Skip to content
2000
image of A Mechanism-based Perspective on the Use of Flavonoids in the Treatment of Diabetes and its Complications

Abstract

Diabetes is a chronic, irreversible, non-infectious metabolic syndrome associated with low insulin production by the pancreas or due to insulin resistance. The management landscape for diabetes is swiftly evolving due to ongoing advancements. Conventional treatment approaches have struggled to fully address the root causes of the disease while also carrying significant risks of adverse effects. Flavonoids are an extensive class of phytonutrients present in grains, vegetables, fruits, cocoa, tea, wine, and nuts. Many studies have reported that flavonoids have shown diversified pharmacological activity in recent years. Thus, this review will give you an overview of the significant anti-diabetic potential of promising flavonoids. Various search engines such as PubMed, Scopus, Google Scholar, and WoS have been explored by using the keywords “apigenin,” “luteolin,” “naringenin,” “hesperidin,” “kaempferol,” “quercetin,” “myricetin” and “taxifolin” with “anti-diabetic.” The anti-diabetic activity of flavonoids is attributed to various mechanisms, including α glucosidase, α-amylase inhibitory effects, GLUT4 expression, antioxidant, and apoptosis. However, their inadequate biopharmaceutical qualities make their effectiveness in clinical translation constrained. This review aims to highlight plant-derived flavonoids through , , and clinical insights. Additionally, the review highlights the recent advancement in the drug delivery system in diabetes to overcome the limitation of flavonoids.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998335480241022084655
2024-11-29
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cdr/10.2174/0115733998335480241022084655/BMS-CDR-2024-112.html?itemId=/content/journals/cdr/10.2174/0115733998335480241022084655&mimeType=html&fmt=ahah

References

  1. Ong K.L. Stafford L.K. McLaughlin S.A. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023 402 10397 203 234 10.1016/S0140‑6736(23)01301‑6 37356446
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Mathur P. Leburu S. Kulothungan V. Prevalence, awareness, treatment and control of diabetes in india from the countrywide national NCD monitoring survey. Front. Public Health 2022 10 748157 10.3389/fpubh.2022.748157 35359772
    [Google Scholar]
  4. Baker C. Is it type 1 or type 2? It may not be so easy. Obesity and Disease in an Interconnected World Bentham Science Publishers Sharjah, UAE Wylie-Rosett J. Jhangiani S.S. 2015 102 113 10.2174/9781681080369115010011
    [Google Scholar]
  5. Hossain M.J. Al-Mamun M. Islam M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024 7 3 e2004 10.1002/hsr2.2004
    [Google Scholar]
  6. Sole K.B. Staff A.C. Laine K. Maternal diseases and risk of hypertensive disorders of pregnancy across gestational age groups. Pregnancy Hypertens. 2021 25 25 33 10.1016/j.preghy.2021.05.004 34022624
    [Google Scholar]
  7. Shamsad A. Kushwah A.S. Singh R. Banerjee M. Pharmaco-epi-genetic and patho-physiology of gestational diabetes mellitus (GDM): An overview. Health Sci. Rev. (Oxf.) 2023 7 100086 10.1016/j.hsr.2023.100086
    [Google Scholar]
  8. Twaij B.M. Hasan M.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol. 2022 13 1 4 14 10.3390/ijpb13010003
    [Google Scholar]
  9. Riaz A. Rasul A. Kanwal N. Hussain G. Shah M.A. Sarfraz I. Ishfaq R. Batool R. Rukhsar F. Adem Ş. Germacrone: A potent secondary metabolite with therapeutic potential in metabolic diseases, cancer and viral infections. Curr. Drug Metab. 2020 21 14 1079 1090 10.2174/1389200221999200728144801 32723267
