Skip to content
2000
image of Gene Augmentation Techniques to Stimulate Wound Healing Process: Progress and Prospects

Abstract

Gene therapy has traditionally been used to treat individuals with late-stage cancers or congenital abnormalities. Numerous prospects for therapeutic genetic modifications have emerged with the discovery that gene therapy applications are far more extensive, particularly in skin and exterior wounds. Cutaneous wound healing is a complex, multistep process involving multiple steps and mediators that operate in a network of activation and inhibition processes. This setting presents a unique obstacle for gene delivery. Many gene delivery strategies have been developed, including liposomal administration, high-pressure injection, viral transfection, and the application of bare DNA. Among several gene transfer techniques, categorical polymers, nanoparticles, and liposomal-based constructs show great promise for non-viral gene transfer in wounds. Clinical experiments have shown that efficient transportation of certain polypeptides to the intended wound location is a crucial factor in wound healing. Genetically engineered cells can be used to produce and control the delivery of specific growth factors, thereby addressing the drawbacks of mechanically administered recombinant growth factors. We have discussed how repair mechanisms are based on molecules and cells, as well as their breakdown, and provided an overview of the methods and research conducted on gene transmission in tissue regeneration.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232316799241008073042
2024-10-23
2024-11-23
Loading full text...

Full text loading...

References

  1. Hernandez A. Evers B.M. Functional Genomics. Arch. Surg. 1999 134 11 1209 1215 10.1001/archsurg.134.11.1209 10555635
    [Google Scholar]
  2. Brigham P.A. McLoughlin E. Burn incidence and medical care use in the United States: estimates, trends, and data sources. J. Burn Care Rehabil. 1996 17 2 95 107 10.1097/00004630‑199603000‑00003 8675512
    [Google Scholar]
  3. Singer A.J. Clark R.A.F. Cutaneous wound healing. N. Engl. J. Med. 1999 341 10 738 746 10.1056/NEJM199909023411006 10471461
    [Google Scholar]
  4. Werner S. Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003 83 3 835 870 10.1152/physrev.2003.83.3.835 12843410
    [Google Scholar]
  5. Pfeifer A. Verma I.M. Gene therapy: promises and problems. Annu. Rev. Genomics Hum. Genet. 2001 2 1 177 211 10.1146/annurev.genom.2.1.177 11701648
    [Google Scholar]
  6. Gan L.M. Lagerström-Fermér M. Carlsson L.G. Arfvidsson C. Egnell A.C. Rudvik A. Kjaer M. Collén A. Thompson J.D. Joyal J. Chialda L. Koernicke T. Fuhr R. Chien K.R. Fritsche-Danielson R. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 2019 10 1 871 10.1038/s41467‑019‑08852‑4 30787295
    [Google Scholar]
  7. Wang C. Ma L. Gao C. Design of gene-activated matrix for the repair of skin and cartilage. Polym. J. 2014 46 8 476 482 10.1038/pj.2014.50
    [Google Scholar]
  8. Choi J.S. Kim H.S. Yoo H.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv. Transl. Res. 2015 5 2 137 145 10.1007/s13346‑013‑0148‑9 25787739
    [Google Scholar]
  9. Branski L.K. Gauglitz G.G. Herndon D.N. Jeschke M.G. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009 35 2 171 180 10.1016/j.burns.2008.03.009 18603379
    [Google Scholar]
  10. Lee P.Y. Chesnoy S. Huang L. Electroporatic delivery of TGF-β1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J. Invest. Dermatol. 2004 123 4 791 798 10.1111/j.0022‑202X.2004.23309.x 15373787
    [Google Scholar]
  11. Shaabani E. Sharifiaghdam M. Faridi-Majidi R. De Smedt S.C. Braeckmans K. Fraire J.C. Gene therapy to enhance angiogenesis in chronic wounds. Mol. Ther. Nucleic Acids 2022 29 871 899 10.1016/j.omtn.2022.08.020 36159590
    [Google Scholar]
  12. Mast B.A. Schultz G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996 4 4 411 420 10.1046/j.1524‑475X.1996.40404.x 17309691
    [Google Scholar]
  13. Steed D.L. Modifying the wound healing response with exogenous growth factors. Clin. Plast. Surg. 1998 25 3 397 405 10.1016/S0094‑1298(20)32471‑8 9696900
    [Google Scholar]
