Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Extrinsic and intrinsic factors contribute to skin aging; nonetheless, they are intertwined. Moreover, intrinsic skin aging mirrors age-related declines in the entire human body's internal organs. There is evidence that skin appearance is an indicator of the general health of somebody or a visual certificate of health. Earlier, it was apparent that the intrinsic factors are unalterable, but the sparkling of skin aging gene therapy on the horizon is changing this narrative. Skin aging gene therapy offers tools for skin rejuvenation, natural beauty restoration, and therapy for diseases affecting the entire skin. However, skin aging gene therapy is an arduous and sophisticated task relying on precise interim stimulation of telomerase to extend telomeres and wend back the biological clock in the hopes to find the fountain of youth, while preserving cells innate biological features. Finding the hidden fountain of youth will be a remarkable discovery for promoting aesthetics medicine, genecosmetics, and healthy aging. Caloric restriction offers ultimate health benefits and a reproducible way to promote longevity in mammals, while delaying age-related diseases. Moreover, exercise further enhances these health benefits. This article highlights the potential of skin aging gene therapy and foretells the emerging dawn of the genecosmetics era.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232286489240320051925
2025-02-01
2025-01-19
Loading full text...

Full text loading...

References

  1. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. Hallmarks of aging: An expanding universe.Cell2023186224327810.1016/j.cell.2022.11.00136599349
    [Google Scholar]
  2. MayoralF.A. KennerJ.R. DraelosZ.D. The skin health and beauty pyramid: A clinically based guide to selecting topical skincare products.J. Drugs Dermatol.201413441442124719060
    [Google Scholar]
  3. JacczakB. RubiśB. TotońE. Potential of naturally derived compounds in telomerase and telomere modulation in skin senescence and aging.Int. J. Mol. Sci.20212212638110.3390/ijms2212638134203694
    [Google Scholar]
  4. KlassM.R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results.Mech. Ageing Dev.1983223-427928610.1016/0047‑6374(83)90082‑96632998
    [Google Scholar]
  5. Bernardes de JesusB. VeraE. SchneebergerK. TejeraA.M. AyusoE. BoschF. BlascoM.A. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer.EMBO Mol. Med.20124869170410.1002/emmm.20120024522585399
    [Google Scholar]
  6. JenkinsG. Molecular mechanisms of skin ageing.Mech. Ageing Dev.2002123780181010.1016/S0047‑6374(01)00425‑011869737
    [Google Scholar]
  7. VerschooreM. NielsonM. The rationale of anti-aging cosmetic ingredients.J. Drugs Dermatol.2017166s94s9729028861
    [Google Scholar]
  8. GhersetichI. TroianoM. De GiorgiV. LottiT. Receptors in skin ageing and antiageing agents.Dermatol. Clin.2007254655662, xi10.1016/j.det.2007.06.01817903624
    [Google Scholar]
  9. FarageM.A. MillerK.W. ElsnerP. MaibachH.I. Intrinsic and extrinsic factors in skin ageing: A review.Int. J. Cosmet. Sci.2008302879510.1111/j.1468‑2494.2007.00415.x18377617
    [Google Scholar]
  10. BruceS. Cosmeceuticals for the attenuation of extrinsic and intrinsic dermal aging.J Drugs Dermatol.2008721722
    [Google Scholar]
  11. TranD. TownleyJ.P. BarnesT.M. GreiveK.A. An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin.Clin. Cosmet. Investig. Dermatol.2014891725552908
