Skip to content
2000
image of Molecular Insights into RNA Modifications and their Role in Shaping Immune Responses and Tumor Microenvironments

Abstract

RNA modifications play crucial roles in immune system development and function, with dynamic changes essential for diverse cellular processes. Innovative profiling technologies are invaluable for understanding the significance of these modifications in immune cells, both in healthy and diseased states. This review explores the utility of such technologies in uncovering the functions of RNA modifications and their impact on immune responses. Additionally, it delves into the mechanisms through which aberrant RNA modifications influence the tumor microenvironments immune milieu. Despite significant progress, several outstanding research questions remain, highlighting the need for further investigation into the molecular mechanisms underlying RNA modification's effects on immune function in various contexts.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232335322241205063758
2025-01-21
2025-06-24
Loading full text...

Full text loading...

References

  1. Qiu L. Jing Q. Li Y. Han J. RNA modification: Mechanisms and therapeutic targets. Mol. Biomed. 2023 4 1 25 28 10.1186/s43556‑023‑00139‑x 37612540
    [Google Scholar]
  2. Wang Q. Wang Z. He Y. Xiong B. Li Y. Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt. Chem. 2023 159 116910 116915 10.1016/j.trac.2022.116910
    [Google Scholar]
  3. Ontiveros R.J. Stoute J. Liu K.F. The chemical diversity of RNA modifications. Biochem. J. 2019 476 8 1227 1245 10.1042/BCJ20180445 31028151
    [Google Scholar]
  4. Cui L. Ma R. Cai J. Guo C. Chen Z. Yao L. Wang Y. Fan R. Wang X. Shi Y. RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct. Target. Ther. 2022 7 1 334 350 10.1038/s41392‑022‑01175‑9 36138023
    [Google Scholar]
  5. Roy B. Effects of mRNA modifications on translation: An overview. RNA Modif.: Methods Protoc. 2021 327 356 10.1007/978‑1‑0716‑1374‑0_20
    [Google Scholar]
  6. Li X. Ma S. Yi C. Pseudouridine: The fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 2016 33 108 116 10.1016/j.cbpa.2016.06.014 27348156
    [Google Scholar]
  7. Luo Y. Yao Y. Wu P. Zi X. Sun N. He J. The potential role of N7-methylguanosine (m7G) in cancer. J. Hematol. Oncol. 2022 15 1 63 68 10.1186/s13045‑022‑01285‑5 35590385
    [Google Scholar]
  8. Wang C. Hou X. Guan Q. Zhou H. Zhou L. Liu L. Liu J. Li F. Li W. Liu H. RNA modification in cardiovascular disease: Implications for therapeutic interventions. Signal Transduct. Target. Ther. 2023 8 1 412 420 10.1038/s41392‑023‑01638‑7 37884527
    [Google Scholar]
  9. Batista P.J. The RNA modification N 6-methyladenosine and its implications in human disease. Genomics Proteomics Bioinformatics 2017 15 3 154 163 10.1016/j.gpb.2017.03.002 28533023
    [Google Scholar]
  10. Zhang Q. Liu F. Chen W. Miao H. Liang H. Liao Z. Zhang Z. Zhang B. The role of RNA m 5 C modification in cancer metastasis. Int. J. Biol. Sci. 2021 17 13 3369 3380 10.7150/ijbs.61439 34512153
    [Google Scholar]
  11. Ibis B. Aliazis K. Cao C. Yenyuwadee S. Boussiotis V.A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front. Immunol. 2023 14 1197364 1197370 10.3389/fimmu.2023.1197364 37342323
    [Google Scholar]
  12. Yang S.H. Gao C. Li L. Chang C. Leung P.S.C. Gershwin M.E. Lian Z.X. The molecular basis of immune regulation in autoimmunity. Clin. Sci. 2018 132 1 43 67 10.1042/CS20171154 29305419
    [Google Scholar]
  13. Wang W.Y. Tan M.S. Yu J.T. Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015 3 10 136 26207229
    [Google Scholar]
  14. Chen L. Liu S. Tao Y. Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct. Target. Ther. 2020 5 1 90 95 10.1038/s41392‑020‑0196‑9 32532965
    [Google Scholar]
  15. Barbieri I. Kouzarides T. Role of RNA modifications in cancer. Nat. Rev. Cancer 2020 20 6 303 322 10.1038/s41568‑020‑0253‑2 32300195
    [Google Scholar]
  16. Huang H. Weng H. Deng X. Chen J. RNA modifications in cancer: Functions, mechanisms, and therapeutic implications. Annu. Rev. Cancer Biol. 2020 4 1 221 240 10.1146/annurev‑cancerbio‑030419‑033357
    [Google Scholar]
  17. Tundo G.R. Sbardella D. Lacal P.M. Graziani G. Marini S. On the horizon: Targeting next-generation immune checkpoints for cancer treatment. Chemotherapy 2019 64 2 62 80 10.1159/000500902 31387102
    [Google Scholar]
  18. McCubrey J.A. Steelman L.S. Chappell W.H. Abrams S.L. Franklin R.A. Montalto G. Cervello M. Nicoletti F. Malaponte G. Massarino C. Libra M. New agents and approaches for targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell survival pathways. Cell Death Signaling in Cancer Biology and Treatment Humana Press New York, NY 2013 331 372 10.1007/978‑1‑4614‑5847‑0_13
    [Google Scholar]
