/s13287‑019‑1506‑4 31852526
    [Google Scholar]
  15. Bholakant R. Qian H. Zhang J. Recent advances of polycationic siRNA vectors for cancer therapy. Biomacromolecules 2020 21 8 2966 2982 10.1021/acs.biomac.0c00438 32568525
    [Google Scholar]
  16. Fang E. Liu X. Li M. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022 7 1 94 10.1038/s41392‑022‑00950‑y 35322018
    [Google Scholar]
  17. de Paula Pansani Oliveira F. Picola I.P.D. Shi Q. Synthesis and evaluation of diethylethylamine–chitosan for gene delivery: Composition effects on the in vitro transfection efficiency. Nanotechnology 2013 24 5 055101 10.1088/0957‑4484/24/5/055101 23306549
    [Google Scholar]
  18. Cabral H. Miyata K. Osada K. Kataoka K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018 118 14 6844 6892 10.1021/acs.chemrev.8b00199 29957926
    [Google Scholar]
  19. Amelio N.D. Esteban C. Coslovi A. Feruglio L. Uggeri F. Villegas M. Insight into the molecular properties of Chitlac, a chitosan derivative for tissue engineering. J. Phys. Chem. B 2013 117 43 13578 13587 10.1021/jp4067263
    [Google Scholar]
  20. Cok M. Viola M. Vecchies F. N-isopropyl chitosan. A pH- and thermo-responsive polysaccharide for gel formation. Carbohydr. Polym. 2020 230 115641 10.1016/j.carbpol.2019.115641 31887884
    [Google Scholar]
  21. Chen Q. Qi Y. Jiang Y. Progress in research of chitosan chemical modification technologies and their applications. Mar. Drugs 2022 20 8 536 10.3390/md20080536 36005539
    [Google Scholar]
  22. Argüelles-Monal W. Lizardi-Mendoza J. Fernández-Quiroz D. Recillas-Mota M. Montiel-Herrera M. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 2018 10 3 342 10.3390/polym10030342 30966377
    [Google Scholar]
  23. Abbasian M. Bighlari P. Mahmoodzadeh F. Acar M.H. Jaymand M. A de novo formulation of metformin using chitosan‐based nanomicelles for potential diabetes therapy. J. Appl. Polym. Sci. 2019 136 41 48037 10.1002/app.48037
    [Google Scholar]
  24. Zaman M. Butt M.H. Siddique W. Fabrication of PEGylated chitosan nanoparticles containing tenofovir alafenamide: Synthesis and characterization. Molecules 2022 27 23 8401 10.3390/molecules27238401 36500493
    [Google Scholar]
  25. Niu S. Williams G.R. Wu J. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J. Nanobiotechnology 2019 17 1 95 10.1186/s12951‑019‑0529‑4 31506085
    [Google Scholar]
  26. Edson J.A. Ingato D. Wu S. Lee B. Kwon Y.J. Aqueous-soluble, acid-transforming chitosan for efficient and stimuli-responsive gene silencing. Biomacromolecules 2018 19 5 1508 1516 10.1021/acs.biomac.8b00170 29562124
    [Google Scholar]
  27. Koh J.S. Kim J.P. Synthesis of phthalimide-based alkali-dischargeable azo disperse dyes and analysis of their alkali--Hydrolysis mechanism. Dyes Pigments 1998 37 3 265 272 10.1016/S0143‑7208(97)00066‑1
    [Google Scholar]
  28. Wang R. Huang J. Wei M. Zeng X. The synergy of 6-O-sulfation and N- or 3-O-sulfation of chitosan is required for efficient inhibition of P-selectin-mediated human melanoma A375 cell adhesion. Biosci. Biotechnol. Biochem. 2010 74 8 1697 1700 10.1271/bbb.100140 20699561
    [Google Scholar]
  29. Zhang C. Ping Q. Zhang H. Shen J. Synthesis and characterization of water-soluble O-succinyl-chitosan. Eur. Polym. J. 2003 39 8 1629 1634 10.1016/S0014‑3057(03)00068‑5
    [Google Scholar]
  30. Xiong W. Yi Y. Liu H. Wang H. Liu J. Ying G. Selective carboxypropionylation of chitosan: Synthesis, characterization, blood compatibility, and degradation. Carbohydr. Res. 2011 346 10 1217 1223 10.1016/j.carres.2011.03.037 21549358
    [Google Scholar]
  31. Piotrowski-Daspit A.S. Kauffman A.C. Bracaglia L.G. Saltzman W.M. Polymeric vehicles for nucleic acid delivery. Adv. Drug Deliv. Rev. 2020 156 119 132 10.1016/j.addr.2020.06.014 32585159
