Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

Background

The kidneys, intricate organs responsible for maintaining fluid and electrolyte balance, are susceptible to damage from diverse nephrotoxic insults, including drugs, toxins, and metabolic disorders. In recent years, flavonoids, bioactive compounds abundant in fruits, vegetables, and herbal extracts, have emerged as promising candidates for renal protection due to their potent antioxidant and anti-inflammatory properties.

Methods

We have collected the data that supported this idea to conduct a comprehensive review by using scientific databases, such as Pub Med®, ScienceDirect®, Google Scholar®, and MEDLINE®. An attempt was made to refer to all English-language articles published between 2000 to 2020 using keywords like flavonoids potential in nephrotoxicity and nephrotoxicity treatment approaches with herbal remedies.

Conclusion

This comprehensive review delves into the molecular mechanisms underlying the reno-protective effects of flavonoids. By scavenging reactive oxygen species, inhibiting inflammatory mediators, and modulating intracellular signalling pathways, flavonoids can mitigate oxidative stress and inflammation, thereby preserving renal function and integrity. Preclinical studies have demonstrated the potential of specific flavonoids in ameliorating drug-induced nephrotoxicity, renal ischemia-reperfusion injury, diabetic nephropathy, and other kidney diseases. Furthermore, epidemiological evidence highlights the inverse relationship between flavonoid intake and the risk of developing kidney diseases. Nevertheless, understanding the molecular mechanisms of flavonoids in nephroprotection offers exciting prospects for developing novel therapeutic strategies to combat kidney diseases and promote kidney health.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863277092231217142733
2024-01-09
2025-04-16
Loading full text...

Full text loading...

References

  1. CaoY.L. LinJ.H. HammesH.P. ZhangC. Flavonoids in treatment of chronic kidney disease.Molecules2022277236510.3390/molecules2707236535408760
    [Google Scholar]
  2. LeveyA.S. LevinA. KellumJ.A. Definition and classification of kidney diseases.Am. J. Kidney Dis.201361568668810.1053/j.ajkd.2013.03.00323582249
    [Google Scholar]
  3. BarnettL.M.A. CummingsB.S. Nephrotoxicity and renal pathophysiology: A contemporary perspective.Toxicol. Sci.2018164237939010.1093/toxsci/kfy15929939355
    [Google Scholar]
  4. BreyerM.D. SusztakK. Developing treatments for chronic kidney disease in the 21st Century.Semin. Nephrol.201636643644710.1016/j.semnephrol.2016.08.00127987541
    [Google Scholar]
  5. KhanM. A. KassianosA. J. HoyW. E. AlamA. K. HealyH. G. GobeG. C. Promoting plant-based therapies for chronic kidney disease.J. Evid.-Based Integr. Med20222210.1177/2515690X221079688
    [Google Scholar]
  6. DiasM.C. PintoD.C.G.A. SilvaAMS. Plant flavonoids: Chemical characteristics and biological activity.Molecules2021 Sep 12617
    [Google Scholar]
  7. Herrera-AñazcoP. Taype-RondanA. OrtizP.J. MálagaG. del Carpio-ToiaA.M. Alvarez-ValdiviaM.G. Juárez- HuancaC. Ciudad- FernandezL. Bruner- MeléndezR. Samaniego- MojicaW. Perez- RafaelE. Use of medicinal plants in patients with chronic kidney disease from Peru.Complement. Ther. Med.20194710221510.1016/j.ctim.2019.10221531780000
    [Google Scholar]
  8. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  9. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  10. ÖzyurtH. ÇevikÖ. ÖzgenZ. ÖzdenA.S. ÇadırcıS. ElmasM.A. ErcanF. GörenM.Z. ŞenerG. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats.Free Radic. Res.201448101247125510.3109/10715762.2014.94592525039564
    [Google Scholar]
  11. LiuC.M. SunY.Z. SunJ.M. MaJ.Q. ChengC. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway.Biochim. Biophys. Acta, Gen. Subj.20121820101693170310.1016/j.bbagen.2012.06.01122728154
    [Google Scholar]
  12. AlidadiH. KhorsandiL. ShiraniM. Effects of quercetin on tubular cell apoptosis and kidney damage in rats induced by titanium dioxide nanoparticles.Malays. J. Med. Sci.2018252728110.21315/mjms2018.25.2.830918457
    [Google Scholar]
  13. YangH. SongY. LiangY. LiR. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease.Med. Sci. Monit.2018244760476610.12659/MSM.90925929987270
    [Google Scholar]
  14. AoiW. NiisatoN. MiyazakiH. MarunakaY. Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat.Biochem. Biophys. Res. Commun.2004315489289610.1016/j.bbrc.2004.01.15014985096
    [Google Scholar]
  15. AlmaghrabiO.A. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney.Saudi J. Biol. Sci.201522222723110.1016/j.sjbs.2014.12.00825737657
    [Google Scholar]
  16. YukselY. YukselR. YagmurcaM. HaltasH. ErdamarH. ToktasM. OzcanO. Effects of quercetin on methotrexate-induced nephrotoxicity in rats.Hum. Exp. Toxicol.2017361516110.1177/096032711663741427005763
    [Google Scholar]
  17. EbokaiweA.P. ObasiD.O. NjokuR.C.C. OsaweS. OlusanyaO. KaluW.O. Cyclophosphamide instigated hepatic-renal oxidative/inflammatory stress aggravates immunosuppressive indoleamine 2,3-dioxygenase in male rats: Abatement by quercetin.Toxicology202146415302710.1016/j.tox.2021.15302734748891
    [Google Scholar]
  18. KhalilS.R. MohammedA.T. Abd El-fattahA.H. ZagloolA.W. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin.Toxicol. Lett.2018288899810.1016/j.toxlet.2018.02.02429474904