  19. Cao X. Geng Q. Fan D. Wang Q. Wang X. Zhang M. Zhao L. Jiao Y. Deng T. Liu H. Zhou J. Jia L. Xiao C. m6A methylation: A process reshaping the tumour immune microenvironment and regulating immune evasion. Mol. Cancer 2023 22 1 42 46 10.1186/s12943‑022‑01704‑8 36859310
    [Google Scholar]
  20. Liu C. Yang Z. Li R. Wu Y. Chi M. Gao S. Sun X. Meng X. Wang B. Potential roles of N6-methyladenosine (m6A) in immune cells. J. Transl. Med. 2021 19 1 251 255 10.1186/s12967‑021‑02918‑y 34103054
    [Google Scholar]
  21. Nombela P. Miguel-López B. Blanco S. The role of m6A, m5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol. Cancer 2021 20 1 18 22 10.1186/s12943‑020‑01263‑w 33461542
    [Google Scholar]
  22. Chatterjee B. Shen C.K.J. Majumder P. RNA modifications and RNA metabolism in neurological disease pathogenesis. Int. J. Mol. Sci. 2021 22 21 11870 11875 10.3390/ijms222111870 34769301
    [Google Scholar]
  23. Tong J. Zhang W. Chen Y. Yuan Q. Qin N.N. Qu G. The emerging role of RNA modifications in the regulation of antiviral innate immunity. Front. Microbiol. 2022 13 845625 10.3389/fmicb.2022.845625 35185855
    [Google Scholar]
  24. Haruehanroengra P. Zheng Y.Y. Zhou Y. Huang Y. Sheng J. RNA modifications and cancer. RNA Biol. 2020 17 11 1560 1575 10.1080/15476286.2020.1722449 31994439
    [Google Scholar]
  25. Pomaville M.M. He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023 9 7 528 542 10.1016/j.trecan.2023.04.003 37147166
    [Google Scholar]
  26. Tuncel G. Kalkan R. Importance of m N6-methyladenosine (m6A) RNA modification in cancer. Med. Oncol. 2019 36 4 36 40 10.1007/s12032‑019‑1260‑6 30879160
    [Google Scholar]
  27. Shima H. Matsumoto M. Ishigami Y. Ebina M. Muto A. Sato Y. Kumagai S. Ochiai K. Suzuki T. Igarashi K. S-Adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep. 2017 21 12 3354 3363 10.1016/j.celrep.2017.11.092 29262316
    [Google Scholar]
  28. Ruszkowska A. METTL16, methyltransferase-like protein 16: Current insights into structure and function. Int. J. Mol. Sci. 2021 22 4 2176 2180 10.3390/ijms22042176 33671635
    [Google Scholar]
  29. Fan Y. Li X. Sun H. Gao Z. Zhu Z. Yuan K. Role of WTAP in cancer: From mechanisms to the therapeutic potential. Biomolecules 2022 12 9 1224 1230 10.3390/biom12091224 36139062
    [Google Scholar]
  30. Huang Q. Mo J. Liao Z. Chen X. Zhang B. The RNA m6A writer WTAP in diseases: Structure, roles, and mechanisms. Cell Death Dis. 2022 13 10 852 860 10.1038/s41419‑022‑05268‑9 36207306
    [Google Scholar]
  31. Guhaniyogi J. Brewer G. Regulation of mRNA stability in mammalian cells. Gene 2001 265 1-2 11 23 10.1016/S0378‑1119(01)00350‑X 11255003
    [Google Scholar]
  32. Zhao Y. Chen Y. Jin M. Wang J. The crosstalk between m 6 A RNA methylation and other epigenetic regulators: A novel perspective in epigenetic remodeling. Theranostics 2021 11 9 4549 4566 10.7150/thno.54967 33754077
    [Google Scholar]
  33. Zheng H. Zhang X. Sui N. Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnol. Adv. 2020 45 107656 107662 10.1016/j.biotechadv.2020.107656 33181242
    [Google Scholar]
  34. Molinie B Giallourakis CC Genome-wide location analyses of n6-methyladenosine modifications (m6A-Seq). Methods Mol. Biol. 2017 1562 45 53
    [Google Scholar]
  35. Ge R. He M.E. Tang W. N6 ‐methyladenosine in mammalian messenger RNA: Function, location, and quantitation. Isr. J. Chem. 2024 64 3-4 e202300181 10.1002/ijch.202300181
    [Google Scholar]
  36. Ontiveros R.J. Coregulation of gene expression by mRNA and tRNA modifications. Doctoral dissertation, University of Pennsylvania 2022
    [Google Scholar]
  37. Xiong X. Li X. Yi C. N1-methyladenosine methylome in messenger RNA and non-coding RNA. Curr. Opin. Chem. Biol. 2018 45 179 186 10.1016/j.cbpa.2018.06.017 30007213
    [Google Scholar]
  38. Chen Z. Zhang Z. Ding W. Zhang J. Tan Z. Mei Y. He W. Wang X. Expression and potential biomarkers of regulators for M7G RNA modification in gliomas. Front. Neurol. 2022 13 886246 886257 10.3389/fneur.2022.886246 35614925
    [Google Scholar]
  39. Zhou Y. Kong Y. Fan W. Tao T. Xiao Q. Li N. Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed. Pharmacother. 2020 131 110731 110735 10.1016/j.biopha.2020.110731 32920520
    [Google Scholar]
  40. Song H. Zhang J. Liu B. Xu J. Cai B. Yang H. Straube J. Yu X. Ma T. Biological roles of RNA m5C modification and its implications in Cancer immunotherapy. Biomarker Res. 2022 10 1 15 36240321
    [Google Scholar]
  41. Zhang Y. 5-methylcytosine (m5C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc. Natl. Acad. Sci. USA 2022 119 42 e2123338119
    [Google Scholar]
  42. Monné M. Marobbio C.M.T. Agrimi G. Palmieri L. Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S‐adenosylmethionine, and related diseases: A review †. IUBMB Life 2022 74 7 573 591 10.1002/iub.2658 35730628
    [Google Scholar]
