Skip to content
2000
image of Environment-friendly Synthesis of AgNPs from Fimbristylis miliacea Flower Extract: Characterization and its Applications as an Antioxidant Activity, Anticancerous Activity and in the Reduction of 4-Nitrophenol

Abstract

Background

Silver metal is useful in a variety of fields. Different silver salts exhibit good application in the organic transformation. The use of a green methodology in AgNPs preparation has gained interest of young researchers. Plant systems are employed in the green approach of preparing AgNPs, serving as both a stabilizing and reducing agent. Silver nanoparticles (AgNPs) made from silver salts exhibit a variety of biological activities and may be useful in organic transformation.

Method

AgNPs were synthesized with the use of flower extract from , which acts as a stabilizing and reducing agent.

Result

flower extract is used as a reducing and stabilising agent for preparation of AgNPs. These synthesised AgNPs were characterised by using FTIR, XRD, FE-SEM/EDS, HR-TEM, TGA, and ICP-AES. flower extract was subjected to FTIR and HR-LCMS analysis in order to identify the phytoconstituents that are responsible for the reduction of AgNO. The HR-TEM shows particle size between 8.984340.69669nm and 19.074641.4384nm. The size of AgNPs determined by using HR-TEM shows good agreement with XRD particle size. The synthesized AgNPs show excellent antioxidant properties with IC=56.45 μg/mL. The present study confers significant cytotoxic activity against MDA-MB-231 human breast cancer cell line culture (IC= 61.97 µg/ml). The AgNPs show a faster reduction of 4-nitrophenol.

Conclusion

In conclusion, we have prepared AgNPs by using flower extract. The study further concludes that green synthesis of AgNPs has many advantages as compared to chemical methods, such as cost-effectiveness, rapid, and environment-friendly methods. The results indicated that the biosynthesized AgNPs have significant cytotoxic activity against the MDA-MB-231 breast cancer cell line. Further, it indicates that biosynthesized AgNPs can be a potential alternative agent for human breast cancer therapy. The cytotoxic potential can be used for treatments and provides a new method to develop molecules for cancer therapy. The catalytic activity of AgNPs was examined by using the reduction of 4-nitrophenol. It shows that the reduction of 4-nitrophenol in 6 minutes is confirmed by using 1H NMR analysis.

Loading

Article metrics loading...

/content/journals/celt/10.2174/012666948X325936241022054115
2024-10-31
2025-02-17
Loading full text...

Full text loading...