    [Google Scholar]
  12. HartmannA. Back to the roots dermatology in ancient Egyptian medicine.J. Dtsch. Dermatol. Ges.201614438939610.1111/ddg.1294727027749
    [Google Scholar]
  13. DuB. OhmichiM. TakahashiK. KawagoeJ. OhshimaC. IgarashiH. Mori-AbeA. SaitohM. OhtaT. OhishiA. DoshidaM. TezukaN. TakahashiT. KurachiH. Both estrogen and raloxifene protect against β-amyloid-induced neurotoxicity in estrogen receptor α-transfected PC12 cells by activation of telomerase activity via Akt cascade.J. Endocrinol.2004183360561510.1677/joe.1.0577515590986
    [Google Scholar]
  14. SarkarP. ShiizakiK. YonemotoJ. SoneH. Activation of telomerase in BeWo cells by estrogen and 2,3,7,8-tetrachlorodibenzo-p-dioxin in co-operation with c-Myc.Int. J. Oncol.2006281435110.3892/ijo.28.1.4316327978
    [Google Scholar]
  15. Calleja-AgiusJ. Muscat-BaronY. BrincatM.P. Skin ageing.Menopause Int.2007132606410.1258/17540450778079632517540135
    [Google Scholar]
  16. CenJ. ZhangH. LiuY. DengM. TangS. LiuW. ZhangZ. Anti-aging effect of estrogen on telomerase activity in ovariectomised rats--animal model for menopause.Gynecol. Endocrinol.201531758258526340354
    [Google Scholar]
  17. KafantariH. KounadiE. FatourosM. MilonakisM. TzaphlidouM. Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy.Bone200026434935310.1016/S8756‑3282(99)00279‑310719277
    [Google Scholar]
  18. TsukaharaK. NakagawaH. MoriwakiS. KakuoS. OhuchiA. TakemaY. ImokawaG. Ovariectomy is sufficient to accelerate spontaneous skin ageing and to stimulate ultraviolet irradiation-induced photoageing of murine skin.Br. J. Dermatol.2004151598499410.1111/j.1365‑2133.2004.06203.x15541076
    [Google Scholar]
  19. RothbardJ.B. GarlingtonS. LinQ. KirschbergT. KreiderE. McGraneP.L. WenderP.A. KhavariP.A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation.Nat. Med.20006111253125710.1038/8135911062537
    [Google Scholar]
  20. KayaG. SauratJ.H. Dermatoporosis: A chronic cutaneous insufficiency/fragility syndrome. Clinicopathological features, mechanisms, prevention and potential treatments.Dermatology2007215428429410.1159/00010762117911985
    [Google Scholar]
  21. McCayC.M. CrowellM.F. MaynardL.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.Nutrition1989531551712520283
    [Google Scholar]
  22. BittermanK.J. AndersonR.M. CohenH.Y. Latorre-EstevesM. SinclairD.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.J. Biol. Chem.200227747450994510710.1074/jbc.M20567020012297502
    [Google Scholar]
  23. IngramD.K. AnsonR.M. De CaboR. MamczarzJ. ZhuM. MattisonJ. LaneM.A. RothG.S. Development of calorie restriction mimetics as a prolongevity strategy.Ann. N. Y. Acad. Sci.20041019141242310.1196/annals.1297.07415247056
    [Google Scholar]
  24. GuarenteL. PicardF. Calorie restriction--the SIR2 connection.Cell2005120447348210.1016/j.cell.2005.01.02915734680
    [Google Scholar]
  25. SinclairD.A. Toward a unified theory of caloric restriction and longevity regulation.Mech. Ageing Dev.20051269987100210.1016/j.mad.2005.03.01915893363
    [Google Scholar]
  26. PiccaA. PesceV. LezzaA.M.S. Does eating less make you live longer and better? An update on calorie restriction.Clin. Interv. Aging2017121887190210.2147/CIA.S12645829184395
    [Google Scholar]
  27. StranahanA.M. LeeK. MartinB. MaudsleyS. GoldenE. CutlerR.G. MattsonM.P. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice.Hippocampus2009191095196110.1002/hipo.2057719280661
    [Google Scholar]