    [Google Scholar]
  19. LiuY. ZhangX. GuanT. JiaS. LiuY. ZhaoX. Effects of quercetin on cadmium-induced toxicity in rat urine using metabonomics techniques.Hum. Exp. Toxicol.202039452453610.1177/096032711989581131876187
    [Google Scholar]
  20. AlshanwaniA.R. ShaheenS. FaddahL.M. AlhusainiA.M. AliH.M. HasanI. HagarH. AhmedR. AlharbiF.M.B. AlHarthiiA. Manipulation of Quercetin and Melatonin in the Down-Regulation of HIF-1α, HSP-70 and VEGF Pathways in Rat’s Kidneys Induced by Hypoxic Stress.Dose Response202018310.1177/155932582094979732922227
    [Google Scholar]
  21. MorsiA.A. FouadH. AlasmariW.A. FarukE.M. The biomechanistic aspects of renal cortical injury induced by diesel exhaust particles in rats and the renoprotective contribution of quercetin pretreatment: Histological and biochemical study.Environ. Toxicol.202237231032110.1002/tox.2339934751495
    [Google Scholar]
  22. GholampourF. SakiN. Hepatic and renal protective effects of quercetin in ferrous sulfate-induced toxicity.Gen. Physiol. Biophys.2019381273810.4149/gpb_201803830657458
    [Google Scholar]
  23. BaoW. CaoC. LiS. BoL. ZhangM. ZhaoX. LiuY. SunC. Metabonomic analysis of quercetin against the toxicity of acrylamide in rat urine.Food Funct.2017831204121410.1039/C6FO01553K28224155
    [Google Scholar]
  24. BoL. LiuY. JiaS. LiuY. ZhangM. LiS. ZhaoX. SunC. Metabonomics analysis of quercetin against the nephrotoxicity of acrylamide in rats.Food Funct.20189115965597410.1039/C8FO00902C30379191
    [Google Scholar]
  25. AbharzanjaniF. HemmatiM. Protective effects of Quercetin and Resveratrol on aging markers in kidney under high glucose condition: In vivo and in vitro analysis.Mol. Biol. Rep.20214875435544210.1007/s11033‑021‑06550‑334273031
    [Google Scholar]
  26. AbdelhalimM.A.K. QaidH.A.Y. Al-MohyY. Al-AyedM.S. Effects of quercetin and arginine on the nephrotoxicity and lipid peroxidation induced by gold nanoparticles in vivo.Int. J. Nanomedicine2018137765777010.2147/IJN.S18328130538457
    [Google Scholar]
  27. Vicente-VicenteL. González-CalleD. CasanovaA.G. Hernández-SánchezM.T. PrietoM. Rama-MerchánJ.C. Martín-MoreirasJ. Martín-HerreroF. SánchezP.L. López-HernándezF.J. Cruz-GonzálezI. MoralesA.I. Quercetin, a promising clinical candidate for the prevention of contrast-induced nephropathy.Int. J. Mol. Sci.20192019496110.3390/ijms2019496131597315
    [Google Scholar]
  28. ChaudharyS. GanjooP. RaiusddinS. ParvezS. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid.Protoplasma2015252120921710.1007/s00709‑014‑0670‑825000991
    [Google Scholar]
  29. RahdarA. HasaneinP. BilalM. BeyzaeiH. KyzasG. Z. Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats.2021276119420
    [Google Scholar]
  30. Al-AsmariA.K. KhanH.A. ManthiriR.A. Al-KhlaiwiA.A. Al-AsmariB.A. IbrahimK.E. Protective effects of a natural herbal compound quercetin against snake venom-induced hepatic and renal toxicities in rats.Food Chem. Toxicol.201811810511010.1016/j.fct.2018.05.01629751071
    [Google Scholar]
  31. DallakM. DawoodA.F. HaidaraM.A. Abdel KaderD.H. EidR.A. KamarS.S. Shams EldeenA.M. Al-AniB. Suppression of glomerular damage and apoptosis and biomarkers of acute kidney injury induced by acetaminophen toxicity using a combination of resveratrol and quercetin.Drug Chem. Toxicol.20224511710.1080/01480545.2020.172215632013615
    [Google Scholar]
  32. Abdel-WahhabM.A. AljawishA. El-NekeetyA.A. Abdel-AziemS.H. HassanN.S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet.Food Chem. Toxicol.20179920922110.1016/j.fct.2016.12.00227923682
    [Google Scholar]
  33. QiL. CaoC. HuL. ChenS. ZhaoX. SunC. Metabonomic analysis of the protective effect of quercetin on the toxicity induced by mixture of organophosphate pesticides in rat urine.Hum. Exp. Toxicol.201736549450710.1177/096032711665246027251765
    [Google Scholar]
  34. LuH. WuL. LiuL. RuanQ. ZhangX. HongW. WuS. JinG. BaiY. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization.Biochem. Pharmacol.201815420321210.1016/j.bcp.2018.05.00729753749
    [Google Scholar]
  35. LiuT. YangQ. ZhangX. QinR. ShanW. ZhangH. ChenX. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis.Life Sci.202025711811610.1016/j.lfs.2020.11811632702447
    [Google Scholar]
  36. CunananJ. DeaconE. CunananK. YangZ. AskA. MorikawaL. TodorovaE. BridgewaterD. Quercetin treatment reduces the severity of renal dysplasia in a beta-catenin dependent manner.PLoS One2020156e023437510.1371/journal.pone.023437532555682
    [Google Scholar]
  37. ChenJ. ZhangH. YangY. ChenB. Quercetin regulates vascular endothelium function in chronic renal failure via modulation of Eph/Cav‐1 signaling.Drug Dev. Res.20228351167117510.1002/ddr.2194035470469
    [Google Scholar]
  38. ZhuY. TengT. WangH. GuoH. DuL. YangB. YinX. SunY. Quercetin inhibits renal cyst growth in vitro and via parenteral injection in a polycystic kidney disease mouse model.F.& F201891389396
    [Google Scholar]
  39. LiZ. DengH. GuoX. YanS. LuC. ZhaoZ. FengX. LiQ. WangJ. ZengJ. MaX. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data.Phytomedicine202210515434810.1016/j.phymed.2022.15434835908521
    [Google Scholar]
  40. InalM. AltinişikM. BilginM.D. The effect of quercetin on renal ischemia and reperfusion injury in the rat.Cell Biochem. Funct.200220429129610.1002/cbf.95312415562
    [Google Scholar]