  43. Wnuk M. Slipek P. Dziedzic M. Lewinska A. The roles of host 5-methylcytosine RNA methyltransferases during viral infections. Int. J. Mol. Sci. 2020 21 21 8176 10.3390/ijms21218176 33142933
    [Google Scholar]
  44. Li M. Tao Z. Zhao Y. Li L. Zheng J. Li Z. Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J. Transl. Med. 2022 20 1 214 10.1186/s12967‑022‑03427‑2 35562754
    [Google Scholar]
  45. Chellamuthu A. Gray S.G. The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells 2020 9 8 1758 10.3390/cells9081758 32708015
    [Google Scholar]
  46. Li D. Liu J. Zhu B. The emerging significance of RNA 5-methylcytosine modification in human cancers. Oncologie 2024 26 3 361 367 10.1515/oncologie‑2023‑0440
    [Google Scholar]
  47. Xue C. Zhao Y. Li L. Advances in RNA cytosine-5 methylation: Detection, regulatory mechanisms, biological functions and links to cancer. Biomark. Res. 2020 8 1 43 10.1186/s40364‑020‑00225‑0 32944246
    [Google Scholar]
  48. Zong T. Yang Y. Zhao H. Li L. Liu M. Fu X. Tang G. Zhou H. Aung L.H.H. Li P. Wang J. Wang Z. Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif. 2021 54 3 e12977 e12985 10.1111/cpr.12977 33507586
    [Google Scholar]
  49. Chen Y.S. Yang W.L. Zhao Y.L. Yang Y.G. Dynamic transcriptomic m 5 C and its regulatory role in RNA processing. Wiley Interdiscip. Rev. RNA 2021 12 4 e1639 10.1002/wrna.1639 33438329
    [Google Scholar]
  50. Lian H. Wang Q.H. Zhu C.B. Ma J. Jin W.L. Deciphering the epitranscriptome in cancer. Trends Cancer 2018 4 3 207 221 10.1016/j.trecan.2018.01.006 29506671
    [Google Scholar]
  51. Yang F. Zhang X. Xie Y. Yuan J. Gao J. Chen H. Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J. Nutr. Biochem. 2024 128 109593 109598 10.1016/j.jnutbio.2024.109593 38336123
    [Google Scholar]
  52. Lu M. Xue M. Wang H.T. Kairis E.L. Ahmad S. Wei J. Zhang Z. Liu Q. Zhang Y. Gao Y. Garcin D. Peeples M.E. Sharma A. Hur S. He C. Li J. Nonsegmented negative-sense RNA viruses utilize N 6-methyladenosine (m6A) as a common strategy to evade host innate immunity. J. Virol. 2021 95 9 e01939-20 10.1128/JVI.01939‑20 33536170
    [Google Scholar]
  53. Xiao M.Z. Liu J.M. Xian C.L. Chen K.Y. Liu Z.Q. Cheng Y.Y. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed. Pharmacother. 2020 131 110645 110652 10.1016/j.biopha.2020.110645 32942149
    [Google Scholar]
  54. Chen L. Fu Y. Hu Z. Deng K. Song Z. Liu S. Li M. Ou X. Wu R. Liu M. Li R. Gao S. Cheng L. Chen S. Xu A. Nuclear m 6 A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3′ processing machinery. EMBO Rep. 2022 23 11 e54686 e70 10.15252/embr.202254686 36094741
    [Google Scholar]
  55. Liu B. Cao J. Wang X. Guo C. Liu Y. Wang T. Deciphering the tRNA-derived small RNAs: Origin, development, and future. Cell Death Dis. 2021 13 1 24 28 10.1038/s41419‑021‑04472‑3 34934044
    [Google Scholar]
  56. Safra M. Sas-Chen A. Nir R. Winkler R. Nachshon A. Bar-Yaacov D. Erlacher M. Rossmanith W. Stern-Ginossar N. Schwartz S. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 2017 551 7679 251 255 10.1038/nature24456 29072297
    [Google Scholar]
  57. Eisenberg A.R. Higdon A.L. Hollerer I. Fields A.P. Jungreis I. Diamond P.D. Kellis M. Jovanovic M. Brar G.A. Translation initiation site profiling reveals widespread synthesis of non-AUG-initiated protein isoforms in yeast. Cell Syst. 2020 11 2 145 160.e5 10.1016/j.cels.2020.06.011 32710835
    [Google Scholar]
  58. Grozhik A.V. Olarerin-George A.O. Sindelar M. Li X. Gross S.S. Jaffrey S.R. Antibody cross-reactivity accounts for widespread appearance of m1A in 5’UTRs. Nat. Commun. 2019 10 1 5126 5130 10.1038/s41467‑019‑13146‑w 31719534
    [Google Scholar]
  59. Niu Y. Zhao X. Wu Y.S. Li M.M. Wang X.J. Yang Y.G. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics 2013 11 1 8 17 10.1016/j.gpb.2012.12.002 23453015
    [Google Scholar]
  60. Tanguay R.L. Gallie D.R. Translational efficiency is regulated by the length of the 3′ untranslated region. Mol. Cell. Biol. 1996 16 1 146 156 10.1128/MCB.16.1.146 8524291
    [Google Scholar]
  61. Altayli E. Regulator non-coding RNAs: miRNA, siRNA, piRNA, lncRNA, circRNA. J. Clin. Med. Kazakhstan. 2020 6 60 29 39 10.23950/jcmk/9258
    [Google Scholar]
  62. Yue Y. Liu J. Cui X. Cao J. Luo G. Zhang Z. Cheng T. Gao M. Shu X. Ma H. Wang F. Wang X. Shen B. Wang Y. Feng X. He C. Liu J. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018 4 1 10 15 10.1038/s41421‑018‑0019‑0 29507755
    [Google Scholar]
  63. Zhou H. Yin K. Zhang Y. Tian J. Wang S. The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochim. Biophys. Acta Rev. Cancer 2021 1876 2 188609 188710 10.1016/j.bbcan.2021.188609 34375716
    [Google Scholar]
  64. Jiang X. Liu B. Nie Z. Duan L. Xiong Q. Jin Z. Yang C. Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 2021 6 1 74 78 10.1038/s41392‑020‑00450‑x 33611339
    [Google Scholar]