  28. MerckenE.M. CarboneauB.A. Krzysik-WalkerS.M. de CaboR. Of mice and men: The benefits of caloric restriction, exercise, and mimetics.Ageing Res. Rev.201211339039810.1016/j.arr.2011.11.00522210414
    [Google Scholar]
  29. Piñeiro-HermidaS. AutilioC. MartínezP. BoschF. Pérez-GilJ. BlascoM.A. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging.J. Cell Biol.202021910e20200212010.1083/jcb.20200212032777016
    [Google Scholar]
  30. MoyzisR.K. BuckinghamJ.M. CramL.S. DaniM. DeavenL.L. JonesM.D. MeyneJ. RatliffR.L. WuJ.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes.Proc. Natl. Acad. Sci.198885186622662610.1073/pnas.85.18.66223413114
    [Google Scholar]
  31. BlackburnE.H. Switching and signaling at the telomere.Cell2001106666167310.1016/S0092‑8674(01)00492‑511572773
    [Google Scholar]
  32. de LangeT. Shelterin: The protein complex that shapes and safeguards human telomeres.Genes Dev.200519182100211010.1101/gad.134600516166375
    [Google Scholar]
  33. BlascoM.A. Mice with bad ends: Mouse models for the study of telomeres and telomerase in cancer and aging.EMBO J.20052461095110310.1038/sj.emboj.760059815775986
    [Google Scholar]
  34. BlackburnE.H. GreiderC.W. SzostakJ.W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging.Nat. Med.200612101133113810.1038/nm1006‑113317024208
    [Google Scholar]
  35. HarleyC.B. LiuW. BlascoM. VeraE. AndrewsW.H. BriggsL.A. RaffaeleJ.M. A natural product telomerase activator as part of a health maintenance program.Rejuvenation Res.2011141455610.1089/rej.2010.108520822369
    [Google Scholar]
  36. GreiderC.W. BlackburnE.H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts.Cell198543240541310.1016/0092‑8674(85)90170‑93907856
    [Google Scholar]
  37. QuaziS. Telomerase gene therapy: A remission toward cancer.Med. Oncol.202239610510.1007/s12032‑022‑01702‑235429243
    [Google Scholar]
  38. NagpalN. WangJ. ZengJ. LoE. MoonD.H. LukK. BraunR.O. BurroughsL.M. KeelS.B. ReillyC. LindsleyR.C. WolfeS.A. TaiA.K. CahanP. BauerD.E. FongY.W. AgarwalS. Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells.Cell Stem Cell2020266896909.e810.1016/j.stem.2020.03.01632320679
    [Google Scholar]
  39. RammeltC. BilenB. ZavolanM. KellerW. PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif.RNA20111791737174610.1261/rna.278701121788334
    [Google Scholar]
  40. XiaL. WangX.X. HuX.S. GuoX.G. ShangY.P. ChenH.J. ZengC.L. ZhangF.R. ChenJ.Z. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms.Br. J. Pharmacol.2008155338739410.1038/bjp.2008.27218587418
    [Google Scholar]
  41. WangX.B. ZhuL. HuangJ. YinY.G. KongX.Q. RongQ.F. ShiA.W. CaoK.J. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells.Chin. Med. J.2011124244310431522340406
    [Google Scholar]
  42. WolfS.A. MelnikA. KempermannG. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia.Brain Behav. Immun.201125597198010.1016/j.bbi.2010.10.01420970493
    [Google Scholar]
  43. ZietzerA. BuschmannE.E. JankeD. LiL. BrixM. MeyborgH. StawowyP. JungkC. BuschmannI. HillmeisterP. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells.Acta Physiol.2017220225126210.1111/apha.1282027770498
    [Google Scholar]
  44. DenhamJ. SellamiM. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis.Ageing Res. Rev.20217010141110.1016/j.arr.2021.10141134284150
    [Google Scholar]
  45. WanT. WeirE.J. JohnsonM. KorolchukV.I. SaretzkiG.C. Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy.Prog. Neurobiol.202119910195310.1016/j.pneurobio.2020.10195333188884