References

  1. Khan M. Albalawi G.H. Shaik M.R. Khan M. Adil S.F. Kuniyil M. Alkhathlan H.Z. Al-Warthan A. Siddiqui M.R.H. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. J. Saudi Chem. Soc. 2017 21 4 450 457 10.1016/j.jscs.2016.03.008
    [Google Scholar]
  2. Manjare S.B. Paranjape P.P. Gurav V.L. Shinde P.P. Chavan R.R. Thopate S.R. Silver nanoparticles synthesis using AH leaf extract and its antimicrobial activity. Bioinspired Biomim. Nanobiomat. 2020 9 3 190 193 10.1680/jbibn.19.00047
    [Google Scholar]
  3. Nasimi P. Haidari M. Medical use of nanoparticles: Drug delivery and diagnosis diseases. Int. J. Green Nanotechnol. 2013 1 10.1177/1943089213506978
    [Google Scholar]
  4. Manjare S.B. Chaudhari R.A. Thopate S.R. Risbud K.P. Badade S.M. Resin loaded palladium nanoparticle catalyst, characterization and application in –C–C– coupling reaction. SN Appl. Sci. 2020 2 5 988 10.1007/s42452‑020‑2795‑z
    [Google Scholar]
  5. Manjare S.B. Pendhari P.D. Badade S.M. Thopate S.R. Palladium nanoparticles: Plant aided biosynthesis, characterization, applications. Chem. Africa 2021 4 4 715 730 10.1007/s42250‑021‑00284‑2
    [Google Scholar]
  6. Patil P.Y. Khairnar G.S. Manjare S.B. Gurav V.L. Synthesis of plant-mediated silver nanoparticles using Cyper difformis flower extract and evaluation of its antioxidant and anticancerous activity. Pollut. Res. 2023 42 405 412 10.53550/PR.2023.v42i04.001
    [Google Scholar]
  7. Patil P.Y. Manjare S.B. Desai C.C. Udugade P.S. Environment-friendly synthesis of titanium oxide (TiO2) nanoparticles, characterization and its application - A Review. Pollut. Res. 2023 42 533 540 10.53550/PR.2023.v42i04.022
    [Google Scholar]
  8. Mahdieh M. Zolanvari A. Azimee A.S. Mahdieh M. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci. Iran. 2012 19 3 926 929 10.1016/j.scient.2012.01.010
    [Google Scholar]
  9. Manjare S.B. Chaudhari R.A. Environment-friendly synthesis of palladium nanoparticles loaded on zeolite type-Y (Na-form) using Anacardium occidentale shell extract (Cashew nut shell extract), characterization and application in C C coupling reaction. J. Environ. Chem. Eng. 2020 8 5 104213 10.1016/j.jece.2020.104213
    [Google Scholar]
  10. Bharathi D. Diviya Josebin M. Vasantharaj S. Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J. Nanostructure Chem. 2018 8 1 83 92 10.1007/s40097‑018‑0256‑7
    [Google Scholar]
  11. Donda M.R. Kudle K.R. Alwala J. Miryala A. Sreedhar B. Rudra M.P.P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. Int. J. Curr. Sci. 2013 7 1 8
    [Google Scholar]
  12. Padalia H. Moteriya P. Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2015 8 5 732 741 10.1016/j.arabjc.2014.11.015
    [Google Scholar]
  13. Manjare S.B. Chaudhari R.A. Palladium nanoparticle-bentonite hybrid using leaves of syzygium aqueum plant from India: Design and assessment in the catalysis of –C–C– coupling reaction. Chemistry Africa 2020 3 2 329 341 10.1007/s42250‑020‑00139‑2
    [Google Scholar]
  14. Ramakrishna M. Rajesh Babu D. Gengan R.M. Chandra S. Nageswara Rao G. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J. Nanostructure Chem. 2016 6 1 1 13 10.1007/s40097‑015‑0173‑y
    [Google Scholar]
  15. Manjare S.B. Pendhari P.D. Badade S.M. Thopate S.R. Thopate M.S. Biosynthesis of palladium nanoparticles from moringa oleifera leaf extract supported on activated bentonite clay and its efficacy towards suzuki–miyaura coupling and oxidation reaction. Bionanoscience 2022 12 3 785 794 10.1007/s12668‑022‑01011‑y
    [Google Scholar]
  16. Badade S.M. Varale A.S. Thopate S.R. Manjare S.B. Plant-aided biosynthesized heterogeneous palladium nanoparticles catalyzed suzuki coupling reaction. Curr. Green Chem. 2024 11 1 15
    [Google Scholar]
  17. Ganguly A. Trovato O. Duraisamy S. Benson J. Han Y. Satriano C. Papakonstantinou P. Organic Solvent based synthesis of gold nanoparticle−semiconducting 2H-MoS 2 hybrid nanosheets. J. Phys. Chem. C 2019 123 16 10646 10657 10.1021/acs.jpcc.9b00303