  41. LuQ. JiX.J. ZhouY.X. YaoX.Q. LiuY.Q. ZhangF. YinX.X. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in diabetic nephropathy.Pharmacol. Res.20159923724710.1016/j.phrs.2015.06.00626151815
    [Google Scholar]
  42. ElbeH. DoganZ. TaslidereE. CetinA. TurkozY. Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats.Hum. Exp. Toxicol.201635327628110.1177/096032711558468625929518
    [Google Scholar]
  43. XuW. LiuS. LiN. YeL. ZhaM. LiC. ZhaoY. PuQ. BaoJ. ChenX. YuJ. PeiY. Quercetin Antagonizes Glucose Fluctuation Induced Renal Injury by Inhibiting Aerobic Glycolysis via HIF-1α/miR-210/ISCU/FeS Pathway.Front. Med. (Lausanne)2021865608610.3389/fmed.2021.65608633748166
    [Google Scholar]
  44. HouY. ZengY. LiS. QiL. XuW. WangH. ZhaoX. SunC. Effect of quercetin against dichlorvos induced nephrotoxicity in rats.Exp. Toxicol. Pathol.201466421121810.1016/j.etp.2014.01.00724594122
    [Google Scholar]
  45. AshariS. KaramiM. ShokrzadehM. BagheriA. GhandadiM. RanaeeM. DashtiA. MohammadiH. Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway.Toxicol. Res. (Camb.)202211227228510.1093/toxres/tfac00635510228
    [Google Scholar]
  46. RenJ. LuY. QianY. ChenB. WuT. Recent progress regarding kaempferol for the treatment of various diseases.Exp. Ther. M2019
    [Google Scholar]
  47. AlagalR.I. AlFarisN.A. AlshammariG.M. ALTamimiJ.Z. AlMousaL.A. YahyaM.A. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling.J. Funct. Foods20228910491810.1016/j.jff.2021.104918
    [Google Scholar]
  48. YuanP. SunX. LiuX. HuttererG. PummerK. HagerB. YeZ. ChenZ. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway.Phytomedicine20218615355510.1016/j.phymed.2021.15355533852977
    [Google Scholar]
  49. WangZ. SunW. SunX. WangY. ZhouM. Kaempferol ameliorates Cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways.AMB Express20201015810.1186/s13568‑020‑00993‑w32219583
    [Google Scholar]
  50. VijayaprakashS. LangeswaranK. Gowtham KumarS. RevathyR. BalasubramanianM.P. Nephro-protective significance of kaempferol on mercuric chloride induced toxicity in Wistar albino rats.Biomed. Aging Pathol.20133311912410.1016/j.biomag.2013.05.004
    [Google Scholar]
  51. WangZ. SunW. SunX. WangY. ZhouM. Kaempferol ameliorates cisplatin-induced nephrotoxicity by modulating oxidative stress, inflammation, and apoptosis via ERK and NF-κB pathways.Acta. Pharmaco. Sinic20204471058
    [Google Scholar]
  52. SharmaD. GondaliyaP. TiwariV. KaliaK. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling.Biomed. Pharmacother.20191091610161910.1016/j.biopha.2018.10.19530551415
    [Google Scholar]
  53. AliA.S. AlmalkiA.S. AlharthyB.T. Effect of kaempferol on tacrolimus-induced nephrotoxicity and calcineurin B1 expression level in animal model.J. Exp. Pharmacol.20201239740710.2147/JEP.S26535933149706
    [Google Scholar]
  54. SharmaD. Kumar TekadeR. KaliaK. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model.Phytomedicine20207615323510.1016/j.phymed.2020.15323532563017
    [Google Scholar]
  55. SharmaA. SinhaS. ShrivastavaN. Apigenin and kaempferol as novel renoprotective agent against cisplatin-induced toxicity: An in vitro study.Nat. Prod. Res.202236236085609010.1080/14786419.2022.204560335227143
    [Google Scholar]
  56. AlshehriA.S. El-KottA.F. El-KenawyA.E. ZakiM.S.A. MorsyK. GhanemR.A. SalemE.T. EbealyE.R. KhalifaH.S. AltyarA.E. AlGwaizH.I.M. IbrahimE.H. MahmoudM.S. DallakM.A. Abd-EllaE.M. The ameliorative effect of kaempferol against CdCl2- mediated renal damage entails activation of Nrf2 and inhibition of NF-kB.Environ. Sci. Pollut. Res. Int.20222938575915760210.1007/s11356‑022‑19876‑735355181
    [Google Scholar]
  57. AlshehriA.S. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis.Arch. Physiol. Biochem.2023129498499710.1080/13813455.2021.189012933625930
    [Google Scholar]
  58. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE. NovellinoE. AntolakH. AzziniE. SetzerW. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms2006130530875872
    [Google Scholar]
  59. WangT. ZhangZ. XieM. LiS. ZhangJ. ZhouJ. Apigenin attenuates mesoporous silica nanoparticles-induced nephrotoxicity by activating FOXO3a.Biol. Trace Elem. Res.202220062793280610.1007/s12011‑021‑02871‑334448149
    [Google Scholar]
  60. AliA.A.M. MansourA.B. AttiaS.A. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus.Environ. Sci. Pollut. Res. Int.20212822275772759210.1007/s11356‑021‑12632‑333515148
    [Google Scholar]
  61. ZamaniF. SamieiF. MousaviZ. AzariM.R. SeydiE. PourahmadJ. Apigenin ameliorates oxidative stress and mitochondrial damage induced by multiwall carbon nanotubes in rat kidney mitochondria.J. Biochem. Mol. Toxicol.20213561710.1002/jbt.2276233724625
    [Google Scholar]
  62. HusseinM.M. AlthagafiH.A. AlharthiF. AlbrakatiA. AlsharifK.F. TheyabA. KassabR.B. MuftiA.H. AlgahtaniM. OyouniA.A.A. BatyR.S. Abdel MoneimA.E. LokmanM.S. Apigenin attenuates molecular, biochemical, and histopathological changes associated with renal impairments induced by gentamicin exposure in rats.Environ. Sci. Pollut. Res. Int.20222943652766528810.1007/s11356‑022‑20235‑935484458
    [Google Scholar]
  63. WuQ. LiW. ZhaoJ. SunW. YangQ. ChenC. XiaP. ZhuJ. ZhouY. HuangG. YongC. ZhengM. ZhouE. GaoK. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation.Biomed. Pharmacother.202113711130810.1016/j.biopha.2021.11130833556877
    [Google Scholar]