    [Google Scholar]
  46. KaiserJ. Gene therapy beats premature-aging syndrome in mice.Science2021371652511410.1126/science.371.6525.11433414202
    [Google Scholar]
  47. ChungSA WeiAQ ConnorDE WebbGC MolloyT PajicM DiwanAD Nucleus pulposus cellular longevity by telomerase gene therapy.Spine200732111188119610.1097/BRS.0b013e31805471a3
    [Google Scholar]
  48. BoccardiV. HerbigU. Telomerase gene therapy: A novel approach to combat aging.EMBO Mol. Med.20124868568710.1002/emmm.20120024622585424
    [Google Scholar]
  49. BärC. PovedanoJ.M. SerranoR. Benitez-BuelgaC. PopkesM. FormentiniI. BobadillaM. BoschF. BlascoM.A. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.Blood2016127141770177910.1182/blood‑2015‑08‑66748526903545
    [Google Scholar]
  50. WhittemoreK. DerevyankoA. MartinezP. SerranoR. PumarolaM. BoschF. BlascoM.A. Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice.Aging201911102916294810.18632/aging.10198231140977
    [Google Scholar]
  51. VaziriH. BenchimolS. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span.Curr. Biol.19988527928210.1016/S0960‑9822(98)70109‑59501072
    [Google Scholar]
  52. YangJ. ChangE. CherryA.M. BangsC.D. OeiY. BodnarA. BronsteinA. ChiuC.P. HerronG.S. Human endothelial cell life extension by telomerase expression.J. Biol. Chem.199927437261412614810.1074/jbc.274.37.2614110473565
    [Google Scholar]
  53. DicksonM.A. HahnW.C. InoY. RonfardV. WuJ.Y. WeinbergR.A. LouisD.N. LiF.P. RheinwaldJ.G. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics.Mol. Cell. Biol.20002041436144710.1128/MCB.20.4.1436‑1447.200010648628
    [Google Scholar]
  54. ShimokataH. TobinJ.D. MullerD.C. ElahiD. CoonP.J. AndresR. Studies in the distribution of body fat: I. Effects of age, sex, and obesity.J. Gerontol.1989442M66M7310.1093/geronj/44.2.M662921472
    [Google Scholar]
  55. Tomás-LobaA. FloresI. Fernández-MarcosP.J. CayuelaM.L. MaraverA. TejeraA. BorrásC. MatheuA. KlattP. FloresJ.M. ViñaJ. SerranoM. BlascoM.A. Telomerase reverse transcriptase delays aging in cancer-resistant mice.Cell2008135460962210.1016/j.cell.2008.09.03419013273
    [Google Scholar]
  56. MurasawaS. LlevadotJ. SilverM. IsnerJ.M. LosordoD.W. AsaharaT. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells.Circulation200210691133113910.1161/01.CIR.0000027584.85865.B412196341
    [Google Scholar]
  57. YamadaO. AkiyamaM. KawauchiK. AdachiT. YamadaH. KandaN. AikawaE. Overexpression of telomerase confers a survival advantage through suppression of TRF1 gene expression while maintaining differentiation characteristics in K562 cells.Cell Transplant.200312436537710.3727/00000000310874691112911124
    [Google Scholar]
  58. PovedanoJ.M. MartinezP. SerranoR. TejeraÁ. Gómez-LópezG. BobadillaM. FloresJ.M. BoschF. BlascoM.A. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres.eLife20187e3129910.7554/eLife.3129929378675
    [Google Scholar]
  59. DerevyankoA. WhittemoreK. SchneiderR.P. JiménezV. BoschF. BlascoM.A. Gene therapy with the TRF 1 telomere gene rescues decreased TRF 1 levels with aging and prolongs mouse health span.Aging Cell20171661353136810.1111/acel.1267728944611
    [Google Scholar]
  60. ChatterjeeS. HoferT. CostaA. LuD. BatkaiS. GuptaS.K. BolesaniE. ZweigerdtR. MegiasD. Streckfuss-BömekeK. BrandenbergerC. ThumT. BärC. Telomerase therapy attenuates cardiotoxic effects of doxorubicin.Mol. Ther.20212941395141010.1016/j.ymthe.2020.12.03533388418
    [Google Scholar]
