Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-948X
  • E-ISSN: 2666-9498

Abstract

Background

Silver metal is useful in a variety of fields. Different silver salts exhibit good application in the organic transformation. The use of a green methodology in AgNPs preparation has gained interest of young researchers. Plant systems are employed in the green approach of preparing AgNPs, serving as both a stabilizing and reducing agent. Silver nanoparticles (AgNPs) made from silver salts exhibit a variety of biological activities and may be useful in organic transformation.

Method

AgNPs were synthesized with the use of flower extract from , which acts as a stabilizing and reducing agent.

Result

flower extract is used as a reducing and stabilising agent for preparation of AgNPs. These synthesised AgNPs were characterised by using FTIR, XRD, FE-SEM/EDS, HR-TEM, TGA, and ICP-AES. flower extract was subjected to FTIR and HR-LCMS analysis in order to identify the phytoconstituents that are responsible for the reduction of AgNO. The HR-TEM shows particle size between 8.984340.69669 nm and 19.074641.4384 nm. The size of AgNPs determined by using HR-TEM shows good agreement with XRD particle size. The synthesized AgNPs show excellent antioxidant properties with IC=56.45 μg/mL. The present study confers significant cytotoxic activity against MDA-MB-231 human breast cancer cell line culture (IC= 61.97 µg/ml). The AgNPs show a faster reduction of 4-nitrophenol.

Conclusion

In conclusion, we have prepared AgNPs by using flower extract. The study further concludes that green synthesis of AgNPs has many advantages as compared to chemical methods, such as cost-effectiveness, rapid, and environment-friendly methods. The results indicated that the biosynthesized AgNPs have significant cytotoxic activity against the MDA-MB-231 breast cancer cell line. Further, it indicates that biosynthesized AgNPs can be a potential alternative agent for human breast cancer therapy. The cytotoxic potential can be used for treatments and provides a new method to develop molecules for cancer therapy. The catalytic activity of AgNPs was examined by using the reduction of 4-nitrophenol. It shows that the reduction of 4-nitrophenol in 6 minutes is confirmed by using 1H NMR analysis.

Loading

Article metrics loading...

/content/journals/celt/10.2174/012666948X325936241022054115
2024-10-31
2026-02-18
Loading full text...

Full text loading...