  64. HassanS.M. KhalafM.M. SadekS.A. Abo-YoussefA.M. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice.Pharm. Biol.201755176677410.1080/13880209.2016.127570428064632
    [Google Scholar]
  65. ZhongY. JinC. WangX. LiX. HanJ. XueW. WuP. PengX. XiaX. Protective effects of apigenin against 3-MCPD-induced renal injury in rat.Chem. Biol. Interact.201829691710.1016/j.cbi.2018.08.00530107153
    [Google Scholar]
  66. HaleagraharaN. ChakravarthiS. Bangra KulurA. YeeT.M. Plant flavone apigenin protects against cyclosporine-induced histological and biochemical changes in the kidney in rats.Biomedicine & Preventive Nutrition20144458959310.1016/j.bionut.2014.07.006
    [Google Scholar]
  67. SinghD. KhanM.A. AkhtarK. ArjmandF. SiddiqueH.R. Apigenin alleviates cancer drug Sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress.Toxicol. Appl. Pharmacol.202244711607210.1016/j.taap.2022.11607235613639
    [Google Scholar]
  68. AhmadA. KumariP. AhmadM. Apigenin attenuates edifenphos-induced toxicity by modulating ROS-mediated oxidative stress, mitochondrial dysfunction and caspase signal pathway in rat liver and kidney.Pestic. Biochem. Physiol.201915916317210.1016/j.pestbp.2019.06.01031400778
    [Google Scholar]
  69. ZhangJ. ZhaoX. ZhuH. WangJ. MaJ. GuM. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-Related Factor 2 (Nrf2) Pathway.Med. Sci. Monit.2019255280528810.12659/MSM.91503831309931
    [Google Scholar]
  70. LiC. SchluesenerH. Health-promoting effects of the citrus flavanone hesperidin.Crit. Rev. Food Sci. Nutr.201757361363110.1080/10408398.2014.90638225675136
    [Google Scholar]
  71. TurkE. KandemirF.M. YildirimS. CaglayanC. KucuklerS. KuzuM. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats.Biol. Trace Elem. Res.201918919510810.1007/s12011‑018‑1443‑630066062
    [Google Scholar]
  72. KüçüklerS. ÇomaklıS. ÖzdemirS. ÇağlayanC. KandemirF.M. Hesperidin protects against the chlorpyrifos‐induced chronic hepato‐renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up‐regulation of PARP‐1 / VEGF.Environ. Toxicol.20213681600161710.1002/tox.2315633908150
    [Google Scholar]
  73. GelenV. ŞengülE. YıldırımS. SenturkE. TekinS. KükürtA. The protective effects of hesperidin and curcumin on 5-fluorouracil–induced nephrotoxicity in mice.Environ. Sci. Pollut. Res. Int.20212834470464705510.1007/s11356‑021‑13969‑533886055
    [Google Scholar]
  74. HusseinR. KhalafM. MohamedW. Hesperidin and eugenol attenuate cadmium-induced nephrotoxicity via regulation of oxidative stress, Bax/Bcl2, and cleaved caspase 3 expression. turk.J. Biochem.2020456767775
    [Google Scholar]
  75. FouadA.A. Abdel-GaberS.A. AbdelghanyM.I. Hesperidin opposes the negative impact of cyclophosphamide on mice kidneys.Drug Chem. Toxicol.202144322322810.1080/01480545.2018.156046730889984
    [Google Scholar]
  76. AnandanR. SubramanianP. Renal protective effect of hesperidin on gentamicin-induced acute nephrotoxicity in male Wistar albino rats.Redox Rep.201217521922610.1179/1351000212Y.000000001922889751
    [Google Scholar]
  77. SahuB.D. KunchaM. SindhuraG.J. SistlaR. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage.Phytomedicine201320545346010.1016/j.phymed.2012.12.00123353054
    [Google Scholar]
  78. HanedanB. OzkaracaM. KirbasA. KandemirF.M. AktasM.S. KilicK. ComakliS. KucuklerS. BilgiliA. Investigation of the effects of hesperidin and chrysin on renal injury induced by colistin in rats.Biomed. Pharmacother.20181081607161610.1016/j.biopha.2018.10.00130372863
    [Google Scholar]
  79. SiddiqiA. NafeesS. RashidS. SultanaS. SaidullahB. Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats.Mol. Cell. Biochem.20154061-292010.1007/s11010‑015‑2400‑825994504
    [Google Scholar]
  80. MazherK.M. AhmedO.M. Abdallah SayedH. NabilT.M. The role of bone marrow-derived mesenchymal stromal cells and hesperidin in ameliorating nephrotoxicity induced by cisplatin in male wistar rats.Int. J. Mol. Cell. Med.202110213314634703797
    [Google Scholar]
  81. ChenX. WeiW. LiY. HuangJ. CiX. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis.Chem. Biol. Interact.201930826927810.1016/j.cbi.2019.05.04031153982
    [Google Scholar]
  82. ObafemiT.O. Gallic and hesperidin ameliorate electrolyte imbalances in AlCl3-induced nephrotoxicity in wistar rats.Biochem. Res. Int.202220221710.1155/2022/615168436263197
    [Google Scholar]
  83. SiddiqiA. HasanS.K. NafeesS. RashidS. SaidullahB. SultanaS. Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways.Exp. Mol. Pathol.201599364165310.1016/j.yexmp.2015.11.01226551080
    [Google Scholar]
  84. CaglayanC. KandemirF.M. DarendelioğluE. KüçüklerS. AynaA. Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti apoptotic and anti-autophagic mechanisms.Life Sci.202128111973010.1016/j.lfs.2021.11973034147482
    [Google Scholar]
  85. ZhangY. WangB. GuoF. LiZ. QinG. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy.Biomed. Pharmacother.201810576677210.1016/j.biopha.2018.06.03629909344
    [Google Scholar]
  86. ChenY.J. KongL. TangZ.Z. ZhangY.M. LiuY. WangT.Y. LiuY.W. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway.Biomed. Pharmacother.20191111166117510.1016/j.biopha.2019.01.03030841430
    [Google Scholar]
  87. MathewS. VazhappillyC.G. Recent pharmacological advances on genistein in clinical trials.EXCLI J.2020191120112333088249
    [Google Scholar]