  61. GuJ. HuW. ZhangD. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity.J. Cell. Mol. Med.201519102324232810.1111/jcmm.1263326177159
    [Google Scholar]
  62. NishidaF. MorelG.R. HereñúC.B. SchwerdtJ.I. GoyaR.G. PortianskyE.L. Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats.Neuroscience201117717719520610.1016/j.neuroscience.2011.01.01321241779
    [Google Scholar]
  63. PardoJ. UriarteM. CónsoleG.M. ReggianiP.C. OuteiroT.F. MorelG.R. GoyaR.G. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats.Eur. J. Neurosci.20164442120212810.1111/ejn.1327827188415
    [Google Scholar]
  64. PardoJ. AbbaM.C. LacunzaE. OgundeleO.M. PaivaI. MorelG.R. OuteiroT.F. GoyaR.G. IGF-I gene therapy in aging rats modulates hippocampal genes relevant to memory function.J. Gerontol. A Biol. Sci. Med. Sci.201873445946710.1093/gerona/glx12528645186
    [Google Scholar]
  65. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  66. CampbellK.H.S. McWhirJ. RitchieW.A. WilmutI. Sheep cloned by nuclear transfer from a cultured cell line.Nature19963806569646610.1038/380064a08598906
    [Google Scholar]
  67. AshapkinV.V. KutuevaL.I. VanyushinB.F. Aging epigenetics: Accumulation of errors or realization of a specific program?Biochemistry201580111406141710.1134/S000629791511002426615432
    [Google Scholar]
  68. AshapkinV.V. KutuevaL.I. VanyushinB.F. Aging as an epigenetic phenomenon.Curr. Genomics201718538540710.2174/138920291866617041211213029081695
    [Google Scholar]
  69. KimJ.B. ZaehresH. WuG. GentileL. KoK. SebastianoV. Araúzo-BravoM.J. RuauD. HanD.W. ZenkeM. SchölerH.R. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors.Nature2008454720464665010.1038/nature0706118594515
    [Google Scholar]
  70. HouP. LiY. ZhangX. LiuC. GuanJ. LiH. ZhaoT. YeJ. YangW. LiuK. GeJ. XuJ. ZhangQ. ZhaoY. DengH. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Science2013341614665165410.1126/science.123927823868920
    [Google Scholar]
  71. LuY. BrommerB. TianX. KrishnanA. MeerM. WangC. VeraD.L. ZengQ. YuD. BonkowskiM.S. YangJ.H. ZhouS. HoffmannE.M. KargM.M. SchultzM.B. KaneA.E. DavidsohnN. KorobkinaE. ChwalekK. RajmanL.A. ChurchG.M. HochedlingerK. GladyshevV.N. HorvathS. LevineM.E. Gregory-KsanderM.S. KsanderB.R. HeZ. SinclairD.A. Reprogramming to recover youthful epigenetic information and restore vision.Nature2020588783612412910.1038/s41586‑020‑2975‑433268865
    [Google Scholar]
  72. Muñoz-LorenteM.A. MartínezP. TejeraÁ. WhittemoreK. Moisés-SilvaA.C. BoschF. BlascoM.A. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer.PLoS Genet.2018148e100756210.1371/journal.pgen.100756230114189
    [Google Scholar]
  73. JaskelioffM. MullerF.L. PaikJ.H. ThomasE. JiangS. AdamsA.C. SahinE. Kost-AlimovaM. ProtopopovA. CadiñanosJ. HornerJ.W. Maratos-FlierE. DePinhoR.A. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.Nature2011469732810210610.1038/nature0960321113150
    [Google Scholar]
  74. SahinF. AvciC.B. GunduzC. SezginC. SimsirI.Y. SaydamG. Gossypol exerts its cytotoxic effect on HL-60 leukemic cell line via decreasing activity of protein phosphatase 2A and interacting with human telomerase reverse transcriptase activity.Hematology201015314415010.1179/102453309X1258334711377120557672
    [Google Scholar]
  75. PemmariT. IvanovaL. MayU. LingasamyP. TobiA. PasternackA. PrinceS. RitvosO. MakkapatiS. TeesaluT. CairoM.S. JärvinenT.A.H. LiaoY. Exposed CendR domain in homing peptide yields skin-targeted therapeutic in epidermolysis bullosa.Mol. Ther.20202881833184510.1016/j.ymthe.2020.05.01732497513