    [Google Scholar]
  32. BCRJ. HeLa 2010 Available from https://bcrj.org.br/celula/hela/
    [Google Scholar]
  33. AW Available from: https://bcrj.org.br/celula/raw-2647
  34. Ifuku S. Miwa T. Morimoto M. Saimoto H. Preparation of highly chemoselective N-phthaloyl chitosan in aqueous media. Green Chem. 2011 13 6 1499 1502 10.1039/c0gc00860e
    [Google Scholar]
  35. Kurita K. Ikeda H. Shimojoh M. Yang J. N-phthaloylated chitosan as an essential precursor for controlled chemical modifications of chitosan: Synthesis and evaluation. Polym. J. 2007 39 9 945 952 10.1295/polymj.PJ2007032
    [Google Scholar]
  36. Rundlöf T. Mathiasson M. Bekiroglu S. Hakkarainen B. Bowden T. Arvidsson T. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy. J. Pharm. Biomed. Anal. 2010 52 5 645 651 10.1016/j.jpba.2010.02.007 20207092
    [Google Scholar]
  37. Prakash S. Tomaro-Duchesneau C. Shyamali Saha, Kahouli I, Malhotra M. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int. J. Nanomedicine 2013 8 2041 2052 10.2147/IJN.S43683 23723699
    [Google Scholar]
  38. Thomas O. Brogat M. Organic constituents. In: UV-Visible Spectrophotometry of Water and Wastewater. 2nd ed. Elsevier 2017 73 138 10.1016/B978‑0‑444‑63897‑7.00003‑2
    [Google Scholar]
  39. Martins G.O. Segalla Petrônio M. Furuyama Lima A.M. Amphipathic chitosans improve the physicochemical properties of siRNA-chitosan nanoparticles at physiological conditions. Carbohydr. Polym. 2019 216 332 342 10.1016/j.carbpol.2019.03.098 31047074
    [Google Scholar]
  40. Xuan Du D. Xuan Vuong B. Mai H.D. Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv. Mater. Sci. Eng. 2019 2019 1 8 10.1155/2019/8781013
    [Google Scholar]
  41. Wolf B. Lesnaw J.A. Reichmann M.E. A mechanism of the irreversible inactivation of bovine pancreatic ribonuclease by Diethylpyrocarbonate. Eur. J. Biochem. 1970 13 3 519 525 10.1111/j.1432‑1033.1970.tb00955.x 5444158
    [Google Scholar]
  42. Kang E. Park H.R. Yoon J. A simple method to determine the water content in organic solvents using the 1 H NMR chemical shifts differences between water and solvent. Microchem. J. 2018 138 395 400 10.1016/j.microc.2018.01.034
    [Google Scholar]
  43. Mohan K. Ganesan A.R. Muralisankar T. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020 105 17 42 10.1016/j.tifs.2020.08.016 32901176
    [Google Scholar]
  44. Hajji S. Younes I. Ghorbel-Bellaaj O. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol. 2014 65 298 306 10.1016/j.ijbiomac.2014.01.045 24468048
    [Google Scholar]
  45. Martinez A.M.Junior Lima A.M.F. Martins G.O. Impact of degree of ionization and PEGylation on the stability of nanoparticles of chitosan derivatives at physiological conditions. Mar. Drugs 2022 20 8 476 10.3390/md20080476 35892944
    [Google Scholar]
  46. Pandit A. Indurkar A. Deshpande C. Jain R. Dandekar P. A systematic review of physical techniques for chitosan degradation. Carbohydr. Polym. Technol. Appl. 2021 2 100033 10.1016/j.carpta.2021.100033
    [Google Scholar]
  47. Patil S. Bhatt P. Lalani R. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Advances 2016 6 112 110951 110963 10.1039/C6RA24058E
    [Google Scholar]
  48. Alameh M. Lavertu M. Tran-Khanh N. siRNA delivery with chitosan: Influence of chitosan molecular weight, degree of deacetylation, and Amine to phosphate ratio on in Vitro silencing efficiency, hemocompatibility, biodistribution, and in Vivo efficacy. Biomacromolecules 2018 19 1 112 131 10.1021/acs.biomac.7b01297 29211954
    [Google Scholar]
  49. Shi Q. Fernandes J. Winnik F. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: Optimization studies. Int. J. Nanomedicine 2012 7 5833 5845 10.2147/IJN.S35567 23209368
    [Google Scholar]