  14. LeGrand E.K. Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am. J. Surg. 1998 176 Suppl 2 48S 54S 10.1016/S0002‑9610(98)00177‑9 9777972
    [Google Scholar]
  15. Robson M.C. Mustoe T.A. Hunt T.K. The future of recombinant growth factors in wound healing. Am. J. Surg. 1998 176 Suppl. 2 80S 82S 10.1016/S0002‑9610(98)00186‑X 9777977
    [Google Scholar]
  16. Lynch S.E. Nixon J.C. Colvin R.B. Antoniades H.N. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc. Natl. Acad. Sci. USA 1987 84 21 7696 7700 10.1073/pnas.84.21.7696 3499612
    [Google Scholar]
  17. Russell Middaugh C. Evans R.K. Montgomery D.L. Casimiro D.R. Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 1998 87 2 130 146 10.1021/js970367a 9519144
    [Google Scholar]
  18. Boehler R.M. Kuo R. Shin S. Goodman A.G. Pilecki M.A. Leonard J.N. Shea L.D. Shea L.D. Lentivirus delivery of IL‐10 to promote and sustain macrophage polarization towards an anti‐inflammatory phenotype. Biotechnol. Bioeng. 2014 111 6 1210 1221 10.1002/bit.25175 24375008
    [Google Scholar]
  19. Cua D.J. Hutchins B. LaFace D.M. Stohlman S.A. Coffman R.L. Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis. J. Immunol. 2001 166 1 602 608 10.4049/jimmunol.166.1.602 11123343
    [Google Scholar]
  20. Gower R.M. Boehler R.M. Azarin S.M. Ricci C.F. Leonard J.N. Shea L.D. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials 2014 35 6 2024 2031 10.1016/j.biomaterials.2013.11.036 24309498
    [Google Scholar]
  21. Holladay C. Power K. Sefton M. O’Brien T. Gallagher W.M. Pandit A. Functionalized scaffold-mediated interleukin 10 gene delivery significantly improves survival rates of stem cells in vivo. Mol. Ther. 2011 19 5 969 978 10.1038/mt.2010.311 21266957
    [Google Scholar]
  22. Holladay C.A. Duffy A.M. Chen X. Sefton M.V. O’Brien T.D. Pandit A.S. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials 2012 33 5 1303 1314 10.1016/j.biomaterials.2011.10.019 22078809
    [Google Scholar]
  23. Ji X.C. Dang Y.Y. Gao H.Y. Wang Z.T. Gao M. Yang Y. Zhang H.T. Xu R.X. Local injection of Lenti–BDNF at the lesion site promotes M2 macrophage polarization and inhibits inflammatory response after spinal cord injury in mice. Cell. Mol. Neurobiol. 2015 35 6 881 890 10.1007/s10571‑015‑0182‑x 25840805
    [Google Scholar]
  24. Ghivizzani S.C. Lechman E.R. Kang R. Tio C. Kolls J. Evans C.H. Robbins P.D. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc. Natl. Acad. Sci. USA 1998 95 8 4613 4618 10.1073/pnas.95.8.4613 9539786
    [Google Scholar]
  25. Su Z. Niu W. Liu M.L. Zou Y. Zhang C.L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun. 2014 5 1 3338 10.1038/ncomms4338 24569435
    [Google Scholar]
  26. Wilson H.M. Chettibi S. Jobin C. Walbaum D. Rees A.J. Kluth D.C. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am. J. Pathol. 2005 167 1 27 37 10.1016/S0002‑9440(10)62950‑1 15972949
    [Google Scholar]
  27. Desmet C.M. Préat V. Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 2018 129 262 284 10.1016/j.addr.2018.02.001 29448035
    [Google Scholar]
  28. Juliano R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016 44 14 6518 6548 10.1093/nar/gkw236 27084936
    [Google Scholar]
  29. Dowdy S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017 35 3 222 229 10.1038/nbt.3802 28244992
    [Google Scholar]
  30. Nóbrega C. Mendonça L. Matos CA. A handbook of gene and cell therapy. Springer Cham 2020 10.1007/978‑3‑030‑41333‑0
    [Google Scholar]
  31. Ferraro B. Cruz Y.L. Coppola D. Heller R. Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing. Mol. Ther. 2009 17 4 651 657 10.1038/mt.2009.12 19240696
    [Google Scholar]
  32. Liu L. Marti G.P. Wei X. Zhang X. Zhang H. Liu Y.V. Nastai M. Semenza G.L. Harmon J.W. Age‐dependent impairment of HIF‐1α expression in diabetic mice: Correction with electroporation‐facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J. Cell. Physiol. 2008 217 2 319 327 10.1002/jcp.21503 18506785
    [Google Scholar]
  33. Xu M. Lv J. Wang P. Liao Y. Li Y. Zhao W. Zen J. Dong Z. Guo Z. Bo X. Liu M. Zhang L. Hu G. Chen Y. Vascular endothelial Cdc42 deficiency delays skin wound-healing processes by increasing IL-1β and TNF-α expression. Am. J. Transl. Res. 2019 11 1 257 268 30787984
    [Google Scholar]