    [Google Scholar]
  76. WilkinsonH.N. HardmanM.J. A role for estrogen in skin ageing and dermal biomechanics.Mech. Ageing Dev.202119711151310.1016/j.mad.2021.11151334044023
    [Google Scholar]
  77. SaadF.A. Novel insights into the complex architecture of osteoporosis molecular genetics.Ann. N. Y. Acad. Sci.202014621375210.1111/nyas.1423131556133
    [Google Scholar]
  78. ShimizuM.E. IshizakiF. NakamuraS. Results of a home exercise program for patients with osteoporosis resulting from neurological disorders.Hiroshima J. Med. Sci.2002511152211999456
    [Google Scholar]
  79. NascimentoC. PereiraJ. AndradeL. GaruffiM. TalibL. ForlenzaO. CancelaJ. CominettiM. StellaF. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels.Curr. Alzheimer Res.201411879980510.2174/15672050110814091012284925212919
    [Google Scholar]
  80. Puente-GonzálezA.S. Sánchez-SánchezM.C. Fernández-RodríguezE.J. Hernández-XumetJ.E. Barbero-IglesiasF.J. Méndez-SánchezR. Effects of 6-month multimodal physical exercise program on bone mineral density, fall risk, balance, and gait in patients with alzheimer’s disease: A controlled clinical trial.Brain Sci.20211116310.3390/brainsci1101006333419016
    [Google Scholar]
  81. ArsenisN.C. YouT. OgawaE.F. TinsleyG.M. ZuoL. Physical activity and telomere length: Impact of aging and potential mechanisms of action.Oncotarget2017827450084501910.18632/oncotarget.1672628410238
    [Google Scholar]
  82. SellamiM. BragazziN. PrinceM.S. DenhamJ. ElrayessM. Regular, intense exercise training as a healthy aging lifestyle strategy: Preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime.Front. Genet.20211265249710.3389/fgene.2021.65249734421981
    [Google Scholar]
  83. HauptS. NiedristT. SourijH. SchwarzingerS. MoserO. The impact of exercise on telomere length, DNA methylation and metabolic footprints.Cells202211115310.3390/cells1101015335011715
    [Google Scholar]
  84. ElrickH. Exercise the best prescription.Phys. Sportsmed.1996242798010.1080/00913847.1996.1194791520086972
    [Google Scholar]
  85. BirminghamK. Exercise is the best medicine.Nurs. Older People2008207310.7748/nop.20.7.3.s118853538
    [Google Scholar]
  86. SaadJ.F. SaadF.A. Gene Therapy for Alzheimer and Parkinson Diseases.Curr. Gene Ther.202323316316910.2174/156652322366623041910102337114789
    [Google Scholar]
  87. FuW. BegleyJ.G. KillenM.W. MattsonM.P. Anti-apoptotic role of telomerase in pheochromocytoma cells.J. Biol. Chem.1999274117264727110.1074/jbc.274.11.726410066788
    [Google Scholar]
  88. ZhuJ. WangH. BishopJ.M. BlackburnE.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening.Proc. Natl. Acad. Sci.19999673723372810.1073/pnas.96.7.372310097104
    [Google Scholar]
  89. YangJ.H. PettyC.A. Dixon-McDougallT. LopezM.V. TyshkovskiyA. Maybury-LewisS. TianX. IbrahimN. ChenZ. GriffinP.T. ArnoldM. LiJ. MartinezO.A. BehnA. Rogers-HammondR. AngeliS. GladyshevV.N. SinclairD.A. Chemically induced reprogramming to reverse cellular aging.Aging202315135966598910.18632/aging.20489637437248
    [Google Scholar]
  90. JiangH. CoutoL.B. Patarroyo-WhiteS. LiuT. NagyD. VargasJ.A. ZhouS. ScallanC.D. SommerJ. VijayS. MingozziF. HighK.A. PierceG.F. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy.Blood2006108103321332810.1182/blood‑2006‑04‑01791316868252
    [Google Scholar]