  88. SadhukhanP. SahaS. SilP.C. Anti-oxidative effect of genistein and mangiferin on sodium fluoride-induced oxidative insult of renal cells: A comparative study.Biom. J.2016212
    [Google Scholar]
  89. PoasakateA. ManeesaiP. PotueP. BunbuphaS. Tong-UnT. Settheetham-IshidaW. KhamseekaewJ. PakdeechoteP. Genistein alleviates renin-angiotensin system mediated vascular and kidney alterations in renovascular hypertensive rats.Biomed. Pharmacother.202214611260110.1016/j.biopha.2021.11260135062067
    [Google Scholar]
  90. JavanbakhtM.H. SadriaR. DjalaliM. DerakhshanianH. HosseinzadehP. ZareiM. AziziG. SedaghatR. MirshafieyA. Soy protein and genistein improves renal antioxidant status in experimental nephrotic syndrome.Nefrol.201434448349025036062
    [Google Scholar]
  91. GholampourF. MohammadiZ. KarimiZ. OwjiS.M. Protective effect of genistein in a rat model of ischemic acute kidney injury.Gene202075314478910.1016/j.gene.2020.14478932442578
    [Google Scholar]
  92. CanyilmazE. UsluG.H. BahatZ. KandazM. MunganS. HaciislamogluE. MenteseA. YoneyA. Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: Results of an experimental study.Biomed. Rep.201641455010.3892/br.2015.54726870332
    [Google Scholar]
  93. KojimaT. UesugiT. TodaT. MiuraY. YagasakiK. Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats.Lipids200237326126510.1007/s11745‑002‑0889‑z11942476
    [Google Scholar]
  94. SungM.J. KimD.H. JungY.J. KangK.P. LeeA.S. LeeS. KimW. DavaatserenM. HwangJ.T. KimH.J. KimM.S. KwonD.Y. ParkS.K. Genistein protects the kidney from cisplatin-induced injury.Kidney Int.200874121538154710.1038/ki.2008.40918716605
    [Google Scholar]
  95. LiY. OuS. LiuQ. GanL. ZhangL. WangY. QinJ. LiuJ. WuW. Genistein improves mitochondrial function and inflammatory in rats with diabetic nephropathy via inhibiting MAPK/NF-κB pathway.Acta Cir. Bras.2022376e37060110.1590/acb37060135976278
    [Google Scholar]
  96. JagetiaG.C. ReddyT.K. The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20025191-2374810.1016/S1383‑5718(02)00111‑012160890
    [Google Scholar]
  97. ElsawyH. AlzahraniA.M. AlfwuairesM. Abdel-MoneimA.M. KhalilM. Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats.Biomed. Pharmacother.202114311218010.1016/j.biopha.2021.11218034536756
    [Google Scholar]
  98. GelenV. YıldırımS. ŞengülE. ÇınarA. ÇelebiF. KüçükkalemM. GökM. Naringin attenuates oxidative stress, inflammation, apoptosis, and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.Asian Pac. J. Trop. Biomed.202212522310.4103/2221‑1691.343390
    [Google Scholar]
  99. GelenV. ŞengülE. YıldırımS. AtilaG. The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats.Iran. J. Basic Med. Sci.201821440441029796225
    [Google Scholar]
  100. ChenF. ZhangN. MaX. HuangT. ShaoY. WuC. WangQ. Naringin alleviates diabetic kidney disease through inhibiting oxidative stress and inflammatory reaction.PLoS One20151011e014386810.1371/journal.pone.014386826619044
    [Google Scholar]
  101. AdilM. KandhareA.D. GhoshP. VenkataS. RaygudeK.S. BodhankarS.L. Ameliorative effect of naringin in acetaminophen induced hepatic and renal toxicity in laboratory rats: Role of FXR and KIM-1.Ren. Fail.20163861007102010.3109/0886022X.2016.116399827050864
    [Google Scholar]
  102. AminiN. MalekiM. BadaviM. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review.Avicenna J. Phytomed.202212435737035782769
    [Google Scholar]
  103. CerkezkayabekirA. SanalF. BakarE. UlucamE. InanM. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model.Biotech. Histochem.201792425226310.1080/10520295.2017.130549928426254
    [Google Scholar]
  104. EbirimC.G. EsanO. AdetonaM.O. OyagbemiA.A. OmobowaleT.O. OladeleO.A. AdedapoA.A. OguntibejuO.O. YakubuM.A. Naringin administration mitigates oxidative stress, anemia, and hypertension in lead acetate-induced cardio-renal dysfunction in cockerel chicks.Environ. Sci. Pollut. Res. Int.20223012348903490310.1007/s11356‑022‑24656‑436520287
    [Google Scholar]
  105. ChtourouY. AoueyB. ArouiS. KebiecheM. FetouiH. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat.Chem. Biol. Interact.20162431910.1016/j.cbi.2015.11.01926612654
    [Google Scholar]
  106. AmudhaK. PariL. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats.Chem. Biol. Interact.20111931576410.1016/j.cbi.2011.05.00321600195
    [Google Scholar]
  107. SahuB.D. TatireddyS. KoneruM. BorkarR.M. KumarJ.M. KunchaM. RS. RS.S. SistlaR. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection.Toxicol. Appl. Pharmacol.2014277182010.1016/j.taap.2014.02.02224637089
    [Google Scholar]
  108. AdilM. KandhareA.D. VisnagriA. BodhankarS.L. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF- β, and TNF- α.Ren. Fail.20153781396140710.3109/0886022X.2015.107446226337322
    [Google Scholar]
  109. SinghD. ChopraK. The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats.Pharmacol. Res.200450218719310.1016/j.phrs.2004.01.00715177308
    [Google Scholar]
  110. ChandramohanY. ParameswariC.S. Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: Involvement of hemeoxygenase-1.Pharmacol. Rep.20136551336134410.1016/S1734‑1140(13)71492‑024399730
    [Google Scholar]
  111. AminiN. SarkakiA. DianatM. MardS.A. AhangarpourA. BadaviM. Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation.Pharmacol. Rep.20197161059106610.1016/j.pharep.2019.06.00731604166
    [Google Scholar]
  112. CaglayanC. TemelY. KandemirF.M. YildirimS. KucuklerS. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage.Environ. Sci. Pollut. Res. Int.20182521209682098410.1007/s11356‑018‑2242‑529766429