References

  1. KhanM. AlbalawiG.H. ShaikM.R. KhanM. AdilS.F. KuniyilM. AlkhathlanH.Z. Al-WarthanA. SiddiquiM.R.H. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media.J. Saudi Chem. Soc.201721445045710.1016/j.jscs.2016.03.008
    [Google Scholar]
  2. ManjareS.B. ParanjapeP.P. GuravV.L. ShindeP.P. ChavanR.R. ThopateS.R. Silver nanoparticles synthesis using AH leaf extract and its antimicrobial activity.Bioinspired Biomim. Nanobiomat.20209319019310.1680/jbibn.19.00047
    [Google Scholar]
  3. NasimiP. HaidariM. Medical use of nanoparticles: Drug delivery and diagnosis diseases.Int. J. Green Nanotechnol.2013110.1177/1943089213506978
    [Google Scholar]
  4. ManjareS.B. ChaudhariR.A. ThopateS.R. RisbudK.P. BadadeS.M. Resin loaded palladium nanoparticle catalyst, characterization and application in –C–C– coupling reaction.SN Appl. Sci.20202598810.1007/s42452‑020‑2795‑z
    [Google Scholar]
  5. ManjareS.B. PendhariP.D. BadadeS.M. ThopateS.R. Palladium nanoparticles: Plant aided biosynthesis, characterization, applications.Chem. Africa20214471573010.1007/s42250‑021‑00284‑2
    [Google Scholar]
  6. PatilP.Y. KhairnarG.S. ManjareS.B. GuravV.L. Synthesis of plant-mediated silver nanoparticles using Cyper difformis flower extract and evaluation of its antioxidant and anticancerous activity.Pollut. Res.20234240541210.53550/PR.2023.v42i04.001
    [Google Scholar]
  7. PatilP.Y. ManjareS.B. DesaiC.C. UdugadeP.S. Environment-friendly synthesis of titanium oxide (TiO2) nanoparticles, characterization and its application - A Review.Pollut. Res.20234253354010.53550/PR.2023.v42i04.022
    [Google Scholar]
  8. MahdiehM. ZolanvariA. AzimeeA.S. MahdiehM. Green biosynthesis of silver nanoparticles by Spirulina platensis.Sci. Iran.201219392692910.1016/j.scient.2012.01.010
    [Google Scholar]
  9. ManjareS.B. ChaudhariR.A. Environment-friendly synthesis of palladium nanoparticles loaded on zeolite type-Y (Na-form) using Anacardium occidentale shell extract (Cashew nut shell extract), characterization and application in C C coupling reaction.J. Environ. Chem. Eng.20208510421310.1016/j.jece.2020.104213
    [Google Scholar]
  10. BharathiD. Diviya JosebinM. VasantharajS. BhuvaneshwariV. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities.J. Nanostructure Chem.201881839210.1007/s40097‑018‑0256‑7
    [Google Scholar]
  11. DondaM.R. KudleK.R. AlwalaJ. MiryalaA. SreedharB. RudraM.P.P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity.Int. J. Curr. Sci.2013718
    [Google Scholar]
  12. PadaliaH. MoteriyaP. ChandaS. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential.Arab. J. Chem.20158573274110.1016/j.arabjc.2014.11.015
    [Google Scholar]
  13. ManjareS.B. ChaudhariR.A. Palladium nanoparticle-bentonite hybrid using leaves of syzygium aqueum plant from India: Design and assessment in the catalysis of –C–C– coupling reaction.Chemistry Africa20203232934110.1007/s42250‑020‑00139‑2
    [Google Scholar]
  14. RamakrishnaM. Rajesh BabuD. GenganR.M. ChandraS. Nageswara RaoG. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity.J. Nanostructure Chem.20166111310.1007/s40097‑015‑0173‑y
    [Google Scholar]
  15. ManjareS.B. PendhariP.D. BadadeS.M. ThopateS.R. ThopateM.S. Biosynthesis of palladium nanoparticles from moringa oleifera leaf extract supported on activated bentonite clay and its efficacy towards suzuki–miyaura coupling and oxidation reaction.Bionanoscience202212378579410.1007/s12668‑022‑01011‑y
    [Google Scholar]
  16. BadadeS.M. VaraleA.S. ThopateS.R. ManjareS.B. Plant-aided biosynthesized heterogeneous palladium nanoparticles catalyzed suzuki coupling reaction.Curr. Green Chem.2025121607410.2174/0122133461320577240724100847
    [Google Scholar]
  17. GangulyA. TrovatoO. DuraisamyS. BensonJ. HanY. SatrianoC. PapakonstantinouP. Organic Solvent based synthesis of gold nanoparticle−semiconducting 2H-MoS 2 hybrid nanosheets.J. Phys. Chem. C201912316106461065710.1021/acs.jpcc.9b00303