  91. MannoC.S. PierceG.F. ArrudaV.R. GladerB. RagniM. RaskoJ.J.E. OzeloM.C. HootsK. BlattP. KonkleB. DakeM. KayeR. RazaviM. ZajkoA. ZehnderJ. RustagiP. NakaiH. ChewA. LeonardD. WrightJ.F. LessardR.R. SommerJ.M. TiggesM. SabatinoD. LukA. JiangH. MingozziF. CoutoL. ErtlH.C. HighK.A. KayM.A. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response.Nat. Med.200612334234710.1038/nm135816474400
    [Google Scholar]
  92. NathwaniA.C. TuddenhamE.G.D. RangarajanS. RosalesC. McIntoshJ. LinchD.C. ChowdaryP. RiddellA. PieA.J. HarringtonC. O’BeirneJ. SmithK. PasiJ. GladerB. RustagiP. NgC.Y.C. KayM.A. ZhouJ. SpenceY. MortonC.L. AllayJ. ColemanJ. SleepS. CunninghamJ.M. SrivastavaD. Basner-TschakarjanE. MingozziF. HighK.A. GrayJ.T. ReissU.M. NienhuisA.W. DavidoffA.M. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B.N. Engl. J. Med.2011365252357236510.1056/NEJMoa110804622149959
    [Google Scholar]
  93. AssafB.T. WhiteleyL.O. Considerations for preclinical safety assessment of adeno-associated virus gene therapy products.Toxicol. Pathol.20184681020102710.1177/019262331880386730295175
    [Google Scholar]
  94. GugginoW.B. CebotaruL. Adeno-associated virus (AAV) gene therapy for cystic fibrosis: Current barriers and recent developments.Expert Opin. Biol. Ther.201717101265127310.1080/14712598.2017.134763028657358
    [Google Scholar]
  95. SanliogluS. MonickM. LuleciG. HunninghakeG. EngelhardtJ. Rate limiting steps of AAV transduction and implications for human gene therapy.Curr. Gene Ther.20011213714710.2174/156652301334878812108951
    [Google Scholar]
  96. LiuQ. HuangW. ZhangH. WangY. ZhaoJ. SongA. XieH. ZhaoC. GaoD. WangY. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors.Gene Ther.201421873273810.1038/gt.2014.4724849042
    [Google Scholar]
  97. KasprzykT. TriffaultS. LongB.R. ZoogS.J. VettermannC. Confirmatory detection of neutralizing antibodies to AAV gene therapy using a cell-based transduction inhibition assay.Mol. Ther. Methods Clin. Dev.20222422222910.1016/j.omtm.2022.01.00435141351
    [Google Scholar]
  98. ChandlerR.J. LaFaveM.C. VarshneyG.K. BurgessS.M. VendittiC.P. Genotoxicity in mice following AAV gene delivery: A safety concern for human gene therapy?Mol. Ther.201624219820110.1038/mt.2016.1726906613
    [Google Scholar]
  99. HumphreyS. Manson BrownS. CrossS.J. MehtaR. Defining skin quality: Clinical relevance, terminology, and assessment.Dermatol. Surg.202147797498110.1097/DSS.000000000000307934148998
    [Google Scholar]
  100. CarneyR.G. ZopfL.C. Management of aging skin with cosmetics.Arch. Dermatol.196286440440610.1001/archderm.1962.0159010001800514018762
    [Google Scholar]
  101. ZouboulisC.C. MakrantonakiE. NikolakisG. When the skin is in the center of interest: An aging issue.Clin. Dermatol.201937429630510.1016/j.clindermatol.2019.04.00431345316
    [Google Scholar]
  102. ZouboulisC.C. MakrantonakiE. HossiniA.M. Skin mirrors brain: A chance for alzheimer’s disease research.Adv. Exp. Med. Biol.2021133937138010.1007/978‑3‑030‑78787‑5_4535023127
    [Google Scholar]
  103. BodnarA.G. OuelletteM. FrolkisM. HoltS.E. ChiuC.P. MorinG.B. HarleyC.B. ShayJ.W. LichtsteinerS. WrightW.E. Extension of life-span by introduction of telomerase into normal human cells.Science1998279534934935210.1126/science.279.5349.3499454332
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232286489240320051925
Loading
/content/journals/cgt/10.2174/0115665232286489240320051925
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): aging; extrinsic; Gene; genecosmetics; intrinsic; mitochondrial dysfunction; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test