Skip to content
2000
Volume 8, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Receptor-interacting protein 140 (RIP140) is best known for its functional role as a wide-spectrum transcriptional co-regulator. It is highly expressed in metabolic tissues including mature adipocyte. In the past decade, molecular biological and biochemical studies revealed extensive and sequential post-translational modifications (PTMs) of RIP140. Some of these PTMs affect RIP140’s sub-cellular distribution and biological activities that contribute to the development and progression of metabolic diseases. The biological activity of RIP140 that translocates to the cytoplasm in adipocytes is to regulate glucose uptake, adiponectin secretion and lipolysis. Accumulation of RIP140 in the cytoplasm promotes adipocyte dysfunctions, and provides a biomarker of early stages of metabolic diseases. Administering compounds that reduce cytoplasmic accumulation of RIP140 in high fat diet-fed animals can ameliorate metabolic dysfunctions, manifested in improving insulin sensitivity and adiponectin secretion, and reducing incidences of hepatic steatosis. This review summarizes studies demonstrating RIP140’s PTMs and biological activities in the cytoplasm of adipocyte, signaling pathways stimulating these PTMs, and a proof-of-concept that targeting cytoplasmic RIP140 can be an effective strategy in managing metabolic diseases.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/157339912803529922
2012-11-01
2025-05-18
Loading full text...

Full text loading...

/content/journals/cdr/10.2174/157339912803529922
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test