    [Google Scholar]
  18. YangY. SunC. RenY. HaoS. JiangD. New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability.Sci. Rep.201441454010.1038/srep04540 24687047
    [Google Scholar]
  19. LiW.R. XieX.B. ShiQ.S. ZengH.Y. OU-YangY.S. ChenY.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.Appl. Microbiol. Biotechnol.20108541115112210.1007/s00253‑009‑2159‑5 19669753
    [Google Scholar]
  20. AkintolaA.O. KehindeB.D. AyoolaP.B. AdewoyinA.G. AdedosuO.T. AjayiJ.F. OgunsonaS.B. Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of Blighia sapida.IOP Conf. Series Mater. Sci. Eng.2020805101200410.1088/1757‑899X/805/1/012004
    [Google Scholar]
  21. SreekanthT.V.M. PanduranganM. KimD.H. LeeY.R. Green synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells.J. Cluster Sci.201627267168110.1007/s10876‑015‑0964‑9
    [Google Scholar]
  22. ManjareS.B. SharmaS.G. GuravV.L. KundeM.R. PatilS.S. ThopateS.R. Biosynthesis of silver nanoparticles using leaf and bark extract of Indian plant carissa carandas, characterization and antimicrobial activity.Asian J. Nanosci. Mater.202035866
    [Google Scholar]
  23. ChauhanB.S. JohnsonD.E. Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: Three troublesome annual sedge weeds of rice.Ann. Appl. Biol.2009155110311210.1111/j.1744‑7348.2009.00325.x
    [Google Scholar]
  24. MoreP. JangamK. KadamS. BalgudeS. AjagekarS. YamgarR. Co3O4 supported on MWCNT: A highly efficient nano composite for the adsorption of Coracryl yellow dye and in the reduction of 4-Nitrophenol.Results Chem.2023510096310.1016/j.rechem.2023.100963
    [Google Scholar]
  25. MabasaX.E. MathomuL.M. MadalaN.E. MusieE.M. SigidiM.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract.Biochem. Res. Int.2021202111210.1155/2021/2854217 34621548
    [Google Scholar]
  26. LakshmiC.N.D.M. RajuB.D.P. MadhaviT. SushmaN.J. Identification of bioactive compounds by FTIR analysis and in vitro antioxidant activity of Clitoria ternatea leaf and flower extracts.Indo Am. J. Pharma. Res.2014438943903
    [Google Scholar]
  27. OkaiyetoK. HoppeH. OkohA.I. Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: Characterization and its antiplasmodial activity.J. Cluster Sci.202132110110910.1007/s10876‑020‑01766‑y
    [Google Scholar]
  28. RautelaA. RaniJ. DebnathM. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms.J. Anal. Sci. Technol.20191011010.1186/s40543‑018‑0163‑z
    [Google Scholar]
  29. ShameliK. AhmadM. ShabanzadehP. ZamanianA. SangpourP. AbdollahiY. MohsenZ. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder.Int. J. Nanomedicine201275603561010.2147/IJN.S36786 23341739
    [Google Scholar]
  30. SharmaA. SagarA. RanaJ. RaniR. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn.Micro Nano Sys. Lett.2022101210.1186/s40486‑022‑00144‑9
    [Google Scholar]
  31. NayakB.K. ChitraN. NandaA. Efficacy of biosynthesized AgNPs from Alternaria chlamydospora isolated from indoor air of vegetable market.Int. J. Pharm. Tech. Res.2014613091314
    [Google Scholar]
  32. Majeed KhanM.A. KumarS. AhamedM. AlrokayanS.A. AlSalhiM.S. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films.Nanoscale Res. Lett.20116143410.1186/1556‑276X‑6‑434 21711498
    [Google Scholar]
  33. KotaS. DumpalaP. AnanthaR.K. VermaM.K. KandepuS. Evaluation of therapeutic potential of the silver/silver chloride nanoparticles synthesized with the aqueous leaf extract of Rumex acetosa.Sci. Rep.2017711156610.1038/s41598‑017‑11853‑2 28912484
    [Google Scholar]
  34. GurunathanS. ParkJ.H. HanJ.W. KimJ.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy.Int. J. Nanomedicine2015104203422210.2147/IJN.S83953 26170659
    [Google Scholar]
  35. BotchaS. PrattipatiS.D. Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells.Bionanoscience2020101112210.1007/s12668‑019‑00683‑3
    [Google Scholar]