    [Google Scholar]
  113. SalehiB. FokouP. Sharifi-RadM. ZuccaP. PezzaniR. MartinsN. Sharifi-RadJ. The therapeutic potential of naringenin: A review of clinical trials.Pharmaceuticals20191211110.3390/ph1201001130634637
    [Google Scholar]
  114. RoyS. AhmedF. BanerjeeS. SahaU. Naringenin ameliorates streptozotocin-induced diabetic rat renal impairment by downregulation of TGF-β1 and IL-1 via modulation of oxidative stress correlates with decreased apoptotic events.Pharm. Biol.20165491616162710.3109/13880209.2015.111059926928632
    [Google Scholar]
  115. LiuS. GaoX. YinY. WangJ. DongK. ShiD. WuX. GuoC. Silk fibroin peptide self-assembled nanofibers delivered naringenin to alleviate cisplatin-induced acute kidney injury by inhibiting mtDNA-cGAS-STING pathway.Food Chem. Toxicol.202317711384410.1016/j.fct.2023.11384437244599
    [Google Scholar]
  116. BadaryO.A. Abdel-MaksoudS. AhmedW.A. OwiedaG.H. Naringenin attenuates cisplatin nephrotoxicity in rats.Life Sci.200576182125213510.1016/j.lfs.2004.11.00515826879
    [Google Scholar]
  117. SahuN. MishraG. ChandraH.K. NiralaS.K. BhadauriaM. Naringenin mitigates antituberculosis drugs induced hepatic and renal injury in rats.J. Tradit. Complement. Med.2020101263510.1016/j.jtcme.2019.01.00131956555
    [Google Scholar]
  118. HermeneanA. ArdeleanA. StanM. HermanH. MihaliC.V. CostacheM. DinischiotuA. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney.Chem. Biol. Interact.2013205213814710.1016/j.cbi.2013.06.01623845967
    [Google Scholar]
  119. DingS. QiuH. HuangJ. ChenR. ZhangJ. HuangB. ZouX. ChengO. JiangQ. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy.Chem. Biol. Interact.201930711612410.1016/j.cbi.2019.05.00431063766
    [Google Scholar]
  120. RenugadeviJ. PrabuS.M. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.Toxicology20092561-212813410.1016/j.tox.2008.11.01219063931
    [Google Scholar]
  121. FouadA.A. AlbualiW.H. ZahranA. GomaaW. Protective effect of naringenin against gentamicin-induced nephrotoxicity in rats.Environ. Toxicol. Pharmacol.201438242042910.1016/j.etap.2014.07.01525128772
    [Google Scholar]
  122. KulkarniY.A. SuryavanshiS.V. Combination of naringenin and lisinopril ameliorates nephropathy in type-1 diabetic rats.Endocr. Metab. Immune Disord. Drug Targets202121117318210.2174/187153032066620051616391932416710
    [Google Scholar]
  123. MuL. HuG. LiuJ. ChenY. CuiW. QiaoL. Protective effects of naringenin in a rat model of sepsis-triggered acute kidney injury via activation of antioxidant enzymes and reduction in urinary angiotensinogen.Med. Sci. Monit.2019255986599110.12659/MSM.91640031401645
    [Google Scholar]
  124. YanN. WenL. PengR. LiH. LiuH. PengH. SunY. WuT. ChenL. DuanQ. SunY. ZhouQ. WeiL. ZhangZ. Naringenin Ameliorated Kidney Injury through Let-7a/TGFBR1 Signaling in Diabetic Nephropathy. J. Diabetes Res.2016201611310.1155/2016/873876027446963
    [Google Scholar]
  125. SirovinaD. OršolićN. GregorovićG. KončićM.Z. Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: a preliminary study / Naringenin reducira histopatološke promjene u jetri i bubregu miševa s dijabetesom.Arh. Hig. Rada Toksikol.2016671192410.1515/aiht‑2016‑67‑270827092635
    [Google Scholar]
  126. PanduranganA.K. EsaN.M. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review.Asian Pac. J. Cancer Prev.201415145501550810.7314/APJCP.2014.15.14.550125081655
    [Google Scholar]
  127. AlbarakatiA.J.A. BatyR.S. AljoudiA.M. HabottaO.A. ElmahallawyE.K. KassabR.B. Abdel MoneimA.E. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways.Mol. Biol. Rep.20204742591260310.1007/s11033‑020‑05346‑132144527
    [Google Scholar]
  128. XinS. YanH. MaJ. SunQ. ShenL. Protective effects of luteolin on lipopolysaccharide-induced acute renal injury in mice.Med. Sci. Monit.2016225173518010.12659/MSM.89817728029146
    [Google Scholar]
  129. TanX. LiuB. LuJ. LiS. BaiyunR. LvY. LuQ. ZhangZ. Dietary luteolin protects against HgCl2-induced renal injury via activation of Nrf2-mediated signaling in rat.J. Inorg. Biochem.2018179243110.1016/j.jinorgbio.2017.11.01029156292
    [Google Scholar]
  130. KangK.P. ParkS.K. KimD.H. SungM.J. JungY.J. LeeA.S. LeeJ.E. RamkumarK.M. LeeS. ParkM.H. RohS.G. KimW. Luteolin ameliorates cisplatin-induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis.Nephrol. Dial. Transplant.201126381482210.1093/ndt/gfq52820817674
    [Google Scholar]
  131. LiuY.S. YangQ. LiS. LuoL. LiuH.Y. LiX.Y. GaoZ.N. Luteolin attenuates angiotensin II‑induced renal damage in apolipoprotein E‑deficient mice.Mol. Med. Rep.202023215710.3892/mmr.2020.1179633355379
    [Google Scholar]
  132. DomitrovićR. CvijanovićO. PugelE.P. ZagoracG.B. MahmutefendićH. ŠkodaM. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney.Toxicology201331011512310.1016/j.tox.2013.05.01523770416
    [Google Scholar]
  133. XiongC. WuQ. FangM. LiH. ChenB. ChiT. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats.J. Int. Med. Res.202048410.1177/030006052090364232242458
    [Google Scholar]
  134. KalbolandiS.M. GorjiA.V. Babaahmadi-RezaeiH. MansouriE. Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320.Mol. Biol. Rep.20194644039404710.1007/s11033‑019‑04853‑031089916
    [Google Scholar]