  34. Jeschke M.G. Richter G. Höfstädter F. Herndon D.N. Perez-Polo J-R. Jauch K-W. Non-viral liposomal keratinocyte growth factor (KGF) cDNA gene transfer improves dermal and epidermal regeneration through stimulation of epithelial and mesenchymal factors. Gene Ther. 2002 9 16 1065 1074 10.1038/sj.gt.3301732 12140734
    [Google Scholar]
  35. Uludag H. Ubeda A. Ansari A. At the intersection of biomaterials and gene therapy: progress in non-viral delivery of nucleic acids. Front. Bioeng. Biotechnol. 2019 7 131 10.3389/fbioe.2019.00131 31214586
    [Google Scholar]
  36. Bajan S. Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cells 2020 9 1 137 10.3390/cells9010137 31936122
    [Google Scholar]
  37. Devalliere J. Chang W.G. Andrejecsk J.W. Abrahimi P. Cheng C.J. Jane-wit D. Saltzman W.M. Pober J.S. Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J. 2014 28 2 908 922 10.1096/fj.13‑238527 24221087
    [Google Scholar]
  38. Wang J.M. Tao J. Chen D.D. Cai J.J. Irani K. Wang Q. Yuan H. Chen A.F. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 2014 34 1 99 109 10.1161/ATVBAHA.113.302104 24177325
    [Google Scholar]
  39. Nelson C.E. Kim A.J. Adolph E.J. Gupta M.K. Yu F. Hocking K.M. Davidson J.M. Guelcher S.A. Duvall C.L. Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv. Mater. 2014 26 4 607 614, 506 10.1002/adma.201303520 24338842
    [Google Scholar]
  40. Roy T. James B.D. Allen J.B. Anti-VEGF-R2 aptamer and RGD peptide synergize in a bifunctional hydrogel for enhanced angiogenic potential. Macromol. Biosci. 2021 21 2 2000337 10.1002/mabi.202000337 33191671
    [Google Scholar]
  41. Shim G. Kim D. Park G.T. Jin H. Suh S.K. Oh Y.K. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol. Sin. 2017 38 6 738 753 10.1038/aps.2017.2 28392568
    [Google Scholar]
  42. Kc M. Steer C.J. A new era of gene editing for the treatment of human diseases. Swiss Med. Wkly. 2019 149 w20021 10.4414/smw.2019.20021 30685869
    [Google Scholar]
  43. Bak R.O. Gomez-Ospina N. Porteus M.H. Gene editing on the center stage. Trends Genet. 2018;34:600–611., Porteus M.H. A new class of medicines through DNA editing. N. Engl. J. Med. 2019 380 947 959
    [Google Scholar]
  44. Moore C.B.T. Christie K.A. Marshall J. Nesbit M.A. Personalised genome editing – The future for corneal dystrophies. Prog. Retin. Eye Res. 2018 65 147 165 10.1016/j.preteyeres.2018.01.004 29378321
    [Google Scholar]
  45. Adli M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018 9 1 1911 1913 10.1038/s41467‑018‑04252‑2 29765029
    [Google Scholar]
  46. Srifa W. Kosaric N. Amorin A. Jadi O. Park Y. Mantri S. Camarena J. Gurtner G.C. Porteus M. Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice. Nat. Commun. 2020 11 1 2470 10.1038/s41467‑020‑16065‑3 32424320
    [Google Scholar]
  47. Barker J.C. Barker A.D. Bills J. Huang J. Wight-Carter M. Delgado I. Noble D.L. Huang L.J. Porteus M.H. Davis K.E. Genome editing of mouse fibroblasts by homologous recombination for sustained secretion of PDGF-B and augmentation of wound healing. Plast. Reconstr. Surg. 2014 134 3 389e 401e 10.1097/PRS.0000000000000427 25158716
    [Google Scholar]
  48. Henn D. Zhao D. Bonham C.A. Chen K. Greco A.H. Padmanabhan J. Trotsyuk A.A. Barrera J.A. Januszyk M. Stanley Qi L. Gurtner G.C. QS3: CRISPR/Cas9 editing of autologous dendritic cells to enhance angiogenesis and wound healing. Plast. Reconstr. Surg. Glob. Open 2021 9 7S 7 10.1097/01.GOX.0000769960.21263.cc
    [Google Scholar]
  49. Larcher F. Dellambra E. Rico L. Bondanza S. Murillas R. Cattoglio C. Mavilio F. Jorcano J.L. Zambruno G. Del Rio M. Long-term engraftment of single genetically modified human epidermal holoclones enables safety pre-assessment of cutaneous gene therapy. Mol. Ther. 2007 15 9 1670 1676 10.1038/sj.mt.6300238 17579576
    [Google Scholar]
  50. Mathor M.B. Ferrari G. Dellambra E. Cilli M. Mavilio F. Cancedda R. De Luca M. Clonal analysis of stably transduced human epidermal stem cells in culture. Proc. Natl. Acad. Sci. USA 1996 93 19 10371 10376 10.1073/pnas.93.19.10371 8816807
    [Google Scholar]