  65. Elsabbagh R.A. Rady M. Watzl C. Abou-Aisha K. Gad M.Z. Impact of N6-methyladenosine (m6A) modification on immunity. Cell Commun. Signal. 2022 20 1 140 145 10.1186/s12964‑022‑00939‑8 36085064
    [Google Scholar]
  66. Roundtree I.A. Evans M.E. Pan T. He C. Dynamic RNA modifications in gene expression regulation. Cell 2017 169 7 1187 1200 10.1016/j.cell.2017.05.045 28622506
    [Google Scholar]
  67. Enroth C. Poulsen L.D. Iversen S. Kirpekar F. Albrechtsen A. Vinther J. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res. 2019 47 20 e126 e130 10.1093/nar/gkz736 31504776
    [Google Scholar]
  68. Covelo-Molares H. Bartosovic M. Vanacova S. RNA methylation in nuclear pre‐mRNA processing. Wiley Interdiscip. Rev. RNA 2018 9 6 e1489 e1494 10.1002/wrna.1489 29921017
    [Google Scholar]
  69. Zorbas C. Nicolas E. Wacheul L. Huvelle E. Heurgué-Hamard V. Lafontaine D.L.J. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol. Biol. Cell 2015 26 11 2080 2095 10.1091/mbc.E15‑02‑0073 25851604
    [Google Scholar]
  70. Furuichi Y. Discovery of m<sup>7</sup>G-cap in eukaryotic mRNAs. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2015 91 8 394 409 10.2183/pjab.91.394 26460318
    [Google Scholar]
  71. Monecke T. Dickmanns A. Ficner R. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Res. 2009 37 12 3865 3877 10.1093/nar/gkp249 19386620
    [Google Scholar]
  72. Arango D. Sturgill D. Oberdoerffer S. Immunoprecipitation and sequencing of acetylated RNA. Bio Protoc. 2019 9 12 e3278 e3285 10.21769/BioProtoc.3278 33654795
    [Google Scholar]
  73. Ito S. Horikawa S. Suzuki T. Kawauchi H. Tanaka Y. Suzuki T. Suzuki T. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J. Biol. Chem. 2014 289 52 35724 35730 10.1074/jbc.C114.602698 25411247
    [Google Scholar]
  74. Jin G. Xu M. Zou M. Duan S. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: A systematic review. Mol. Ther. Nucleic Acids 2020 20 13 24 10.1016/j.omtn.2020.01.037 32171170
    [Google Scholar]
  75. Arango D. Sturgill D. Alhusaini N. Dillman A.A. Sweet T.J. Hanson G. Hosogane M. Sinclair W.R. Nanan K.K. Mandler M.D. Fox S.D. Zengeya T.T. Andresson T. Meier J.L. Coller J. Oberdoerffer S. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 2018 175 7 1872 1886.e24 10.1016/j.cell.2018.10.030 30449621
    [Google Scholar]
  76. Schiffers S. Oberdoerffer S. ac4C: A fragile modification with stabilizing functions in RNA metabolism. RNA 2024 30 5 583 594 10.1261/rna.079948.124 38531654
    [Google Scholar]
  77. Zaringhalam M. Papavasiliou F.N. Pseudouridylation meets next-generation sequencing. Methods 2016 107 63 72 10.1016/j.ymeth.2016.03.001 26968262
    [Google Scholar]
  78. Hassan D. Acevedo D. Daulatabad S.V. Mir Q. Janga S.C. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data. Methods 2022 203 478 487 10.1016/j.ymeth.2022.02.005 35182749
    [Google Scholar]
  79. Maraia R. Arimbasseri A. Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon–codon use. Biomolecules 2017 7 1 26 30 10.3390/biom7010026 28282871
    [Google Scholar]
  80. Boo S.H. Kim Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 2020 52 3 400 408 10.1038/s12276‑020‑0407‑z 32210357
    [Google Scholar]
  81. Aphasizhev R. Suematsu T. Zhang L. Aphasizheva I. Constructive edge of uridylation-induced RNA degradation. RNA Biol. 2016 13 11 1078 1083 10.1080/15476286.2016.1229736 27715485
    [Google Scholar]
  82. Siomi M.C. Sato K. Pezic D. Aravin A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011 12 4 246 258 10.1038/nrm3089 21427766
    [Google Scholar]
  83. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  84. Xue C. Chu Q. Zheng Q. Jiang S. Bao Z. Su Y. Lu J. Li L. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct. Target. Ther. 2022 7 1 142 10.1038/s41392‑022‑01003‑0 35484099
    [Google Scholar]
  85. De Almeida C. Scheer H. Zuber H. Gagliardi D. RNA uridylation: A key posttranscriptional modification shaping the coding and noncoding transcriptome. Wiley Interdiscip. Rev. RNA 2018 9 1 e1440 e1443 10.1002/wrna.1440 28984054
    [Google Scholar]
  86. Obbard D.J. Gordon K.H.J. Buck A.H. Jiggins F.M. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009 364 1513 99 115 10.1098/rstb.2008.0168 18926973
    [Google Scholar]
  87. Christofi T. Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J. Transl. Med. 2019 17 1 319 10.1186/s12967‑019‑2071‑4 31547885
    [Google Scholar]
  88. Keegan L.P. Leroy A. Sproul D. O’Connell M.A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 2004 5 2 209 10.1186/gb‑2004‑5‑2‑209 14759252
    [Google Scholar]
  89. Han S.W. Kim H.P. Shin J.Y. Jeong E.G. Lee W.C. Kim K.Y. Park S.Y. Lee D.W. Won J.K. Jeong S.Y. Park K.J. Park J.G. Kang G.H. Seo J.S. Kim J.I. Kim T.Y. RNA editing in RHOQ promotes invasion potential in colorectal cancer. J. Exp. Med. 2014 211 4 613 621 10.1084/jem.20132209 24663214
