Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

Introduction/Aim

The study examines how chronic resveratrol administration affects behavioral and neurochemical changes caused by Lorazepam (LZP), a classical anti-anxiety medicine associated with neurodegenerative and neurological problems.

Methods

Forty male rats were placed into four groups: a control group receiving 1% Tween 80, the LZP group receiving 2 mg/kg/day, the Resveratrol group receiving 50 mg/kg/day, and the LZP plus resveratrol group receiving the same doses of LZP and Resveratrol. Oral therapy was given daily for 6 weeks. The animals were euthanized after open field and Y maze behavioral tests. In specific brain regions, neurochemical analyses were performed on GABA, glutamic acid, monoamines (norepinephrine, dopamine, and serotonin) and their metabolites, DNA fragmentation (8-hydroxy-2–deoxyguanosine or 8-HdG), brain-derived neurotrophic factor (BDNF), and Ca-ATPase.

Results

Resveratrol therapy improved GABA, glutamic acid, monoamines, and their metabolites in the cerebral cortex, hippocampus, and striatum. Additionally, it reduced DNA fragmentation (8-HdG) and counteracted LZP-induced Ca-ATPase downregulation at a significant level ( 0.05). Resveratrol also reversed LZP-induced behavioral changes in the Y maze and open field tests.

Conclusion

Resveratrol has anxiolytic-like actions like benzodiazepines and neuroprotective capabilities against LZP-induced adverse effects.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863312358240919103439
2024-10-09
2025-07-03
Loading full text...

Full text loading...

References

  1. MikuleckáA. ŠubrtM. PařízkováM. MarešP. KubováH. Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior.Front. Behav. Neurosci.2014816910.3389/fnbeh.2014.00169 24982619
    [Google Scholar]
  2. GoddardA.W. MasonG.F. AppelM. Impaired GABA neuronal response to acute benzodiazepine administration in panic disorder.Am. J. Psychiatry2004161122186219310.1176/appi.ajp.161.12.2186 15569888
    [Google Scholar]
  3. MorishitaS. Clonazepam as a therapeutic adjunct to improve the management of depression: A brief review.Hum. Psychopharmacol.200924319119810.1002/hup.1015 19330803
    [Google Scholar]
  4. Cunha-OliveiraT. RegoA.C. GarridoJ. BorgesF. MacedoT. OliveiraC.R. Neurotoxicity of heroin–cocaine combinations in rat cortical neurons.Toxicology20102761111710.1016/j.tox.2010.06.009 20600547
    [Google Scholar]
  5. BaseltR.C. Disposition of toxic drugs and chemicals in man.8th edFoster City, CABiomedical Publications2008
    [Google Scholar]
  6. LongoL.P. JohnsonB. Addiction: Part I. Benzodiazepines--side effects, abuse risk and alternatives.Am. Fam. Physician200061721212128 10779253
    [Google Scholar]
  7. SteentoftA. LinnetK. Blood concentrations of clonazepam and 7-aminoclonazepam in forensic cases in Denmark for the period 2002–2007.Forensic Sci. Int.20091841-3747910.1016/j.forsciint.2008.12.004 19150586
    [Google Scholar]
  8. WilmsH. ClaasenJ. RöhlC. SieversJ. DeuschlG. LuciusR. Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: Evidence from activated microglial cells in vitro.Neurobiol. Dis.200314341742410.1016/j.nbd.2003.07.002 14678758
    [Google Scholar]
  9. TakaokaM. Resveratrol, a new phenolic compound, from Veratrum grandiflorum.J Chem Soc Jpn19396010901100
    [Google Scholar]
  10. AggarwalB.B. ShishodiaS.S. Resveratrol in Health and Disease.New YorkMarcel Dekker, Inc.2006
    [Google Scholar]
  11. SlatteryD.A. DesrayaudS. CryanJ.F. GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent.J. Pharmacol. Exp. Ther.2005312129029610.1124/jpet.104.073536 15333677
    [Google Scholar]
  12. SocałaK. NieoczymD. PierógM. Effect of tadalafil on seizure threshold and activityof antiepileptic drugs in three acute seizure tests in mice.Neurotox. Res.201834333334610.1007/s12640‑018‑9876‑4 29427285
    [Google Scholar]
  13. El KhashabI.H. AbdelsalamR.M. ElbrairyA.I. AttiaA.S. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis.Biomed. Pharmacother.201911210861910.1016/j.biopha.2019.108619 30797156
    [Google Scholar]
  14. Reagan-ShawS. NihalM. AhmadN. Dose translation from animal to human studies revisited.FASEB J.200822365966110.1096/fj.07‑9574LSF 17942826
    [Google Scholar]
  15. PagelP. BlomeJ. WolfH.U. High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease.J. Chromatogr., Biomed. Appl.2000746229730410.1016/S0378‑4347(00)00348‑0 11076082
    [Google Scholar]
  16. LodoviciM. CasaliniC. BrianiC. DolaraP. Oxidative liver DNA damage in rats treated with pesticide mixtures.Toxicology19971171556010.1016/S0300‑483X(96)03553‑6 9020199
    [Google Scholar]
  17. RoghaniM. JoghataieM.T. JalaliM.R. BaluchnejadmojaradT. Time course of changes in passive avoidance and Y – Maze performance in male diabetic rats.Iran. Biomed. J.200610299104
    [Google Scholar]
  18. GriffinC.E.III KayeA.M. BuenoF.R. KayeA.D. Benzodiazepine pharmacology and central nervous system-mediated effects.Ochsner J.2013132214223 23789008
    [Google Scholar]
  19. WangH. HuiK.M. ChenY. XuS. WongJ.T.F. XueH. Structure-activity relationships of flavonoids, isolated from Scutellaria baicalensis, binding to benzodiazepine site of GABA(A) receptor complex.Planta Med.200268121059106210.1055/s‑2002‑36357 12494329
    [Google Scholar]
  20. Cueto-EscobedoJ. Andrade-SotoJ. Lima-MaximinoM. MaximinoC. Hernández-LópezF. Rodríguez-LandaJ.F. Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with neurosteroids.Behav. Brain Res.202038611259010.1016/j.bbr.2020.112590 32184157
    [Google Scholar]
  21. MajewskaM.D. HarrisonN.L. SchwartzR.D. BarkerJ.L. PaulS.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor.Science198623247531004100710.1126/science.2422758 2422758
    [Google Scholar]
  22. UrenA.G. WongL. PakuschM. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype.Curr. Biol.200010211319132810.1016/S0960‑9822(00)00769‑7 11084331
    [Google Scholar]
  23. HuopaniemiL. KeistR. RandolphA. CertaU. RudolphU. Diazepam‐induced adaptive plasticity revealed by α1 GABA A receptor‐specific expression profiling.J. Neurochem.20048851059106710.1046/j.1471‑4159.2003.02216.x 15009662
    [Google Scholar]
  24. MataA.M. BerrocalM. SepúlvedaM.R. Impairment of the activity of the plasma membrane Ca2+-ATPase in Alzheimer’s disease.Biochem. Soc. Trans.201139381982210.1042/BST0390819 21599654
    [Google Scholar]
  25. LiR. ZangA. ZhangL. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats.Neurol. Sci.201435101527153210.1007/s10072‑014‑1784‑7 24737349
    [Google Scholar]
  26. YangC. HuY.M. ZhouZ.Q. ZhangG.F. YangJ.J. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.Ups. J. Med. Sci.201311813810.3109/03009734.2012.724118 22970723
    [Google Scholar]
/content/journals/cds/10.2174/0115748863312358240919103439
Loading
/content/journals/cds/10.2174/0115748863312358240919103439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test