  51. Hachiya A. Sriwiriyanont P. Patel A. Saito N. Ohuchi A. Kitahara T. Takema Y. Tsuboi R. Boissy R.E. Visscher M.O. James W.M. Kobinger G.P. Gene transfer in human skin with different pseudotyped HIV-based vectors. Gene Ther. 2007 14 8 648 656 10.1038/sj.gt.3302915 17268532
    [Google Scholar]
  52. Di Nunzio F. Maruggi G. Ferrari S. Di Iorio E. Poletti V. Garcia M. Del Rio M. De Luca M. Larcher F. Pellegrini G. Mavilio F. Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors. Mol. Ther. 2008 16 12 1977 1985 10.1038/mt.2008.204 18813277
    [Google Scholar]
  53. Sugiyama-Nakagiri Y. Akiyama M. Shimizu H. Hair follicle stem cell-targeted gene transfer and reconstitution system. Gene Ther. 2006 13 8 732 737 10.1038/sj.gt.3302709 16397506
    [Google Scholar]
  54. Pereira C.T. Herndon D.N. Perez-Polo J.R. Burke A.S. Jeschke M.G. Scar trek: follicular frontiers in skin replacement therapy. Genet. Mol. Res. 2007 6 1 243 249
    [Google Scholar]
  55. Claudius Conrad Rashmi Gupta Hema Mohan Hanno Niess Reinhard Kopp Irene von Luettichau Markus Guba Christopher Heeschen Karl-Walter Jauch Ralf Huss Huss R. Nelson P.J. Genetically engineered stem cells for therapeutic gene delivery. Curr. Gene Ther. 2007 7 4 249 260 10.2174/156652307781369119 17969558
    [Google Scholar]
  56. Zhang H. Lee M.Y. Hogg M.G. Dordick J.S. Sharfstein S.T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 2010 4 8 4733 4743 10.1021/nn9018812 20731451
    [Google Scholar]
  57. Hohlfeld J. de Buys Roessingh A. Hirt-Burri N. Chaubert P. Gerber S. Scaletta C. Hohlfeld P. Applegate L.A. Tissue engineered fetal skin constructs for paediatric burns. Lancet 2005 366 9488 840 842 10.1016/S0140‑6736(05)67107‑3 16139659
    [Google Scholar]
  58. Braddock M. Campbell C.J. Zuder D. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int. J. Dermatol. 1999 38 11 808 817 10.1046/j.1365‑4362.1999.00832.x 10583612
    [Google Scholar]
  59. Svensjo T. Yao F. Pomahac B. Eriksson E. Gene therapy application of growth factors. Growth Factors and Receptors: A Practical Approach. McKay I.A. Brown K.D. New York Oxford University Press 1998 227 10.1093/oso/9780199636471.003.0010
    [Google Scholar]
  60. Gardlík R. Pálffy R. Hodosy J. Lukács J. Turna J. Celec P. Vectors and delivery systems in gene therapy. Med. Sci. Monit. 2005 11 4 RA110 RA121 15795707
    [Google Scholar]
  61. Petrie N.C. Yao F. Eriksson E. Gene therapy in wound healing. Surg. Clin. North Am. 2003 83 3 597 616, vii 10.1016/S0039‑6109(02)00194‑9 12822728
    [Google Scholar]
  62. Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol. 2003 21 3 117 122 10.1016/S0167‑7799(02)00042‑2 12628368
    [Google Scholar]
  63. Dando J.S. Roncarolo M.G. Bordignon C. Aiuti A. A novel human packaging cell line with hematopoietic supportive capacity increases gene transfer into early hematopoietic progenitors. Hum. Gene Ther. 2001 12 16 1979 1988 10.1089/104303401753204553 11686939
    [Google Scholar]
  64. Gu D. Nguyen T. Gonzalez A.M. Printz M.A. Pierce G.F. Sosnowski B.A. Phillips M.L. Chandler L.A. Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use. Mol. Ther. 2004 9 5 699 711 10.1016/j.ymthe.2004.02.018 15120331
    [Google Scholar]
  65. Lu B. Federoff H.J. Wang Y. Goldsmith L.A. Scott G. Topical application of viral vectors for epidermal gene transfer. J. Invest. Dermatol. 1997 108 5 803 808 10.1111/1523‑1747.ep12292254 9129236
    [Google Scholar]
  66. Liechty K.W. Nesbit M. Herlyn M. Radu A. Scott Adzick N. Crombleholme T.M. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J. Invest. Dermatol. 1999 113 3 375 383 10.1046/j.1523‑1747.1999.00705.x 10469337
    [Google Scholar]
  67. Ritter T. Lehmann M. Volk H. Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 2002 16 1 3 10 10.2165/00063030‑200216010‑00001 11908997
    [Google Scholar]
  68. Flotte T.R. Brantly M.L. Spencer L.T. Byrne B.J. Spencer C.T. Baker D.J. Humphries M. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum. Gene Ther. 2004 15 1 93 128 10.1089/10430340460732490 14965381
    [Google Scholar]
  69. Deodato B. Arsic N. Zentilin L. Galeano M. Santoro D. Torre V. Altavilla D. Valdembri D. Bussolino F. Squadrito F. Giacca M. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther. 2002 9 12 777 785 10.1038/sj.gt.3301697 12040459
    [Google Scholar]