    [Google Scholar]
  18. Yang Y. Sun C. Ren Y. Hao S. Jiang D. New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability. Sci. Rep. 2014 4 1 4540 10.1038/srep04540 24687047
    [Google Scholar]
  19. Li W.R. Xie X.B. Shi Q.S. Zeng H.Y. OU-Yang Y.S. Chen Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010 85 4 1115 1122 10.1007/s00253‑009‑2159‑5 19669753
    [Google Scholar]
  20. Akintola A.O. Kehinde B.D. Ayoola P.B. Adewoyin A.G. Adedosu O.T. Ajayi J.F. Ogunsona S.B. Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of Blighia sapida. IOP Conf. Series Mater. Sci. Eng. 2020 805 1 012004 10.1088/1757‑899X/805/1/012004
    [Google Scholar]
  21. Sreekanth T.V.M. Pandurangan M. Kim D.H. Lee Y.R. Green synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J. Cluster Sci. 2016 27 2 671 681 10.1007/s10876‑015‑0964‑9
    [Google Scholar]
  22. Manjare S.B. Sharma S.G. Gurav V.L. Kunde M.R. Patil S.S. Thopate S.R. Biosynthesis of silver nanoparticles using leaf and bark extract of indian plant carissa carandas, characterization and antimicrobial activity. Asian J. Nanosci. Mater. 2020 3 58 66
    [Google Scholar]
  23. Chauhan B.S. Johnson D.E. Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: Three troublesome annual sedge weeds of rice. Ann. Appl. Biol. 2009 155 1 103 112 10.1111/j.1744‑7348.2009.00325.x
    [Google Scholar]
  24. More P. Jangam K. Kadam S. Balgude S. Ajagekar S. Yamgar R. Co3O4 supported on MWCNT: A highly efficient nano composite for the adsorption of Coracryl yellow dye and in the reduction of 4-Nitrophenol. Results in Chemistry 2023 5 100963 10.1016/j.rechem.2023.100963
    [Google Scholar]
  25. Mabasa X.E. Mathomu L.M. Madala N.E. Musie E.M. Sigidi M.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem. Res. Int. 2021 2021 1 12 10.1155/2021/2854217 34621548
    [Google Scholar]
  26. Lakshmi C.N.D.M. Raju B.D.P. Madhavi T. Sushma N.J. Identification of bioactive compounds by FTIR analysis and in vitro antioxidant activity of Clitoria ternatea leaf and flower extracts. Indo Am. J. Pharma. Res. 2014 4 3894 3903
    [Google Scholar]
  27. Okaiyeto K. Hoppe H. Okoh A.I. Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: Characterization and its antiplasmodial activity. J. Cluster Sci. 2021 32 1 101 109 10.1007/s10876‑020‑01766‑y
    [Google Scholar]
  28. Rautela A. Rani J. Debnath M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 2019 10 1 10 10.1186/s40543‑018‑0163‑z
    [Google Scholar]
  29. Shameli K. Ahmad M. Shabanzadeh P. Zamanian A. Sangpour P. Abdollahi Y. Mohsen Z. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomedicine 2012 7 5603 5610 10.2147/IJN.S36786 23341739
    [Google Scholar]
  30. Sharma A. Sagar A. Rana J. Rani R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro Nano Sys. Lett. 2022 10 1 2 10.1186/s40486‑022‑00144‑9
    [Google Scholar]
  31. Nayak B.K. Chitra N. Nanda A. Efficacy of biosynthesized AgNPs from Alternaria chlamydospora isolated from indoor air of vegetable market. Int. J. Pharm. Tech. Res. 2014 6 1309 1314
    [Google Scholar]
  32. Majeed Khan M.A. Kumar S. Ahamed M. Alrokayan S.A. AlSalhi M.S. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 2011 6 1 434 10.1186/1556‑276X‑6‑434 21711498
    [Google Scholar]
  33. Kota S. Dumpala P. Anantha R.K. Verma M.K. Kandepu S. Evaluation of therapeutic potential of the silver/silver chloride nanoparticles synthesized with the aqueous leaf extract of Rumex acetosa. Sci. Rep. 2017 7 1 11566 10.1038/s41598‑017‑11853‑2 28912484
    [Google Scholar]
  34. Gurunathan S. Park J.H. Han J.W. Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomedicine 2015 10 4203 4222 10.2147/IJN.S83953 26170659
    [Google Scholar]
  35. Botcha S. Prattipati S.D. Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. Bionanoscience 2020 10 1 11 22 10.1007/s12668‑019‑00683‑3
    [Google Scholar]