  36. BanerjeeS. IslamS. ChattopadhyayA. SenA. KarP. Synthesis of silver nanoparticles using underutilized fruit Baccaurea ramiflora (Latka) juice and its biological and cytotoxic efficacy against MCF-7 and MDA-MB 231 cancer cell lines.S. Afr. J. Bot.202214522823510.1016/j.sajb.2021.09.016
    [Google Scholar]
  37. DarvishS. KahriziM.S. OzbolatG. KhaleghiF. MortezaniaZ. SakhaeiD. Silver nanoparticles: Biosynthesis and cytotoxic performance against breast cancer MCF-7 and MDA-MB-231 cell lines.Nanomed. Res. J.202278392
    [Google Scholar]
  38. MohantaY.K. MishraA.K. NayakD. PatraB. BratovcicA. AvulaS.K. MohantaT.K. MuruganK. SaravananM. Exploring dose-dependent cytotoxicity profile of Gracilaria edulis-mediated green synthesized silver nanoparticles against MDA-MB-231 breast carcinoma.Oxid. Med. Cell. Longev.2022202211510.1155/2022/3863138 35251470
    [Google Scholar]
  39. Aglin AA. ShruthiP. SubathraS. Selective toxicity of biosynthesised silver nanoparticles on MCF-7 and MDA MB-231 breast cancer cell lines.Int. J. Chemtech Res.201912671610.20902/IJCTR.2019.120602
    [Google Scholar]
  40. VijapurL.S. HiremathJ.N. BonageriN.N. DesaiA.R. Murraya koenigii: Biogenic synthesis of silver nanoparticles and their cytotoxic effects against Mda-Mb-231, human breast cancer.World J. Pharma. Med. Res.20195206211
    [Google Scholar]
  41. GurunathanS. RamanJ. Abd MalekS.N. JohnP.A. VikineswaryS. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells.Int. J. Nanomedicine2013843994413 24265551
    [Google Scholar]
  42. GhandehariS. TabriziM.H. ArdalanP. NeamatiA. ShaliR. Green synthesis of silver nanoparticles using Rubia tinctorum extract and evaluation the anti‐cancer properties in vitro.IET Nanobiotechnol.201913326927410.1049/iet‑nbt.2018.5190 31053689
    [Google Scholar]
  43. KeshariA.K. SrivastavaR. SinghP. YadavV.B. NathG. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum.J. Ayurveda Integr. Med.2020111374410.1016/j.jaim.2017.11.003 30120058
    [Google Scholar]
  44. KhanM. Al-hamoudK. LiaqatZ. ShaikM.R. AdilS.F. KuniyilM. AlkhathlanH.Z. Al-WarthanA. SiddiquiM.R.H. MondeshkiM. TremelW. KhanM. TahirM.N. Synthesis of Au, Ag, and Au-Ag bimetallic nanoparticles using Pulicaria undulata extract and their catalytic activity for the reduction of 4-nitrophenol.Nanomaterials (Basel)2020109188510.3390/nano10091885 32962292
    [Google Scholar]
  45. MejíaY.R. Reddy BogireddyN.K. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles.RSC Advances20221229186611867510.1039/D2RA02663E 35873318
    [Google Scholar]
  46. AroraN. MehtaA. MishraA. BasuS. 4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis.Appl. Clay Sci.20181511910.1016/j.clay.2017.10.015
    [Google Scholar]
  47. WeillC. PansonG. Notes - The reduction of nitrobenzene to azoxybenzene by sodium borohydride.J. Org. Chem.195621780380310.1021/jo01113a606
    [Google Scholar]
  48. PiñaS. CedilloD.M. TamezC. IzquierdoN. ParsonsJ.G. GutierrezJ.J. Reduction of nitrobenzene derivatives using sodium borohydride and transition metal sulfides.Tetrahedron Lett.201455405468547010.1016/j.tetlet.2014.08.068
    [Google Scholar]
  49. Wafudu HandyO.A. Shah JamilM.S. ShamsuddinM. Copper oxide derived from copper(I) complex of 2-acetylpyridine-N(4)-(methoxy phenyl)thiosemicarbazone as an efficient catalyst in the reduction of 4-nitrophenol.Malays. J. Fundam. Appl. Sci.202016335135810.11113/mjfas.v16n3.1922
    [Google Scholar]
  50. PillaiZ.S. KamatP.V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?J. Phys. Chem. B2004108394595110.1021/jp037018r
    [Google Scholar]
  51. MavaniK. ShahM. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent.Int. J. Eng. Res. Technol. (Ahmedabad)2013215
    [Google Scholar]
/content/journals/celt/10.2174/012666948X325936241022054115
Loading
/content/journals/celt/10.2174/012666948X325936241022054115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test