  70. Galeano M. Deodato B. Altavilla D. Squadrito G. Seminara P. Marini H. Effect of recombinant adeno-associated virusvector-mediated vascular endothelial growth factor gene Gene therapy in wound healingLK Branski et al8Gene Therapy transfer on wound healing after burn injury. Crit. Care Med. 2003 31 1017 1025 10.1097/01.CCM.0000059435.88283.C2 12682466
    [Google Scholar]
  71. Chen S. Kapturczak M. Loiler S.A. Zolotukhin S. Glushakova O.Y. Madsen K.M. Samulski R.J. Hauswirth W.W. Campbell-Thompson M. Berns K.I. Flotte T.R. Atkinson M.A. Tisher C.C. Agarwal A. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum. Gene Ther. 2005 16 2 235 247 10.1089/hum.2005.16.235 15761263
    [Google Scholar]
  72. Braun-Falco M. Eisenried A. Büning H. Ring J. Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase. Arch. Dermatol. Res. 2005 296 11 528 535 10.1007/s00403‑005‑0547‑y 15776248
    [Google Scholar]
  73. Yao F. Eriksson E. Gene therapy in wound repair and regeneration. Wound Repair Regen. 2000 8 6 443 451 10.1046/j.1524‑475x.2000.00443.x 11208171
    [Google Scholar]
  74. Quinonez R. Sutton R.E. Lentiviral vectors for gene delivery into cells. DNA Cell Biol. 2002 21 12 937 951 10.1089/104454902762053873 12573051
    [Google Scholar]
  75. Morgan J.R. Barrandon Y. Green H. Mulligan R.C. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 1987 237 4821 1476 1479 10.1126/science.3629250 3629250
    [Google Scholar]
  76. Al-Saadi S.A. Clements G.B. Subak-Sharpe J.H. Viral genes modify herpes simplex virus latency both in mouse footpad and sensory ganglia. J. Gen. Virol. 1983 64 5 1175 1179 10.1099/0022‑1317‑64‑5‑1175 6302212
    [Google Scholar]
  77. Karimzadeh F. Soltani Fard E. Nadi A. Malekzadeh R. Elahian F. Mirzaei S.A. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J. Mater. Chem. B Mater. Biol. Med. 2024 12 25 6033 6062 10.1039/D4TB00966E 38887828
    [Google Scholar]
  78. Hoff C.M. Shockley T.R. Peritoneal dialysis in the 21st century: the potential of gene therapy. J. Am. Soc. Nephrol. 2002 13 Suppl. 1 S117 S124 10.1681/ASN.V13suppl_1s117 11792771
    [Google Scholar]
  79. Vogel J.C. Nonviral skin gene therapy. Hum. Gene Ther. 2000 11 16 2253 2259 10.1089/104303400750035780 11084683
    [Google Scholar]
  80. Hengge U.R. Chan E.F. Foster R.A. Walker P.S. Vogel J.C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat. Genet. 1995 10 2 161 166 10.1038/ng0695‑161 7545056
    [Google Scholar]
  81. Slama J. Davidson J.M. Eriksson E. Gene therapy of wounds. Cutaneous Wound Healing. Falanga V. London Taylor & Francis 2001 123 140
    [Google Scholar]
  82. Liu S. Zhao H. Jiang T. Wan G. Yan C. Zhang C. Yang X. Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev. Rep. 2024 ••• 1 8 10.1007/s12015‑024‑10762‑y 39001965
    [Google Scholar]
  83. Li L. Hoffman R.M. The feasibility of targeted selective gene therapy of the hair follicle. Nat. Med. 1995 1 7 705 706 10.1038/nm0795‑705 7585157
    [Google Scholar]
  84. Eming S.A. Whitsitt J.S. He L. Krieg T. Morgan J.R. Davidson J.M. Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J. Invest. Dermatol. 1999 112 3 297 302 10.1046/j.1523‑1747.1999.00522.x 10084305
    [Google Scholar]
  85. Nanney L.B. Paulsen S. Davidson M.K. Cardwell N.L. Whitsitt J.S. Davidson J.M. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen. 2000 8 2 117 127 10.1046/j.1524‑475x.2000.00117.x 10810038
    [Google Scholar]
  86. Dileo J. Miller T.E. Chesnoy S. Huang L. Gene transfer to subdermal tissues via a new gene gun design. Hum. Gene Ther. 2003 14 1 79 87 10.1089/10430340360464732 12573061
    [Google Scholar]
  87. Yadav J.P. Singh A.K. Grishina M. Pathak P. Verma A. Kumar V. Kumar P. Patel D.K. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024 32 1 149 228 10.1007/s10787‑023‑01407‑6 38212535
    [Google Scholar]
  88. Baker L.L. Chambers R. DeMuth S.K. Villar F. Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 1997 20 3 405 412 10.2337/diacare.20.3.405 9051395
    [Google Scholar]
  89. Gardner S.E. Frantz R.A. Schmidt F.L. Effect of electrical stimulation on chronic wound healing: a meta‐analysis. Wound Repair Regen. 1999 7 6 495 503 10.1046/j.1524‑475X.1999.00495.x 10633009