    [Google Scholar]
  10. Mahajan M. Kuiry R. Pal P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 2020 18 100255 10.1016/j.jarmap.2020.100255
    [Google Scholar]
  11. Li L.Z. Yan Y. Song Q. Wang Z. Zhang W. Hou Y. Zhang X. Impacts of plant-derived secondary metabolites for improving flora in type 2 diabetes. Curr. Diabetes Rev. 2023 19 7 e160123212750 10.2174/1573399819666230116111856 36650624
    [Google Scholar]
  12. Soltani D. Azizi B. Rahimi R. Talasaz A.H. Rezaeizadeh H. Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front. Cardiovasc. Med. 2022 9 990063 10.3389/fcvm.2022.990063 36247473
    [Google Scholar]
  13. Verma T. Sinha M. Bansal N. Yadav S.R. Shah K. Chauhan N.S. Plants used as antihypertensive. Nat. Prod. Bioprospect. 2021 11 2 155 184 10.1007/s13659‑020‑00281‑x 33174095
    [Google Scholar]
  14. Prayoga D. Aulifa D. Budiman A. Levita J. Plants with anti-ulcer activity and mechanism: A review of preclinical and clinical studies. Drug Des. Devel. Ther. 2024 18 193 213 10.2147/DDDT.S446949 38318501
    [Google Scholar]
  15. Bekono B.D. Ntie-Kang F. Onguéné P.A. Lifongo L.L. Sippl W. Fester K. Owono L.C.O. The potential of anti-malarial compounds derived from African medicinal plants: A review of pharmacological evaluations from 2013 to 2019. Malar. J. 2020 19 1 183 10.1186/s12936‑020‑03231‑7 32423415
    [Google Scholar]
  16. Fakhri S. Moradi S.Z. Ash-Rafzadeh A. Bishayee A. Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacol. Res. 2022 177 105961 10.1016/j.phrs.2021.105961 34718135
    [Google Scholar]
  17. Yuandani J.I. Jantan I. Salim E. Septama A.W. Rullah K. Nainu F. Fasihi Mohd Aluwi M.F. Emran T.B. Roney M. Khairunnisa N.A. Nasution H.R. Fadhil As’ad M. Shamsudin N.F. Abdullah M.A. Marwa Rani H.L. Al Chaira D.M. Aulia N. Mechanistic insights into anti-inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother. Res. 2024 38 6 2931 2961 10.1002/ptr.8147 38600726
    [Google Scholar]
  18. Ghosh S. Sarkar T. Chakraborty R. Ankol plant (Alangium salvifolium) - The treasure trove of bioactives and medicinal potential. Food Biosci. 2023 51 102230 10.1016/j.fbio.2022.102230
    [Google Scholar]
  19. Chamkhi I. Benali T. Aanniz T. El Menyiy N. Guaouguaou F.E. El Omari N. El-Shazly M. Zengin G. Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol. Biochem. 2021 167 269 295 10.1016/j.plaphy.2021.08.001 34391201
    [Google Scholar]
  20. Pattanaik S.K. Anil P.M. Patyar S. Underlying mechanisms of Astragalus membranaceus in the treatment of multiple-sclerosis. RE:view 2023 2800 020188 10.1063/5.0163351
    [Google Scholar]
  21. Chen B. Zhao J. Zhang R. Zhang L. Zhang Q. Yang H. An J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr. Neurosci. 2022 25 5 1078 1099 10.1080/1028415X.2020.1840035 33164705
    [Google Scholar]
  22. Teoh E.S. Secondary metabolites of plants. Medicinal Orchids of Asia Cham Springer 2016 59 73 10.1007/978‑3‑319‑24274‑3_5
    [Google Scholar]
  23. Adhikary S. Dasgupta N. Role of secondary metabolites in plant homeostasis during biotic stress. Biocatal. Agric. Biotechnol. 2023 50 102712 10.1016/j.bcab.2023.102712
    [Google Scholar]
  24. Ekalu A. Habila J.D. Flavonoids: Isolation, characterization, and health benefits. Beni. Suef Univ. J. Basic Appl. Sci. 2020 9 1 45 10.1186/s43088‑020‑00065‑9
    [Google Scholar]