  135. DarA.A. FehaidA. AlkhataniS. AlarifiS. AlqahtaniW.S. AlbasherG. AlmeerR. AlfarrajS. MoneimA.E.A. The protective role of luteolin against the methotrexate-induced hepato-renal toxicity via its antioxidative, anti-inflammatory, and anti-apoptotic effects in rats.Hum. Exp. Toxicol.20214071194120710.1177/096032712199190533530773
    [Google Scholar]
  136. AwoyomiO.V. AdeoyeY.D. OyagbemiA.A. AjibadeT.O. AsenugaE.R. GbadamosiI.T. OgunpoluB.S. FalayiO.O. HassanF.O. OmobowaleT.O. ArojojoyeO.A. Ola-DaviesO.E. SabaA.B. AdedapoA.A. OguntibejuO.O. YakubuM.A. Luteolin mitigates potassium dichromate‐induced nephrotoxicity, cardiotoxicity and genotoxicity through modulation of Kim‐1/Nrf2 signaling pathways.Environ. Toxicol.202136112146216010.1002/tox.2332934272807
    [Google Scholar]
  137. DingT. YiT. LiY. ZhangW. WangX. LiuJ. FanY. JiJ. XuL. Luteolin attenuates lupus nephritis by regulating macrophage oxidative stress via HIF-1α pathway.Eur. J. Pharmacol.202395317582310.1016/j.ejphar.2023.17582337263402
    [Google Scholar]
  138. ZhangM. HeL. LiuJ. ZhouL. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 Pathway.Exp. Clin. Endocrinol. Diabetes20211291072973910.1055/a‑0998‑798531896157
    [Google Scholar]
  139. OyagbemiA.A. AdejumobiO.A. AjibadeT.O. AsenugaE.R. AfolabiJ.M. OgunpoluB.S. FalayiO.O. HassanF.O. NabofaE.W. Olutayo OmobowaleT. Ola-DaviesO.E. SabaA.B. AdedapoA.A. OguntibejuO.O. YakubuM.A. Luteolin attenuates glycerol-induced acute renal failure and cardiac complications through modulation of Kim-1/NF-κB/Nrf2 Signaling Pathways.J. Diet. Suppl.202118554356510.1080/19390211.2020.181144232938255
    [Google Scholar]
  140. SultanaS. PrasadL. JahangirT. Luteolin ameliorates ferric nitrilotriacetic acid induced renal toxicity and tumor promotional response in rat.Indian J. Exp. Biol.200947535536019579801
    [Google Scholar]
  141. Alekhya SitaG.J. GowthamiM. SrikanthG. KrishnaM.M. Rama SireeshaK. SajjaraoM. NagarjunaK. NagarjunaM. ChinnaboinaG.K. MishraA. SreeHarshaN. Protective role of luteolin against bisphenol A‐induced renal toxicity through suppressing oxidative stress, inflammation, and upregulating Nrf2/ARE/ HO‐1 pathway.IUBMB Life20197171041104710.1002/iub.206631091348
    [Google Scholar]
  142. ChuaL.S. A review on plant-based rutin extraction methods and its pharmacological activities.J. Ethnopharmacol.2013150380581710.1016/j.jep.2013.10.03624184193
    [Google Scholar]
  143. IsmailA.F.M. SalemA.A. EassawyM.M.T. Rutin protects against gamma-irradiation and malathion-induced oxidative stress and inflammation through regulation of mir-129-3p, mir-200C-3p, and mir-210 gene expressions in rats’ kidney.Environ. Sci. Pollut. Res. Int.20233028729307294810.1007/s11356‑023‑27166‑z37184799
    [Google Scholar]
  144. KorkmazA. KolankayaD. Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney. J. Surg. Res.2010164230931510.1016/j.jss.2009.03.02219592016
    [Google Scholar]
  145. KamalakkannanN. PrinceP.S.M. The influence of rutin on the extracellular matrix in streptozotocin-induced diabetic rat kidney.J. Pharm. Pharmacol.20105881091109810.1211/jpp.58.8.001016872556
    [Google Scholar]
  146. MaJ.Q. LiuC.M. YangW. Protective effect of rutin against carbon tetrachloride-induced oxidative stress, inflammation and apoptosis in mouse kidney associated with the ceramide, MAPKs, p53 and calpain activities.Chem. Biol. Interact.2018286263310.1016/j.cbi.2018.03.00329522708
    [Google Scholar]
  147. GongB. GouX. HanT. QiY. JiX. BaiJ. Protective effects of rutin on kidney in type 1 diabetic mice.Pak. J. Pharm. Sci.202033259760332276903
    [Google Scholar]
  148. WangB. LiuD. ZhuQ. LiM. ChenH. GuoY. FanL. YueL. LiL. ZhaoM. Rutin ameliorates kidney interstitial fibrosis in rats with obstructive nephropathy.Int. Immunopharmacol.201635778410.1016/j.intimp.2016.03.02927035719
    [Google Scholar]
  149. Al-HarbiN.O. ImamF. Al-HarbiM.M. Al-ShabanahO.A. AlotaibiM.R. As SobeaiH.M. AfzalM. KazmiI. Al RikabiA.C. Rutin inhibits carfilzomib-induced oxidative stress and inflammation via the NOS-mediated NF-κB signaling pathway.Inflammopharmacology201927481782710.1007/s10787‑018‑0550‑530600471
    [Google Scholar]
  150. KandemirF.M. OzkaracaM. YildirimB.A. HanedanB. KirbasA. KilicK. AktasE. BenzerF. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats.Ren. Fail.201537351852510.3109/0886022X.2015.100610025613739
    [Google Scholar]
  151. SadeghniaH.R. YousefsaniB.S. RashidfarM. BoroushakiM.T. AsadpourE. GhorbaniA. Protective effect of rutin on hexachlorobutadiene-induced nephrotoxicity.Ren. Fail.20133581151115510.3109/0886022X.2013.81554623876083
    [Google Scholar]
  152. CaglayanC. KandemirF.M. YildirimS. KucuklerS. EserG. Rutin protects mercuric chloride‐induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats.J. Trace Elem. Med. Biol.201954697810.1016/j.jtemb.2019.04.00731109623
    [Google Scholar]
  153. AliW.A. MoselhyW.A. IbrahimM.A. AminM.M. KamelS. EldomanyE.B. Protective effect of rutin and β-cyclodextrin against hepatotoxicity and nephrotoxicity induced by lambda-cyhalothrin in Wistar rats: biochemical, pathological indices and molecular analysis.Biomarkers202227762563610.1080/1354750X.2022.208700335658761
    [Google Scholar]
  154. KhanR.A. KhanM.R. SahreenS. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats.BMC Complement. Altern. Med.201212120410.1186/1472‑6882‑12‑20423116356
    [Google Scholar]