    [Google Scholar]
  90. Marti G. Ferguson M. Wang J. Byrnes C. Dieb R. Qaiser R. Bonde P. Duncan M.D. Harmon J.W. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004 11 24 1780 1785 10.1038/sj.gt.3302383 15470477
    [Google Scholar]
  91. Noguchi A. Furuno T. Kawaura C. Nakanishi M. Membrane fusion plays an important role in gene transfection mediated by cationic liposomes. FEBS Lett. 1998 433 1-2 169 173 10.1016/S0014‑5793(98)00837‑0 9738955
    [Google Scholar]
  92. Miller C.R. Bondurant B. McLean S.D. McGovern K.A. O’Brien D.F. Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998 37 37 12875 12883 10.1021/bi980096y 9737866
    [Google Scholar]
  93. Ravi Kumar M. Hellermann G. Lockey R.F. Mohapatra S.S. Nanoparticle-mediated gene delivery: state of the art. Expert Opin. Biol. Ther. 2004 4 8 1213 1224 10.1517/14712598.4.8.1213 15268657
    [Google Scholar]
  94. Rai R. Alwani S. Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel) 2019 11 4 745 10.3390/polym11040745 31027272
    [Google Scholar]
  95. Jeschke M.G. Barrow R.E. Hawkins H.K. Tao Z. Perez-Polo J.R. Herndon D.N. Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin. Lab. Invest. 2000 80 2 151 158 10.1038/labinvest.3780019 10701685
    [Google Scholar]
  96. Krishnan L. Chakrabarty P. Govarthanan K. Rao S. Santra T.S. Bioglass and nano bioglass: A next-generation biomaterial for therapeutic and regenerative medicine applications. Int. J. Biol. Macromol. 2024 277 Pt 2 133073 10.1016/j.ijbiomac.2024.133073 38880457
    [Google Scholar]
  97. Eriksson E. Gene transfer in wound healing. Adv. Skin Wound Care 2000 13 Suppl 2 20 22 11074999
    [Google Scholar]
  98. Alexander M.Y. Akhurst R.J. Liposome-mediated gene transfer and expression via the skin. Hum. Mol. Genet. 1995 4 12 2279 2285 10.1093/hmg/4.12.2279 8634699
    [Google Scholar]
  99. Jeschke M.G. Schubert T. Klein D. Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004 286 5 R958 R966 10.1152/ajpregu.00541.2003 15068969
    [Google Scholar]
  100. Eming S.A. Medalie D.A. Tompkins R.G. Yarmush M.L. Morgan J.R. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum. Gene Ther. 1998 9 4 529 539 10.1089/hum.1998.9.4‑529 9525314
    [Google Scholar]
  101. Supp D.M. Bell S.M. Morgan J.R. Boyce S.T. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet‐derived growth factor‐A. Wound Repair Regen. 2000 8 1 26 35 10.1046/j.1524‑475x.2000.00026.x 10760212
    [Google Scholar]
  102. Hou G. Alissa M. Alsuwat M.A. Ali Alarjany H.M. Alzahrani K.J. Althobaiti F.M. Mujalli H.M. Alotaiby M.M. Al- Doaiss A.A. Anthony S. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science. Curr. Probl. Cardiol. 2024 49 8 102627 10.1016/j.cpcardiol.2024.102627 38723793
    [Google Scholar]
  103. Breuing K. Eriksson E. Liu P. Miller D.R. Healing of partial thickness porcine skin wounds in a liquid environment. J. Surg. Res. 1992 52 1 50 58 10.1016/0022‑4804(92)90278‑8 1548868
    [Google Scholar]
  104. Chandler L.A. Ma C. Gonzalez A.M. Doukas J. Nguyen T. Pierce G.F. Phillips M.L. Phillips M.L. Matrix‐enabled gene transfer for cutaneous wound repair. Wound Repair Regen. 2000 8 6 473 479 10.1046/j.1524‑475x.2000.00473.x 11208174
    [Google Scholar]
  105. Tyrone J.W. Mogford J.E. Chandler L.A. Ma C. Xia Y. Pierce G.F. Mustoe T.A. Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model. J. Surg. Res. 2000 93 2 230 236 10.1006/jsre.2000.5912 11027465
    [Google Scholar]
  106. Doukas J. Chandler L.A. Gonzalez A.M. Gu D. Hoganson D.K. Ma C. Nguyen T. Printz M.A. Nesbit M. Herlyn M. Crombleholme T.M. Aukerman S.L. Sosnowski B.A. Pierce G.F. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum. Gene Ther. 2001 12 7 783 798 10.1089/104303401750148720 11339895
    [Google Scholar]
  107. Shea L.D. Smiley E. Bonadio J. Mooney D.J. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 1999 17 6 551 554 10.1038/9853 10385318
    [Google Scholar]
  108. Ono I. Tateshita T. Inoue M. Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction. J. Biomed. Mater. Res. 1999 48 5 621 630 10.1002/(SICI)1097‑4636(1999)48:5<621::AID‑JBM5>3.0.CO;2‑1 10490675
    [Google Scholar]