  25. AL-Ishaq R.K. Abotaleb M. Kubatka P. Kajo K. Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  26. Oliveira A.K.S. de Oliveira e Silva A.M. Pereira R.O. Santos A.S. Barbosa Junior E.V. Bezerra M.T. Barreto R.S.S. Quintans-Junior L.J. Quintans J.S.S. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022 62 28 7827 7848 10.1080/10408398.2021.1919051 33970708
    [Google Scholar]
  27. Zhang J. Mao-mao Shao M. Wang M. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. Phytomedicine 2024 128 155535 10.1016/j.phymed.2024.155535 38537442
    [Google Scholar]
  28. Mir S.A. Dar A. Hamid L. Nisar N. Malik J.A. Ali T. Bader G.N. Flavonoids as promising molecules in the cancer therapy: An insight. Curr. Res. Pharmacol. Drug Discov. 2024 6 100167 10.1016/j.crphar.2023.100167 38144883
    [Google Scholar]
  29. Lv D. Cheng X. Tang L. Jiang M. The cardioprotective effect of total flavonoids on myocardial ischemia/reperfusion in rats. Biomed. Pharmacother. 2017 88 277 284 10.1016/j.biopha.2017.01.060 28110194
    [Google Scholar]
  30. Ebrahimi F. Ghazimoradi M.M. Fatima G. Bahramsoltani R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon 2023 9 11 e21849 10.1016/j.heliyon.2023.e21849 38028000
    [Google Scholar]
  31. Wu R. Zhu X. Guan G. Cui Q. Zhu L. Xing Y. Zhao J. Association of dietary flavonoid intakes with prevalence of chronic respiratory diseases in adults. J. Transl. Med. 2024 22 1 205 10.1186/s12967‑024‑04949‑7 38409037
    [Google Scholar]
  32. Patel S. Mathan J.J. Vaghefi E. Braakhuis A.J. The effect of flavonoids on visual function in patients with glaucoma or ocular hypertension: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2015 253 11 1841 1850 10.1007/s00417‑015‑3168‑y 26340868
    [Google Scholar]
  33. Liu F. Bai Y. Wan Y. He J. Li Q. Xie Y. Guo P. Mechanism of flavonoids in the treatment of gouty arthritis (Review). Mol. Med. Rep. 2024 30 2 132 10.3892/mmr.2024.13256 38818832
    [Google Scholar]
  34. Choy K.W. Murugan D. Leong X.F. Abas R. Alias A. Mustafa M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol. 2019 10 1295 10.3389/fphar.2019.01295 31749703
    [Google Scholar]
  35. Chen S. Wang X. Cheng Y. Gao H. Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules 2023 28 13 4982 10.3390/molecules28134982 37446644
    [Google Scholar]
  36. Babu P.V.A. Liu D. Gilbert E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 2013 24 11 1777 1789 10.1016/j.jnutbio.2013.06.003 24029069
    [Google Scholar]
  37. Proença C. Ribeiro D. Freitas M. Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Crit. Rev. Food Sci. Nutr. 2022 62 12 3137 3207 10.1080/10408398.2020.1862755 33427491
    [Google Scholar]
  38. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 57 9 1874 1905 2015 10.1080/10408398.2015.1032400
    [Google Scholar]
  39. Fu Z. Gilbert E.R. Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013 9 1 25 53 10.2174/157339913804143225 22974359
    [Google Scholar]
  40. Rahman M.S. Hossain K.S. Das S. Kundu S. Adegoke E.O. Rahman M.A. Hannan M.A. Uddin M.J. Pang M.G. Role of insulin in health and disease: An update. Int. J. Mol. Sci. 2021 22 12 6403 10.3390/ijms22126403 34203830
    [Google Scholar]
  41. Rui L. Energy metabolism in the liver. Compr. Physiol. 2014 177 197 4 1 10.1002/cphy.c130024 24692138
    [Google Scholar]
  42. Whitticar N.B. Nunemaker C.S. Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis. Front. Endocrinol. (Lausanne) 2020 11 378 10.3389/fendo.2020.00378 32582035
    [Google Scholar]