    [Google Scholar]
  90. Weng X Peng S Zou G Yuan K Zhou X. Methods for mapping of nucleic acids epigenetic modifications and its clinic applications. Nucleic Acids in Medicinal Chemistry and Chemical Biology: Drug Development and Clinical Applications John Wiley & Sons, Inc. 2023 182 226
    [Google Scholar]
  91. Chen H.X. Zhang Z. Ma D.Z. Chen L.Q. Luo G.Z. Mapping single-nucleotide m6A by m6A-REF-seq. Methods 2022 203 392 398 10.1016/j.ymeth.2021.06.013 34174388
    [Google Scholar]
  92. Zhang L.S. Dai Q. He C. Base-resolution sequencing methods for whole-transcriptome quantification of mRNA modifications. Acc. Chem. Res. 2024 57 1 47 58 10.1021/acs.accounts.3c00532 38079380
    [Google Scholar]
  93. Hu Y. Gong C. Li Z. Liu J. Chen Y. Huang Y. Luo Q. Wang S. Hou Y. Yang S. Xiao Y. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol. Cancer 2022 21 1 34 40 10.1186/s12943‑022‑01522‑y 35114989
    [Google Scholar]
  94. Meng L. Zhang Q. Huang X. Comprehensive analysis of 5-methylcytosine profiles of messenger RNA in human high-grade serous ovarian cancer by MeRIP sequencing. Cancer Manag. Res. 2021 13 6005 6018 10.2147/CMAR.S319312 34377020
    [Google Scholar]
  95. Sundberg C.D. Hankinson O. CRISPR/Cas9 whole-genome screen identifies genes required for aryl hydrocarbon receptor-dependent induction of functional CYP1A1. Toxicol. Sci. 2019 170 2 310 319 10.1093/toxsci/kfz111 31086989
    [Google Scholar]
  96. Li Y. Wang H. Zhang L. Ding Z. Xu S. Gu Z. Shi G. Efficient genome editing in Bacillus licheniformis mediated by a conditional CRISPR/Cas9 system. Microorganisms 2020 8 5 754 760 10.3390/microorganisms8050754 32429599
    [Google Scholar]
  97. Wang N. Tang H. Wang X. Wang W. Feng J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem. Biophys. Res. Commun. 2017 493 1 94 99 10.1016/j.bbrc.2017.09.069 28919411
    [Google Scholar]
  98. Constant S.L. Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: The alternative approaches. Annu. Rev. Immunol. 1997 15 1 297 322 10.1146/annurev.immunol.15.1.297 9143690
    [Google Scholar]
  99. Deshpande A. Klompas M. Guo N. Imrey P.B. Pallotta A.M. Higgins T. Haessler S. Zilberberg M.D. Lindenauer P.K. Rothberg M.B. Intravenous to oral antibiotic switch therapy among patients hospitalized with community-acquired pneumonia. Clin. Infect. Dis. 2023 77 2 174 185 10.1093/cid/ciad196 37011018
    [Google Scholar]
  100. Zhou J. Zhang X. Hu J. Qu R. Yu Z. Xu H. Chen H. Yan L. Ding C. Zou Q. Ye Y. Wang Z. Flavell R.A. Li H.B. m 6 A demethylase ALKBH5 controls CD4 + T cell pathogenicity and promotes autoimmunity. Sci. Adv. 2021 7 25 eabg0470 477 10.1126/sciadv.abg0470 34134995
    [Google Scholar]
  101. Tian H. Xing J. Tang X. Chi H. Sheng X. Zhan W. Identification and characterization of a master transcription factor of Th1 cells, T-bet, within flounder (Paralichthys olivaceus). Front. Immunol. 2021 12 704324 704330 10.3389/fimmu.2021.704324 34262572
    [Google Scholar]
  102. Barner M. Mohrs M. Brombacher F. Kopf M. Differences between IL-4Rα-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Curr. Biol. 1998 8 11 669 672 10.1016/S0960‑9822(98)70256‑8 9635196
    [Google Scholar]
  103. Gonçalves G.A.R. Paiva R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein 2017 15 3 369 375 10.1590/s1679‑45082017rb4024 29091160
    [Google Scholar]
  104. Lu S. Wei X. Zhu H. Hu Z. Zheng M. Wu J. Zhao C. Yang S. Feng D. Jia S. Zhao H. Zhao M. m6A methyltransferase METTL3 programs CD4+ T-cell activation and effector T-cell differentiation in systemic lupus erythematosus. Mol. Med. 2023 29 1 46 50 10.1186/s10020‑023‑00643‑4 37013484
    [Google Scholar]
  105. Hu R. Liao P. Xu B. Qiu Y. Zhang H. Li Y. N6-methyladenosine RNA modifications: A potential therapeutic target for AML. Ann. Hematol. 2024 103 8 2601 2612 10.1007/s00277‑023‑05302‑6 37548690
    [Google Scholar]
  106. Sprent J. Surh C.D. Normal T cell homeostasis: The conversion of naive cells into memory-phenotype cells. Nat. Immunol. 2011 12 6 478 484 10.1038/ni.2018 21739670
    [Google Scholar]
  107. Li J. Wang W. Zhou Y. Liu L. Zhang G. Guan K. Cui X. Liu X. Huang M. Cui G. Sun R. m6A regulator-associated modification patterns and immune infiltration of the tumor microenvironment in hepatocarcinoma. Front. Cell Dev. Biol. 2021 9 687756 687762 10.3389/fcell.2021.687756 34277630
    [Google Scholar]
  108. Guo L. Yang H. Zhou C. Shi Y. Huang L. Zhang J. N6-Methyladenosine RNA modification in the tumor immune microenvironment: novel implications for immunotherapy. Front. Immunol. 2021 12 773570 773579 10.3389/fimmu.2021.773570 34956201
    [Google Scholar]
  109. Nair L. The role of RNA base modification m6A in RNA turnover and genome dynamics in B cell programmed DNA recombination. Columbia University 2021
    [Google Scholar]
