Skip to content
2000
  • ISSN: 1568-010X
  • E-ISSN: 1568-010X

Abstract

Human autoimmune disease involves local activation of antigen-specific CD4+ T cells that produce inflammatory Th1 cytokines leading to the further recruitment and activation of lymphocytes and monocytes, resulting ultimately in the destruction of target tissue. Antigen presenting cells (APCs) initiate activation of CD4+ T cells in a multistep process that minimally involves co-ligation of the TCR and CD4 by the MHC class II / peptide complex and costimulation through additional T cell surface molecules such as CD28. Disruption of this highly orchestrated series of events can result in the direct modulation of CD4+ T cell behavior. The interaction between MHC and TCR holds unique promise as a focal point for therapeutic intervention in the pathology of CD4+ T cell-mediated diseases, and MHC class II-derived Recombinant TCR Ligands (“RTLs”) have emerged as a new class of therapeutics with potent clinical efficacy in a diverse set of animal models for multiple sclerosis. Here I review the systemic effect that RTL therapy has on the intact immune system and present an overview of a molecular mechanism by which RTL therapy could induce these systemic changes.

Loading

Article metrics loading...

/content/journals/cdtia/10.2174/1568010053586363
2005-04-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/cdtia/10.2174/1568010053586363
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test