  155. ZaazaaA.M. MotelpB.A.A.E. AnissN.N.D. Potential protective role of rutin and alpha-lipoic acid against cisplatin-induced nephrotoxicity in rats.Pak. J. Biol. Sci.201922836137110.3923/pjbs.2019.361.37131930824
    [Google Scholar]
  156. KüçüklerS. KandemirF.M. ÖzdemirS. ÇomaklıS. CaglayanC. Protective effects of rutin against deltamethrin-induced hepatotoxicity and nephrotoxicity in rats via regulation of oxidative stress, inflammation, and apoptosis.Environ. Sci. Pollut. Res. Int.20212844629756299010.1007/s11356‑021‑15190‑w34218375
    [Google Scholar]
  157. QuS. DaiC. LangF. HuL. TangQ. WangH. ZhangY. HaoZ. Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats.Antimicrob. Agents Chemother.2018631e01545e1830397060
    [Google Scholar]
  158. AlhoshaniA.R. HafezM.M. HusainS. Al-sheikhA.M. AlotaibiM.R. Al RejaieS.S. AlshammariM.A. AlmutairiM.M. Al-ShabanahO.A. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats.BMC Nephrol.201718119410.1186/s12882‑017‑0601‑y28619064
    [Google Scholar]
  159. KazancioğluR. Risk factors for chronic kidney disease: an update.Kidney Int. Suppl.20133436837110.1038/kisup.2013.7925019021
    [Google Scholar]
  160. FinlayS. BrayB. LewingtonA. J. Hunter-RoweC. T. BanerjeeA. AtkinsonJ. M. JonesM. C. Identification of risk factors associated with acute kidney injury in patients admitted to acute medical units.Clin. Med.2013133233238
    [Google Scholar]
  161. KaziA.M. HashmiM.F. Glomerulonephritis.StatPearls2023
    [Google Scholar]
  162. ZahidR. AkramM. RafiqueE. Prevalence, risk factors and disease knowledge of polycystic kidney disease in Pakistan.Int. J. Immunopathol. Pharmacol.20203410.1177/205873842096608333125856
    [Google Scholar]
  163. KhaliliP. JamaliZ. SadeghiT. Esmaeili-nadimiA. MohamadiM. Moghadam-AhmadiA. AyoobiF. NazariA. Risk factors of kidney stone disease: A cross-sectional study in the southeast of Iran.BMC Urol.202121114110.1186/s12894‑021‑00905‑534625088
    [Google Scholar]
  164. KnoersN.V.A.M. LevtchenkoE.N. Gitelman syndrome.Orphanet J. Rare Dis.2008312210.1186/1750‑1172‑3‑2218667063
    [Google Scholar]
  165. PolitanoS.A. ColbertG.B. HamiduzzamanN. Nephrotic Syndrome. P. C.2020474597613
    [Google Scholar]
  166. StormeO. Tirán SaucedoJ. Garcia-MoraA. Dehesa-DávilaM. NaberK.G. Risk factors and predisposing conditions for urinary tract infection.Ther. Adv. Urol.20191110.1177/175628721881438231105772
    [Google Scholar]
  167. ChowW.H. DongL.M. DevesaS.S. Epidemiology and risk factors for kidney cancer.Nat. Rev. Urol.20107524525710.1038/nrurol.2010.4620448658
    [Google Scholar]
  168. TserenpuntsagB. ChangH.G. SmithP.F. MorseD.L. Hemolytic uremic syndrome risk and Escherichia coli O157:H7.Emerg. Infect. Dis.200511121955195710.3201/eid1112.05060716485489
    [Google Scholar]
  169. NaikR.H. Interstitial Nephritis.Stat Pearls.Stat Pearls Publishing2023
    [Google Scholar]
  170. WatsonS. PadalaS. A. HashmiM. F. BushJ. S Alport Syndrome.S.P2023
    [Google Scholar]
  171. HasslerJ.R. IgA nephropathy: A brief review.Semin. Diagn. Pathol.202037314314710.1053/j.semdp.2020.03.00132241578
    [Google Scholar]
  172. SafianR.D. Renal artery stenosis.Prog. Cardiovasc. Dis.202165607010.1016/j.pcad.2021.03.00333745915
    [Google Scholar]
  173. DesaiR. BaturaD. A systematic review and meta-analysis of risk factors and treatment choices in emphysematous pyelonephritis.Int. Urol. Nephrol.202254471773610.1007/s11255‑022‑03131‑635103928
    [Google Scholar]
  174. TziomalosK. AthyrosV.G. Diabetic nephropathy: New risk factors and improvements in diagnosis.Rev. Diabet. Stud.2015121-211011810.1900/RDS.2015.12.11026676664
    [Google Scholar]
  175. ZamoraG. Pearson-ShaverA. L. Minimal change disease.S.P2023
    [Google Scholar]
  176. BokhariS. R. A. ZulfiqarH. MansurA. A. bartter syndrome.S.P.2023
    [Google Scholar]
  177. DeVriezeB.W. HurleyJ.A. Goodpasture Syndrome.Stat Pearls2022
    [Google Scholar]
  178. AlmaaniS. MearaA. RovinB.H. Update on lupus nephritis.Clin. J. Am. Soc. Nephrol.201712582583510.2215/CJN.0578061627821390
    [Google Scholar]
  179. Kremer HovingaJ.A. CoppoP. LämmleB. MoakeJ.L. MiyataT. VanhoorelbekeK. Thrombotic thrombocytopenic purpura.Nat. Rev. Dis. Primers2017311702010.1038/nrdp.2017.2028382967
    [Google Scholar]
  180. ChenR.Y. ChangH. Renal dysplasia.Arch. Pathol. Lab. Med.2015139454755110.5858/arpa.2013‑0660‑RS25822765
    [Google Scholar]
  181. AshkarF. BhullarK.S. WuJ. The effect of polyphenols on kidney disease: Targeting mitochondria.Nutrients20221415311510.3390/nu1415311535956292
    [Google Scholar]
  182. GuerreiroÍ. Ferreira-PêgoC. CarregosaD. SantosC.N. MenezesR. FernandesA.S. CostaJ.G. Polyphenols and their metabolites in renal diseases: An overview.Foods2022117106010.3390/foods1107106035407148
    [Google Scholar]
  183. RanaA. SamtiyaM. DhewaT. MishraV. AlukoR.E. Health benefits of polyphenols: A concise review.J. Food Biochem.20224610e1426410.1111/jfbc.1426435694805
    [Google Scholar]
  184. CaturanoA. D’AngeloM. MormoneA. RussoV. MollicaM.P. SalvatoreT. GalieroR. RinaldiL. VetranoE. MarfellaR. MondaM. GiordanoA. SassoF.C. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications.Curr. Issues Mol. Biol.20234586651666610.3390/cimb4508042037623239
    [Google Scholar]
/content/journals/cds/10.2174/0115748863277092231217142733
Loading
/content/journals/cds/10.2174/0115748863277092231217142733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test