  36. Banerjee S. Islam S. Chattopadhyay A. Sen A. Kar P. Synthesis of silver nanoparticles using underutilized fruit Baccaurea ramiflora (Latka) juice and its biological and cytotoxic efficacy against MCF-7 and MDA-MB 231 cancer cell lines. S. Afr. J. Bot. 2022 145 228 235 10.1016/j.sajb.2021.09.016
    [Google Scholar]
  37. Darvish S. Kahrizi M.S. Ozbolat G. Khaleghi F. Mortezania Z. Sakhaei D. Silver nanoparticles: Biosynthesis and cytotoxic performance against breast cancer MCF-7 and MDA-MB-231 cell lines. Nanomed. Res. J. 2022 7 83 92
    [Google Scholar]
  38. Mohanta Y.K. Mishra A.K. Nayak D. Patra B. Bratovcic A. Avula S.K. Mohanta T.K. Murugan K. Saravanan M. Exploring dose-dependent cytotoxicity profile of Gracilaria edulis-mediated green synthesized silver nanoparticles against MDA-MB-231 breast carcinoma. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/3863138 35251470
    [Google Scholar]
  39. Aglin A A. Shruthi P. Subathra S. Selective toxicity of biosynthesised silver nanoparticles on MCF-7 and MDA MB-231 breast cancer cell lines. Int. J. Chemtech Res. 2019 12 6 7 16 10.20902/IJCTR.2019.120602
    [Google Scholar]
  40. Vijapur L.S. Hiremath J.N. Bonageri N.N. Desai A.R. Murraya koenigii: Biogenic synthesis of silver nanoparticles and their cytotoxic effects against Mda-Mb-231, human breast cancer. World J. Pharma. Med. Res. 2019 5 206 211
    [Google Scholar]
  41. Gurunathan S. Raman J. Abd Malek S.N. John P.A. Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomedicine 2013 8 4399 4413 24265551
    [Google Scholar]
  42. Ghandehari S. Tabrizi M.H. Ardalan P. Neamati A. Shali R. Green synthesis of silver nanoparticles using Rubia tinctorum extract and evaluation the anti‐cancer properties in vitro. IET Nanobiotechnol. 2019 13 3 269 274 10.1049/iet‑nbt.2018.5190 31053689
    [Google Scholar]
  43. Keshari A.K. Srivastava R. Singh P. Yadav V.B. Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020 11 1 37 44 10.1016/j.jaim.2017.11.003 30120058
    [Google Scholar]
  44. Khan M. Al-hamoud K. Liaqat Z. Shaik M.R. Adil S.F. Kuniyil M. Alkhathlan H.Z. Al-Warthan A. Siddiqui M.R.H. Mondeshki M. Tremel W. Khan M. Tahir M.N. Synthesis of Au, Ag, and Au-Ag bimetallic nanoparticles using Pulicaria undulata extract and their catalytic activity for the reduction of 4-nitrophenol. Nanomaterials (Basel) 2020 10 9 1885 10.3390/nano10091885 32962292
    [Google Scholar]
  45. Mejía Y.R. Reddy Bogireddy N.K. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Advances 2022 12 29 18661 18675 10.1039/D2RA02663E 35873318
    [Google Scholar]
  46. Arora N. Mehta A. Mishra A. Basu S. 4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis. Appl. Clay Sci. 2018 151 1 9 10.1016/j.clay.2017.10.015
    [Google Scholar]
  47. Weill C. Panson G. Notes - The reduction of nitrobenzene to azoxybenzene by sodium borohydride. J. Org. Chem. 1956 21 7 803 803 10.1021/jo01113a606
    [Google Scholar]
  48. Piña S. Cedillo D.M. Tamez C. Izquierdo N. Parsons J.G. Gutierrez J.J. Reduction of nitrobenzene derivatives using sodium borohydride and transition metal sulfides. Tetrahedron Lett. 2014 55 40 5468 5470 10.1016/j.tetlet.2014.08.068
    [Google Scholar]
  49. Wafudu Handy O.A. Shah Jamil M.S. Shamsuddin M. Copper oxide derived from copper(I) complex of 2-acetylpyridine-N(4)-(methoxy phenyl)thiosemicarbazone as an efficient catalyst in the reduction of 4-nitrophenol. Malays. J. Fundam. Appl. Sci. 2020 16 3 351 358 10.11113/mjfas.v16n3.1922
    [Google Scholar]
  50. Pillai Z.S. Kamat P.V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 2004 108 3 945 951 10.1021/jp037018r
    [Google Scholar]
  51. Mavani K. Shah M. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int. J. Eng. Res. Technol. (Ahmedabad) 2013 2 1 5
    [Google Scholar]
/content/journals/celt/10.2174/012666948X325936241022054115
Loading
/content/journals/celt/10.2174/012666948X325936241022054115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test