  43. Antar S.A. Ashour N.A. Sharaky M. Khattab M. Ashour N.A. Zaid R.T. Roh E.J. Elkamhawy A. Al-Karmalawy A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023 168 115734 10.1016/j.biopha.2023.115734 37857245
    [Google Scholar]
  44. Velikova T.V. Kabakchieva P.P. Assyov Y.S. Georgiev T.А. Targeting inflammatory cytokines to improve type 2 diabetes control. BioMed Res. Int. 2021 2021 1 12 10.1155/2021/7297419 34557550
    [Google Scholar]
  45. Pollack R.M. Donath M.Y. LeRoith D. Leibowitz G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care 2016 39 Suppl. 2 S244 S252 10.2337/dcS15‑3015 27440839
    [Google Scholar]
  46. Tsalamandris S. Antonopoulos A.S. Oikonomou E. Papamikroulis G.A. Vogiatzi G. Papaioannou S. Deftereos S. Tousoulis D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019 14 1 50 59 10.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  47. Nedosugova L.V. Markina Y.V. Bochkareva L.A. Kuzina I.A. Petunina N.A. Yudina I.Y. Kirichenko T.V. Inflammatory mechanisms of diabetes and its vascular complications. Biomedicines 2022 10 5 1168 10.3390/biomedicines10051168 35625904
    [Google Scholar]
  48. van Sloun B. Goossens G. Erdos B. Lenz M. van Riel N. Arts I. The impact of amino acids on postprandial glucose and insulin kinetics in humans: A quantitative overview. Nutrients 2020 12 10 3211 10.3390/nu12103211 33096658
    [Google Scholar]
  49. Tanase D.M. Gosav E.M. Botoc T. Floria M. Tarniceriu C.C. Maranduca M.A. Haisan A. Cucu A.I. Rezus C. Costea C.F. Depiction of Branched-Chain Amino Acids (BCAAs) in diabetes with a focus on diabetic microvascular complications. J. Clin. Med. 2023 12 18 6053 10.3390/jcm12186053 37762992
    [Google Scholar]
  50. Zakaria N.F. Hamid M. Khayat M.E. Amino acid-induced impairment of insulin signaling and involvement of G-protein coupling receptor. Nutrients 2021 13 7 2229 10.3390/nu13072229 34209599
    [Google Scholar]
  51. Kozieł K. Urbanska E.M. Kynurenine pathway in diabetes mellitus - Novel pharmacological target? Cells 2023 12 3 460 10.3390/cells12030460 36766803
    [Google Scholar]
  52. Ding Y. Wang S. Lu J. Unlocking the potential: Amino acids’ role in predicting and exploring therapeutic avenues for type 2 diabetes mellitus. Metabolites 2023 13 9 1017 10.3390/metabo13091017 37755297
    [Google Scholar]
  53. Ola M.S. Reduced tyrosine and serine-632 phosphorylation of insulin receptor substrate-1 in the gastrocnemius muscle of obese zucker rat. Curr. Issues Mol. Biol. 2022 44 12 6015 6027 10.3390/cimb44120410 36547071
    [Google Scholar]
  54. Luo H.H. Feng X.F. Yang X.L. Hou R.Q. Fang Z.Z. Interactive effects of asparagine and aspartate homeostasis with sex and age for the risk of type 2 diabetes risk. Biol. Sex Differ. 2020 11 1 58 10.1186/s13293‑020‑00328‑1 33092635
    [Google Scholar]
  55. Holm L.J. Buschard K. L-serine: A neglected amino acid with a potential therapeutic role in diabetes. Acta Pathol. Microbiol. Scand. Suppl. 2019 127 10 655 659 10.1111/apm.12987 31344283
    [Google Scholar]
  56. Chen Y. Michalak M. Agellon L.B. Importance of nutrients and nutrient metabolism on human health. Yale J. Biol. Med. 2018 91 2 95 103 29955217
    [Google Scholar]
  57. Shetty S. Kumari S. Fatty acids and their role in type-2 diabetes (review). Exp. Ther. Med. 2021 22 1 706 10.3892/etm.2021.10138 34007315
    [Google Scholar]
  58. Dobrian A.D. Lieb D.C. Cole B.K. Taylor-Fishwick D.A. Chakrabarti S.K. Nadler J.L. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog. Lipid Res. 2011 50 1 115 131 10.1016/j.plipres.2010.10.005 20970452
    [Google Scholar]