  50. Van Woensel M. Wauthoz N. Rosière R. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release 2016 227 71 81 10.1016/j.jconrel.2016.02.032 26902800
    [Google Scholar]
  51. Liang N. Sun S. Li X. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: Preparation, characterization and in vitro/in vivo evaluations. Int. J. Pharm. 2012 423 2 480 488 10.1016/j.ijpharm.2011.12.004 22183133
    [Google Scholar]
  52. Guo H.B. He F. Gu B. Liang L. Smith J.C. Time-dependent density functional theory assessment of UV absorption of benzoic acid derivatives. J. Phys. Chem. A 2012 116 48 11870 11879 10.1021/jp3084293 23134517
    [Google Scholar]
  53. Aranda-Barradas M.E. Trejo-López S.E. Real A.D. Effect of molecular weight of chitosan on the physicochemical, morphological, and biological properties of polyplex nanoparticles intended for gene delivery. Carbohydr. Polym. Technol. Appl. 2022 4 100228 10.1016/j.carpta.2022.100228
    [Google Scholar]
  54. Merzouki A. Alameh M. DeJesus D. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int. J. Nanomedicine 2012 7 1399 1414 10.2147/IJN.S26571 22457597
    [Google Scholar]
  55. Valente J.F.A. Pereira P. Sousa A. Queiroz J.A. Sousa F. Effect of plasmid DNA size on chitosan or polyethyleneimine polyplexes formulation. Polymers 2021 13 5 793 10.3390/polym13050793 33807586
    [Google Scholar]
  56. Zamboulis A. Nanaki S. Michailidou G. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers 2020 12 7 1519 10.3390/polym12071519 32650536
    [Google Scholar]
  57. Soliman O.Y. Alameh M.G. De Cresenzo G. Buschmann M.D. Lavertu M. Efficiency of Chitosan/Hyaluronan-based mRNA delivery systems In Vitro: Influence of composition and structure. J. Pharm. Sci. 2020 109 4 1581 1593 10.1016/j.xphs.2019.12.020 31891675
    [Google Scholar]
  58. Pilipenko I. Korzhikov-Vlakh V. Sharoyko V. pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics 2019 11 7 317 10.3390/pharmaceutics11070317 31284414
    [Google Scholar]
  59. Manzanares D. Ceña V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 2020 12 4 371 10.3390/pharmaceutics12040371 32316537
    [Google Scholar]
  60. Yang C. Gao S. Dagnæs-Hansen F. Jakobsen M. Kjems J. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in Vitro and in Vivo. ACS Appl. Mater. Interfaces 2017 9 14 12203 12216 10.1021/acsami.6b16556 28332829
    [Google Scholar]
  61. Jiang L.Q. Wang T.Y. Webster T.J. Intracellular disposition of chitosan nanoparticles in macrophages: Intracellular uptake, exocytosis, and intercellular transport. Int. J. Nanomedicine 2017 12 6383 6398 10.2147/IJN.S142060 28919742
    [Google Scholar]
  62. Donahue N.D. Acar H. Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019 143 68 96 10.1016/j.addr.2019.04.008 31022434
    [Google Scholar]
  63. Casey J.R. Grinstein S. Orlowski J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010 11 1 50 61 10.1038/nrm2820 19997129
    [Google Scholar]
  64. Chen X. Yu H. Li Z. Oxidative RNA damage in the pathogenesis and treatment of type 2 diabetes. Front. Physiol. 2022 13 725919 10.3389/fphys.2022.725919 35418873
    [Google Scholar]
  65. Roy J. Oliveira L.T. Oger C. Polymeric nanocapsules prevent oxidation of core-loaded molecules: Evidence based on the effects of docosahexaenoic acid and neuroprostane on breast cancer cells proliferation. J. Exp. Clin. Cancer Res. 2015 34 1 155 10.1186/s13046‑015‑0273‑z 26689718
    [Google Scholar]
  66. Muthu M. Gopal J. Chun S. Devadoss A.J.P. Hasan N. Sivanesan I. Crustacean waste-derived chitosan: Antioxidant properties and future perspective. Antioxidants 2021 10 2 228 10.3390/antiox10020228 33546282
    [Google Scholar]
  67. Aydin O. Kanarya D. Yilmaz U. Tunç C.Ü. Determination of optimum ratio of cationic polymers and small interfering RNA with Agarose Gel retardation assay. Methods Mol. Biol. 2022 2434 117 128 10.1007/978‑1‑0716‑2010‑6_7 35213013