  110. Xu A. Zhang J. Zuo L. Yan H. Chen L. Zhao F. Fan F. Xu J. Zhang B. Zhang Y. Yin X. Cheng Q. Gao S. Deng J. Mei H. Huang Z. Sun C. Hu Y. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner. Mol. Ther. 2022 30 3 1104 1118 10.1016/j.ymthe.2021.12.012 34915192
    [Google Scholar]
  111. Dong L. Cao Y. Hou Y. Liu G. N6 ‐methyladenosine RNA methylation: A novel regulator of the development and function of immune cells. J. Cell. Physiol. 2022 237 1 329 345 10.1002/jcp.30576 34515345
    [Google Scholar]
  112. Ji X. Wang Z. Sun W. Zhang H. The Emerging Role of m6A Modification in Endocrine Cancer. Cancers 2023 15 4 1033 10.3390/cancers15041033 36831377
    [Google Scholar]
  113. Xu Y. He Z. Du J. Chen Z. Creemers J.W.M. Wang B. Li F. Wang Y. Epigenetic modulations of immune cells: from normal development to tumor progression. Int. J. Biol. Sci. 2023 19 16 5120 5144 10.7150/ijbs.88327 37928272
    [Google Scholar]
  114. Chen X. Yang T. Wang W. Xi W. Zhang T. Li Q. Yang A. Wang T. Circular RNAs in immune responses and immune diseases. Theranostics 2019 9 2 588 607 10.7150/thno.29678 30809295
    [Google Scholar]
  115. Wicherska-Pawłowska K. Wróbel T. Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int. J. Mol. Sci. 2021 22 24 13397 10.3390/ijms222413397 34948194
    [Google Scholar]
  116. Yang D. Zhao G. Zhang H.M. m6A reader proteins: the executive factors in modulating viral replication and host immune response. Front. Cell. Infect. Microbiol. 2023 13 1151069 1151072 10.3389/fcimb.2023.1151069 37325513
    [Google Scholar]
  117. Brocard M. Ruggieri A. Locker N. m6A RNA methylation, a new hallmark in virus-host interactions. J. Gen. Virol. 2017 98 9 2207 2214 10.1099/jgv.0.000910 28869001
    [Google Scholar]
  118. Wang S. Lv W. Li T. Zhang S. Wang H. Li X. Wang L. Ma D. Zang Y. Shen J. Xu Y. Dynamic regulation and functions of mRNA m6A modification. Cancer cell international. 2022 Jan 29;22(1):48-52. [121] Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m6A modification in cancer. Nat. Rev. Clin. Oncol. 2023 20 8 507 526 37221357
    [Google Scholar]
  119. Deng X. The roles and implications of RNA m6A modification in cancer. Natur. Rev. Clin. Oncol. 2023 20 8 507 526
    [Google Scholar]
  120. Weinstein I.B. The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment--twenty-seventh G.H.A. Clowes memorial award lecture. Cancer Res. 1988 48 15 4135 4143 3292040
    [Google Scholar]
  121. Xiong H. Zhang Z.G. Tian X.Q. Sun D.F. Liang Q.C. Zhang Y.J. Lu R. Chen Y.X. Fang J.Y. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 2008 10 3 287 297 10.1593/neo.07971 18320073
    [Google Scholar]
  122. Liu J. Xu Y.P. Li K. Ye Q. Zhou H.Y. Sun H. Li X. Yu L. Deng Y.Q. Li R.T. Cheng M.L. He B. Zhou J. Li X.F. Wu A. Yi C. Qin C.F. The m6A methylome of SARS-CoV-2 in host cells. Cell Res. 2021 31 4 404 414 10.1038/s41422‑020‑00465‑7 33510385
    [Google Scholar]
  123. Winkler R. Gillis E. Lasman L. Safra M. Geula S. Soyris C. Nachshon A. Tai-Schmiedel J. Friedman N. Le-Trilling V.T.K. Trilling M. Mandelboim M. Hanna J.H. Schwartz S. Stern-Ginossar N. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 2019 20 2 173 182 10.1038/s41590‑018‑0275‑z 30559377
    [Google Scholar]
  124. Jin S. Li M. Chang H. Wang R. Zhang Z. Zhang J. He Y. Ma H. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol. Cancer 2022 21 1 97 102 10.1186/s12943‑022‑01572‑2 35395767
    [Google Scholar]
  125. Liu Y. You Y. Lu Z. Yang J. Li P. Liu L. Xu H. Niu Y. Cao X. N6 -methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication. Science 2019 365 6458 1171 1176 10.1126/science.aax4468 31439758
    [Google Scholar]
  126. Bouyahya A. Mechchate H. Oumeslakht L. Zeouk I. Aboulaghras S. Balahbib A. Zengin G. Kamal M.A. Gallo M. Montesano D. El Omari N. The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: Mechanistic pathways and pharmacodynamic actions. Biomolecules 2022 12 3 367 10.3390/biom12030367 35327559
    [Google Scholar]
  127. Huang H. Weng H. Chen J. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell 2020 37 3 270 288 10.1016/j.ccell.2020.02.004 32183948
    [Google Scholar]
  128. Joyce J.A. Fearon D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015 348 6230 74 80 10.1126/science.aaa6204 25838376
    [Google Scholar]
  129. Zhou X. Li C. Chen T. Li W. Wang X. Yang Q. Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Mol. Cancer 2023 22 1 36 40 10.1186/s12943‑023‑01746‑6 36810108
    [Google Scholar]
  130. Zheng S. Han H. Lin S. N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biol. Med. 2022 19 4 385 397 10.20892/j.issn.2095‑3941.2021.0534 35254013
    [Google Scholar]
  131. Ge J. Liu S.L. Zheng J.X. Shi Y. Shao Y. Duan Y.J. Huang R. Yang L.J. Yang T. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8+ T cell infiltration in colorectal cancer. Transl. Oncol. 2023 34 101683 10.1016/j.tranon.2023.101683 37224767