  109. Peng Y. Chen M. Wang J. Xie J. Wang C. Yang X. Huang X. Gou Z. Ye J. Tuning zinc content in wollastonite bioceramic endowing outstanding angiogenic and antibacterial functions beneficial for orbital reconstruction. Bioact. Mater. 2024 36 551 564 10.1016/j.bioactmat.2024.02.027 39072286
    [Google Scholar]
  110. Bevan S. Martin R. McKay I.A. The production and applications of genetically modified skin cells. Biotechnol. Genet. Eng. Rev. 1999 16 1 231 256 10.1080/02648725.1999.10647977 10819081
    [Google Scholar]
  111. Sullivan T.P. Eaglstein W.H. Davis S.C. Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001 9 2 66 76 10.1046/j.1524‑475x.2001.00066.x 11350644
    [Google Scholar]
  112. Margolis D.J. Crombleholme T. Herlyn M. Clinical Protocol: Phase I trial to evaluate the safety of H5.020CMV.PDGF‐B for the treatment of a diabetic insensate foot ulcer. Wound Repair Regen. 2000 8 6 480 493 10.1046/j.1524‑475x.2000.00480.x 11208175
    [Google Scholar]
  113. Morgan R.A. Anderson W.F. Human gene therapy. Annu. Rev. Biochem. 1993 62 1 191 217 10.1146/annurev.bi.62.070193.001203 8352589
    [Google Scholar]
  114. Rosenthal F.M. Cao L. Tanczos E. Kopp J. Andree C. Stark G.B. Mertelsmann R. Kulmburg P. Paracrine stimulation of keratinocytes in vitro and continuous delivery of epidermal growth factor to wounds in vivo by genetically modified fibroblasts transfected with a novel chimeric construct. In Vivo 1997 11 3 201 208 9239512
    [Google Scholar]
  115. Satchanska G. Davidova S. Petrov P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers (Basel) 2024 16 8 1159 10.3390/polym16081159 38675078
    [Google Scholar]
  116. Jeschke M.G. Schubert T. Krickhahn M. Polykandriotis E. Klein D. Perez-Polo J. Przkora R. Herndon D.N. Interaction of exogenous liposomal insulin‐like growth factor‐I cDNA gene transfer with growth factors on collagen expression in acute wounds. Wound Repair Regen. 2005 13 3 269 277 10.1111/j.1067‑1927.2005.130309.x 15953046
    [Google Scholar]
  117. Dwivedi M. Dwivedi J. Shen S. Dwivedi P. Guangli L. Xiarong X. Emerging Application of Nanocelluloses for Microneedle Devices. Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications. Cham Springer International Publishing Barhoum A. 2022 335 359 10.1007/978‑3‑030‑89621‑8_33
    [Google Scholar]
  118. Taub P.J. Marmur J.D. Zhang W.X. Senderoff D. Nhat P.D. Phelps R. Urken M.L. Silver L. Weinberg H. Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plast. Reconstr. Surg. 1998 102 6 2033 2039 10.1097/00006534‑199811000‑00034 9811001
    [Google Scholar]
  119. Mesri E.A. Federoff H.J. Brownlee M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ. Res. 1995 76 2 161 167 10.1161/01.RES.76.2.161 7530606
    [Google Scholar]
  120. Yamasaki K. Edington H.D. McClosky C. Tzeng E. Lizonova A. Kovesdi I. Steed D.L. Billiar T.R. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J. Clin. Invest. 1998 101 5 967 971 10.1172/JCI2067 9486966
    [Google Scholar]
  121. Kunugiza Y. Tomita N. Taniyama Y. Tomita T. Osako M.K. Tamai K. Tanabe T. Kaneda Y. Yoshikawa H. Morishita R. Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet. Gene Ther. 2006 13 15 1143 1152 10.1038/sj.gt.3302767 16572191
    [Google Scholar]
  122. Liu P.Y. Liu K. Wang X.T. Badiavas E. Rieger-Christ K.M. Tang J.B. Summerhayes I.C. Efficacy of combination gene therapy with multiple growth factor cDNAs to enhance skin flap survival in a rat model. DNA Cell Biol. 2005 24 11 751 757 10.1089/dna.2005.24.751 16274295
    [Google Scholar]
  123. Eming S.A. Lee J. Snow R.G. Tompkins R.G. Yarmush M.L. Morgan J.R. Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice--implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J. Invest. Dermatol. 1995 105 6 756 763 10.1111/1523‑1747.ep12325550 7490468
    [Google Scholar]
  124. Machens H.G. Morgan J.R. Berthiaume F. Stefanovich P. Reimer R. Berger A.C. Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap. Langenbecks Arch. Surg. 1998 383 5 345 350 10.1007/s004230050146 9860229
    [Google Scholar]
  125. Breitbart A.S. Mason J.M. Urmacher C. Barcia M. Grant R.T. Pergolizzi R.G. Grande D.A. Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblasts transduced retrovirally with the PDGF-B gene. Ann. Plast. Surg. 1999 43 6 632 639 10.1097/00000637‑199912000‑00009 10597824