    [Google Scholar]
  68. Garg U. Chauhan S. Nagaich U. Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull. 2019 9 2 195 204 10.15171/apb.2019.023 31380245
    [Google Scholar]
  69. Layek B. Singh J. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: Effect of degree of substitution. Int. J. Pharm. 2013 447 1-2 182 191 10.1016/j.ijpharm.2013.02.052 23467080
    [Google Scholar]
  70. Iranpur Mobarakeh V. Modarressi M.H. Rahimi P. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int. J. Biol. Macromol. 2019 129 305 315 10.1016/j.ijbiomac.2019.02.036 30738164
    [Google Scholar]
  71. Liu X. Ma L. Qin W. Gao C. Effect of N/P ratios on physicochemical stability, cellular association, and gene silencing efficiency for trimethyl chitosan/small interfering RNA complexes. J. Bioact. Compat. Polym. 2013 28 6 590 604 10.1177/0883911513508495
    [Google Scholar]
  72. Saeed R.M. Abdullah M. Ahram M. Taha M.O. Novel ellipsoid chitosan-phthalate lecithin nanoparticles for siRNA delivery. Front. Bioeng. Biotechnol. 2021 9 695371 10.3389/fbioe.2021.695371 34395401
    [Google Scholar]
  73. Zhang W. Xu W. Lan Y. He X. Liu K. Liang Y. Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int. J. Nanomedicine 2019 14 5287 5301 10.2147/IJN.S203113 31406460
    [Google Scholar]
  74. Gujrati M. Malamas A. Shin T. Jin E. Sun Y. Lu Z.R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol. Pharm. 2014 11 8 2734 2744 10.1021/mp400787s 25020033
    [Google Scholar]
  75. Xia W. Li Y. Lou B. Wang P. Gao X. Lin C. Bioreducible PEI-siRNA nanocomplex for liver cancer therapy: Transfection, biodistribution, and tumor growth inhibition in vivo. J. Nanomater. 2013 2013 1 384717 10.1155/2013/384717
    [Google Scholar]
  76. Yang Y. Guo M. Qian R. Binding efficacy and kinetics of chitosan with DNA duplex: The effects of deacetylation degree and nucleotide sequences. Carbohydr. Polym. 2017 169 451 457 10.1016/j.carbpol.2017.04.040 28504168
    [Google Scholar]
  77. Layek B. Singh J. N-hexanoyl, N-octanoyl and N-decanoyl chitosans: Binding affinity, cell uptake, and transfection. Carbohydr. Polym. 2012 89 2 403 410 10.1016/j.carbpol.2012.03.021 24750737
    [Google Scholar]
  78. Gan Y. Wu N. Zhang X. Li F. Zhang T. Li J. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure. Int. J. Nanomedicine 2015 10 5383 5396 10.2147/IJN.S87978 26347257
    [Google Scholar]
  79. Opanasopit P. Ngawhirunpat T. Rojanarata T. Choochottiros C. Chirachanchai S. Camptothecin-incorporating N-phthaloylchitosan-g-mPEG self-assembly micellar system: Effect of degree of deacetylation. Colloids Surf. B Biointerfaces 2007 60 1 117 124 10.1016/j.colsurfb.2007.06.001 17644325
    [Google Scholar]
  80. Pandi P. Jain A. Raju S. Khan W. Therapeutic approaches for the delivery of TNF-α siRNA. Ther. Deliv. 2017 8 5 343 355 10.4155/tde‑2017‑0011 28361614
    [Google Scholar]
  81. Sargazi S. Arshad R. Ghamari R. siRNA‐based nanotherapeutics as emerging modalities for immune‐mediated diseases: A preliminary review. Cell Biol. Int. 2022 46 9 1320 1344 10.1002/cbin.11841 35830711
    [Google Scholar]
  82. Kim B. Park J.H. Sailor M.J. Rekindling RNAi therapy: Materials design requirements for in vivo siRNA delivery. Adv. Mater. 2019 31 49 1903637 10.1002/adma.201903637 31566258
    [Google Scholar]
  83. Noll F. Behnke J. Leiting S. Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS One 2017 12 12 e0190002 10.1371/journal.pone.0190002 29261777
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232335957241122164034
Loading
/content/journals/cgt/10.2174/0115665232335957241122164034
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test