  59. Milstein J.L. Ferris H.A. The brain as an insulin-sensitive metabolic organ. Mol. Metab. 2021 52 101234 10.1016/j.molmet.2021.101234 33845179
    [Google Scholar]
  60. Magnan C. Levin B.E. Luquet S. Brain lipid sensing and the neural control of energy balance. Mol. Cell. Endocrinol. 2015 418 Pt 1 3 8 10.1016/j.mce.2015.09.019 26415589
    [Google Scholar]
  61. Komarnytsky S. Rathinasabapathy T. Wagner C. Metzger B. Carlisle C. Panda C. Le Brun-Blashka S. Troup J.P. Varadharaj S. Endocannabinoid system and its regulation by polyunsaturated fatty acids and full spectrum hemp oils. Int. J. Mol. Sci. 2021 22 11 5479 10.3390/ijms22115479 34067450
    [Google Scholar]
  62. Sies H. Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020 21 7 363 383 10.1038/s41580‑020‑0230‑3 32231263
    [Google Scholar]
  63. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  64. Singh A. Kukreti R. Saso L. Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 2022 27 3 950 10.3390/molecules27030950 35164215
    [Google Scholar]
  65. Boucher J. Kleinridders A. Kahn C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014 6 1 a009191 a009191 10.1101/cshperspect.a009191 24384568
    [Google Scholar]
  66. Wang T. Wang J. Hu X. Huang X. Chen G.X. Current understanding of glucose transporter 4 expression and functional mechanisms. World J. Biol. Chem. 2020 11 3 76 98 10.4331/wjbc.v11.i3.76 33274014
    [Google Scholar]
  67. Miao L. Zhang H. Cheong M.S. Zhong R. Garcia-Oliveira P. Prieto M.A. Cheng K-W. Wang M. Cao H. Nie S. Simal-Gandara J. Cheang W.S. Xiao J. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells. Food Sci. Hum. Wellness 2023 12 6 1991 2000 10.1016/j.fshw.2023.03.021
    [Google Scholar]
  68. Ihim S.A. Kaneko Y.K. Yamamoto M. Yamaguchi M. Kimura T. Ishikawa T. Apigenin alleviates endoplasmic reticulum stress-mediated apoptosis in INS-1 β-cells. Biol. Pharm. Bull. 2023 46 4 630 635 10.1248/bpb.b22‑00913 37005308
    [Google Scholar]
  69. Khallaf I.S.A. Wahman R. Farghaly H.S.M. Bayoumi S.A.L. The inhibitory effect of doum palm (Hyphaene thebaica L. Mart.) leaves extract on α-glucosidase activity. Bull. Pharm. Sci. Assiut Univ. 2022 45 1 163 176 10.21608/bfsa.2022.239375
    [Google Scholar]
  70. Liu H. Huang P. Wang X. Ma Y. Tong J. Li J. Ding H. Apigenin analogs as α-glucosidase inhibitors with antidiabetic activity. Bioorg. Chem. 2024 143 107059 10.1016/j.bioorg.2023.107059 38154388
    [Google Scholar]
  71. Miao L. Cheong M.S. Zhou C. Farag M. Cheang W.S. Xiao J. Apigenin alleviates diabetic endothelial dysfunction through activating AMPK/PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways. Food Front. 2023 4 1 420 431 10.1002/fft2.192
    [Google Scholar]
  72. Hossain C.M. Ghosh M.K. Satapathy B.S. Dey N.S. Mukherjee B. Apigenin causes biochemical modulation, GLUT4 and CD38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am. J. Pharmacol. Toxicol. 2014 9 1 39 52 10.3844/ajptsp.2014.39.52
    [Google Scholar]
  73. Li P. Bukhari S.N.A. Khan T. Chitti R. Bevoor D.B. Hiremath A.R. SreeHarsha N. Singh Y. Gubbiyappa K.S. Apigenin-loaded solid lipid nanoparticle attenuates diabetic nephropathy induced by streptozotocin nicotinamide through Nrf2/HO-1/NF-kB signalling pathway. Int. J. Nanomedicine 2020 15 9115 9124 10.2147/IJN.S256494 33244230
    [Google Scholar]
  74. Gamal Sherif S. Tarek M. Gamal Sabry Y. Hassan Abou Ghalia A. Effect of apigenin on dynamin-related protein 1 in type 1 diabetic rats with cardiovascular complications. Gene 2024 898 148107 10.1016/j.gene.2023.148107 38141690
    [Google Scholar]