    [Google Scholar]
  126. Keswani S.G. Katz A.B. Lim F.Y. Zoltick P. Radu A. Alaee D. Herlyn M. Crombleholme T.M. Adenoviral mediated gene transfer of PDGF‐B enhances wound healing in type I and type II diabetic wounds. Wound Repair Regen. 2004 12 5 497 504 10.1111/j.1067‑1927.2004.12501.x 15453831
    [Google Scholar]
  127. Choi B.M. Kwak H.J. Jun C.D. Park S.D. Kim K.Y. Kim H.R. Chung H.T. Control of scarring in adult wounds using antisense transforming growth factor‐β1 oligodeoxynucleotides. Immunol. Cell Biol. 1996 74 2 144 150 10.1038/icb.1996.19 8724001
    [Google Scholar]
  128. Benn S.I. Whitsitt J.S. Broadley K.N. Nanney L.B. Perkins D. He L. Patel M. Morgan J.R. Swain W.F. Davidson J.M. Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin. J. Clin. Invest. 1996 98 12 2894 2902 10.1172/JCI119118 8981938
    [Google Scholar]
  129. Ha X. Li Y. Lao M. Yuan B. Wu C.T. Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer. Chin. Med. J. (Engl.) 2003 116 7 1029 1033 12890377
    [Google Scholar]
  130. Ding Q. Liu X. Liu X. Chai G. Wang N. Ma S. Zhang L. Zhang S. Yang J. Wang Y. Shen L. Ding C. Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int. J. Biol. Macromol. 2024 263 Pt 1 130226 10.1016/j.ijbiomac.2024.130226 38368971
    [Google Scholar]
  131. The recombinant DNA advisory committee. Available from: http://www.asmusa.org/pasrc/rac.htm(Accessed on: Oct 5, 2001)
  132. The American Society of gene therapy. Available from: http://research.bidmc.harvard.edu/policies/Genestandards.asp
  133. Isner J.M. Walsh K. Symes J. Pieczek A. Takeshita S. Lowry J. Rossow S. Rosenfield K. Weir L. Brogi E. Schainfeld R. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995 91 11 2687 2692 10.1161/01.CIR.91.11.2687 7538919
    [Google Scholar]
  134. Won Y.W. Lee M. Kim H.A. Bull D.A. Kim S.W. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. J. Control. Release 2012 160 3 525 531 10.1016/j.jconrel.2012.03.010 22450332
    [Google Scholar]
  135. Morishita R. Aoki M. Hashiya N. Makino H. Yamasaki K. Azuma J. Sawa Y. Matsuda H. Kaneda Y. Ogihara T. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 2004 44 2 203 209 10.1161/01.HYP.0000136394.08900.ed 15238569
    [Google Scholar]
  136. ASGCT statement on germline gene editing practices. 2018 Available from: https://www.asgct.org/publications/news/november-2018/asgct-statement-on-germline-gene-editing-practices
  137. Rainsbury J.M. Biotechnology on the RAC--FDA/NIH regulation of human gene therapy. Food Drug Law J. 2000 55 4 575 600 12025851
    [Google Scholar]
  138. Gossen M. Bujard H. Efficacy of tetracycline-controlled gene expression is influenced by cell type: commentary. Biotechniques 1995 19 2 213 216 [commentary] 8527141
    [Google Scholar]
  139. Gossen M. Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 1992 89 12 5547 5551 10.1073/pnas.89.12.5547 1319065
    [Google Scholar]
  140. Yao F. Eriksson E. A novel tetracycline-inducible viral replication switch. Hum. Gene Ther. 1999 10 3 419 427 10.1089/10430349950018869 10048394
    [Google Scholar]
  141. Cutroneo K.R. Chiu J.F. Comparison and evaluation of gene therapy and epigenetic approaches for wound healing. Wound Repair Regen. 2000 8 6 494 502 10.1046/j.1524‑475x.2000.00494.x 11208176
    [Google Scholar]
  142. Lindblad W.J. Gene therapy in wound healing — 2000: a promising future. Wound Repair Regen. 2000 8 6 441 442 10.1046/j.1524‑475x.2000.00441.x 11208170
    [Google Scholar]
  143. Jiang B.H. Rue E. Wang G.L. Roe R. Semenza G.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 1996 271 30 17771 17778 10.1074/jbc.271.30.17771 8663540
    [Google Scholar]
  144. Liu W. Chin G.S. Hsu M. Blocking transforming growth factor b1 signalling down-regulates TGFb1 autocrine production and collagen gene expression in keloid fibroblasts. Surg. Forum 2000 51 593
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232316799241008073042
Loading
/content/journals/cgt/10.2174/0115665232316799241008073042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Gene therapy ; angiogenesis ; wound healing ; gene transfer ; transgene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test