    [Google Scholar]
  132. Shibru B. Fey K. Fricke S. Blaudszun A.R. Fürst F. Weise M. Seiffert S. Weyh M.K. Köhl U. Sack U. Boldt A. Detection of immune checkpoint receptors–a current challenge in clinical flow cytometry. Front. Immunol. 2021 12 694055 694062 10.3389/fimmu.2021.694055 34276685
    [Google Scholar]
  133. Ma S. Yan J. Barr T. Zhang J. Chen Z. Wang L.S. Sun J.C. Chen J. Caligiuri M.A. Yu J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J. Exp. Med. 2021 218 8 e20210279 e20210282 10.1084/jem.20210279 34160549
    [Google Scholar]
  134. Galli F. Aguilera J.V. Palermo B. Markovic S.N. Nisticò P. Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res. 2020 39 1 89 10.1186/s13046‑020‑01586‑y 32423420
    [Google Scholar]
  135. Yu H. Liu J. Bu X. Ma Z. Yao Y. Li J. Zhang T. Song W. Xiao X. Sun Y. Xiong W. Shi J. Dai P. Xiang B. Duan H. Yan X. Wu F. Zhang W.C. Lin D. Hu H. Zhang H. Slack F.J. He H.H. Freeman G.J. Wei W. Zhang J. Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy. Cell Chem. Biol. 2024 31 4 776 791.e7 10.1016/j.chembiol.2023.09.001 37751743
    [Google Scholar]
  136. Szeto C. Lobos C.A. Nguyen A.T. Gras S. TCR recognition of peptide–MHC-I: Rule makers and breakers. Int. J. Mol. Sci. 2020 22 1 68 74 10.3390/ijms22010068 33374673
    [Google Scholar]
  137. Qiu Z. Zhao L. Shen J.Z. Liang Z. Wu Q. Yang K. Min L. Gimple R.C. Yang Q. Bhargava S. Jin C. Kim C. Hinz D. Dixit D. Bernatchez J.A. Prager B.C. Zhang G. Dong Z. Lv D. Wang X. Kim L.J.Y. Zhu Z. Jones K.A. Zheng Y. Wang X. Siqueira-Neto J.L. Chavez L. Fu X.D. Spruck C. Rich J.N. Transcription elongation machinery is a druggable dependency and potentiates immunotherapy in glioblastoma stem cells. Cancer Discov. 2022 12 2 502 521 10.1158/2159‑8290.CD‑20‑1848 34615656
    [Google Scholar]
  138. Sun Y. Jiang L. Wen T. Guo X. Shao X. Qu H. Chen X. Song Y. Wang F. Qu X. Li Z. Trends in the research into immune checkpoint blockade by anti-PD1/PDL1 antibodies in cancer immunotherapy: A bibliometric study. Front. Pharmacol. 2021 12 670900 10.3389/fphar.2021.670900 34489691
    [Google Scholar]
  139. Kok V.C. Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer. Front. Oncol. 2020 10 268 273 10.3389/fonc.2020.00268 32185135
    [Google Scholar]
  140. Chong W. Shang L. Liu J. Fang Z. Du F. Wu H. Liu Y. Wang Z. Chen Y. Jia S. Chen L. Li L. Chen H. m 6 A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics 2021 11 5 2201 2217 10.7150/thno.52717 33500720
    [Google Scholar]
  141. Chen Y. Shen J. Mucosal immunity and tRNA, tRF, and tiRNA. J. Mol. Med. 2021 99 1 47 56 10.1007/s00109‑020‑02008‑4 33200232
    [Google Scholar]
  142. Zhu C. Sun B. Nie A. Zhou Z. The tRNA‐associated dysregulation in immune responses and immune diseases. Acta Physiol. 2020 228 2 e13391 10.1111/apha.13391 31529760
    [Google Scholar]
  143. Xu X. Huang J. Ocansey D.K.W. Xia Y. Zhao Z. Xu Z. Yan Y. Zhang X. Mao F. The emerging clinical application of m6A RNA modification in inflammatory bowel disease and its associated colorectal cancer. J. Inflamm. Res. 2021 14 3289 3306 10.2147/JIR.S320449 34290515
    [Google Scholar]
  144. Liu X. Wang J.M. Iridoid glycosides fraction of Folium syringae leaves modulates NF-κB signal pathway and intestinal epithelial cells apoptosis in experimental colitis. PLoS One 2011 6 9 e24740 e24744 10.1371/journal.pone.0024740 21931839
    [Google Scholar]
  145. Fernandez Rodriguez G. Cesaro B. Fatica A. Multiple roles of m6A RNA modification in translational regulation in cancer. Int. J. Mol. Sci. 2022 23 16 8971 8977 10.3390/ijms23168971 36012237
    [Google Scholar]
  146. Garbo S. Zwergel C. Battistelli C. m6A RNA methylation and beyond – The epigenetic machinery and potential treatment options. Drug Discov. Today 2021 26 11 2559 2574 10.1016/j.drudis.2021.06.004 34126238
    [Google Scholar]
  147. Fu Y. Dominissini D. Rechavi G. He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 2014 15 5 293 306 10.1038/nrg3724 24662220
    [Google Scholar]
  148. Li K. Peng J. Yi C. Sequencing methods and functional decoding of mRNA modifications. Fundamental Research 2023 3 5 738 748 10.1016/j.fmre.2023.05.010 38933299
    [Google Scholar]
  149. Liu Z.X. Li L.M. Sun H.L. Liu S.M. Link between m6A modification and cancers. Front. Bioeng. Biotechnol. 2018 6 89 91 10.3389/fbioe.2018.00089 30062093
    [Google Scholar]
  150. Tian S. Lai J. Yu T. Li Q. Chen Q. Regulation of gene expression associated with the N6-methyladenosine (m6A) enzyme system and its significance in cancer. Front. Oncol. 2021 10 623634 10.3389/fonc.2020.623634 33552994
    [Google Scholar]
  151. Ramanathan A. Robb G.B. Chan S.H. mRNA capping: Biological functions and applications. Nucleic Acids Res. 2016 44 16 7511 7526 10.1093/nar/gkw551 27317694
    [Google Scholar]
  152. Ouyang W. Huang Z. Wan K. Nie T. Chen H. Yao H. RNA ac4C modification in cancer: Unraveling multifaceted roles and promising therapeutic horizons. Cancer Lett. 2024 601 217159 217164 10.1016/j.canlet.2024.217159 39128536
    [Google Scholar]
  153. Mei Z. Shen Z. Pu J. Liu Q. Liu G. He X. Wang Y. Yue J. Ge S. Li T. Yuan Y. Yang L. NAT10 mediated ac4C acetylation driven m6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun. Signal. 2024 22 1 51 55 10.1186/s12964‑023‑01321‑y 38233839
    [Google Scholar]
  154. Munoz-Tello P. Rajappa L. Coquille S. Thore S. Polyuridylation in eukaryotes: A 3′‐end modification regulating RNA life. BioMed Res. Int. 2015 2015 1 1 12 10.1155/2015/968127 26078976
    [Google Scholar]
  155. Lim J. Ha M. Chang H. Kwon S.C. Simanshu D.K. Patel D.J. Kim V.N. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 2014 159 6 1365 1376 10.1016/j.cell.2014.10.055 25480299
    [Google Scholar]
  156. Zinshteyn B. Nishikura K. Adenosine‐to‐inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009 1 2 202 209 10.1002/wsbm.10 20835992
    [Google Scholar]
  157. Gatsiou A. Vlachogiannis N. Lunella F.F. Sachse M. Stellos K. Adenosine-to-inosine RNA editing in health and disease. Antioxid. Redox Signal. 2018 29 9 846 863 10.1089/ars.2017.7295 28762759
    [Google Scholar]
  158. Shen S. Zhang L.S. The regulation of antiviral innate immunity through non-m6A RNA modifications. Front. Immunol. 2023 14 1286820 1286828 10.3389/fimmu.2023.1286820 37915585
    [Google Scholar]
  159. Lambert M. Benmoussa A. Provost P. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA 2019 5 1 16 10.3390/ncrna5010016 30720712
    [Google Scholar]
  160. Geissmann F. Auffray C. Palframan R. Wirrig C. Ciocca A. Campisi L. Narni-Mancinelli E. Lauvau G. Blood monocytes: Distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T‐cell responses. Immunol. Cell Biol. 2008 86 5 398 408 10.1038/icb.2008.19 18392044
    [Google Scholar]
  161. Dong N. Li D. Cai H. Shi L. Huang L. Expression of lncRNA MIR193BHG in serum of preeclampsia patients and its clinical significance. J. Gynecol. Obstet. Hum. Reprod. 2022 51 5 102357 102361 10.1016/j.jogoh.2022.102357 35301154
    [Google Scholar]
  162. Rao Z. He Z. He Y. Guo Z. Kong D. Liu J. MicroRNA‑512‑3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells. Mol. Med. Rep. 2018 17 1 586 593 29115469
    [Google Scholar]
  163. Nalbant E. Akkaya-Ulum Y.Z. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin. Exp. Med. 2024 24 1 142 145 10.1007/s10238‑024‑01334‑y 38958690
    [Google Scholar]
  164. Mohan N. Dashwood R.H. Rajendran P. A–Z of epigenetic readers: Targeting alternative splicing and histone modification variants in cancer. Cancers 2024 16 6 1104 1115 10.3390/cancers16061104 38539439
    [Google Scholar]
  165. Kong Z. Han Q. Zhu B. Wan L. Feng E. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR ‐136‐5p/ YWHAZ axis. Thorac. Cancer 2023 14 19 1831 1842 10.1111/1759‑7714.14928 37192740
    [Google Scholar]
  166. Xiao P. Li M. Zhou M. Zhao X. Wang C. Qiu J. Fang Q. Jiang H. Dong H. Zhou R. TTP protects against acute liver failure by regulating CCL2 and CCL5 through m6A RNA methylation. JCI Insight 2021 6 23 e149276 10.1172/jci.insight.149276 34877932
    [Google Scholar]
  167. Papoutsoglou P. RNA-modifying enzymes as novel targets for anti-cancer therapies. Health Res. J. 2021 7 3 95 97 10.12681/healthresj.27472
    [Google Scholar]
  168. Li G. Fu Q. Liu C. Peng Y. Gong J. Li S. Huang Y. Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front. Oncol. 2022 12 1074307 1074317 10.3389/fonc.2022.1074307 36561529
    [Google Scholar]
  169. Zhu H. Shi J. Li W. Bioinformatics analysis of ceRNA network of autophagy-related genes in pediatric asthma. Medicine 2023 102 48 e36343 e36345 10.1097/MD.0000000000036343 38050261
    [Google Scholar]
  170. Babar Q. Saeed A. Tabish T.A. Sarwar M. Thorat N.D. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 6 166746 166752 10.1016/j.bbadis.2023.166746 37160171
    [Google Scholar]
  171. Labani-Motlagh A. Ashja-Mahdavi M. Loskog A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front. Immunol. 2020 11 940 944 10.3389/fimmu.2020.00940 32499786
    [Google Scholar]
  172. Smyth M.J. Ngiow S.F. Ribas A. Teng M.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016 13 3 143 158 10.1038/nrclinonc.2015.209 26598942
    [Google Scholar]
  173. Zeng C. Huang W. Li Y. Weng H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J. Hematol. Oncol. 2020 13 1 117 121 10.1186/s13045‑020‑00951‑w 32854717
    [Google Scholar]
  174. An Y. Duan H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 2022 21 1 14 18 10.1186/s12943‑022‑01500‑4 35022030
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232335322241205063758
Loading
/content/journals/cgt/10.2174/0115665232335322241205063758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test