  75. Han M. Lu Y. Tao Y. Zhang X. Dai C. Zhang B. Xu H. Li J. Luteolin protects pancreatic β cells against apoptosis through regulation of autophagy and ROS clearance. Pharmaceuticals (Basel) 2023 16 7 975 10.3390/ph16070975 37513887
    [Google Scholar]
  76. Zang Y. Igarashi K. Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci. Biotechnol. Biochem. 2016 80 8 1580 1586 10.1080/09168451.2015.1116928 27170065
    [Google Scholar]
  77. Wang G.G. Lu X.H. Li W. Zhao X. Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based Complement. Alternat. Med. 2011 2011 1 323171 10.1155/2011/323171 21584231
    [Google Scholar]
  78. Daude R.B. Bhadane R. Shah J.S. Luteolin attenuates diabetic nephropathy via inhibition of metalloenzymes in rats. Asian Pac. J. Trop. Biomed. 2023 13 12 507 520 10.4103/2221‑1691.391156
    [Google Scholar]
  79. Ahmed E.S.A. Mohamed H.E. Farrag M.A. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int. J. Immunopathol. Pharmacol. 2022 36 03946320221137435 10.1177/03946320221137435 36319192
    [Google Scholar]
  80. Ge X. He X. Liu J. Zeng F. Chen L. Xu W. Shao R. Huang Y. Farag M.A. Capanoglu E. El-Seedi H.R. Zhao C. Liu B. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J. Adv. Res. 2023 46 173 188 10.1016/j.jare.2022.06.003 35700921
    [Google Scholar]
  81. Zhang M. He L. Liu J. Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp. Clin. Endocrinol. Diabetes 2021 129 10 729 739 10.1055/a‑0998‑7985 31896157
    [Google Scholar]
  82. Kahksha A.O. Alam O. Al-Keridis L.A. Khan J. Naaz S. Alam A. Ashraf S.A. Alshammari N. Adnan M. Beg M.A. Evaluation of antidiabetic effect of luteolin in stz induced diabetic rats: Molecular docking, molecular dynamics, in vitro and in vivo studies. J. Funct. Biomater. 2023 14 3 126 10.3390/jfb14030126 36976050
    [Google Scholar]
  83. Li S. Zhang Y. Sun Y. Zhang G. Bai J. Guo J. Su X. Du H. Cao X. Yang J. Wang T. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutr. Diabetes 2019 9 1 28 10.1038/s41387‑019‑0095‑8 31591391
    [Google Scholar]
  84. Singh P. Bansal S. Kuhad A. Kumar A. Chopra K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct. 2020 11 5 4548 4560 10.1039/C9FO00881K 32400767
    [Google Scholar]
  85. Nguyen-Ngo C. Willcox J.C. Lappas M. Anti-diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Mol. Nutr. Food Res. 2019 63 19 1900224 10.1002/mnfr.201900224 31343820
    [Google Scholar]
  86. Dayarathne L.A. Ranaweera S.S. Natraj P. Rajan P. Lee Y.J. Han C.H. The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells. J. Vet. Sci. 2021 22 6 e92 10.4142/jvs.2021.22.e92 34854271
    [Google Scholar]
  87. Zaidun N.H. Sahema Z.C.T. Mardiana A.A. Santhana R.L. Latiff A.A. Syed Ahmad Fuad S.B. Effects of naringenin on vascular changes in prolonged hyperglycaemia in fructose-STZ diabetic rat model. Drug Discov. Ther. 2019 13 4 212 221 10.5582/ddt.2019.01034 31534073
    [Google Scholar]
  88. Rajappa R. Sireesh D. Salai M.B. Ramkumar K.M. Sarvajayakesavulu S. Madhunapantula S.V. Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Front. Pharmacol. 2019 9 1562 10.3389/fphar.2018.01562 30745874
    [Google Scholar]
  89. Priscilla D.H. Roy D. Suresh A. Kumar V. Thirumurugan K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact. 2014 210 77 85 10.1016/j.cbi.2013.12.014 24412302
    [Google Scholar]
  90. Priscilla D.H. Jayakumar M. Thirumurugan K. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. J. Funct. Foods 2015 14 363 373 10.1016/j.jff.2015.02.005
    [Google Scholar]
  91. Rehman K. Khan I.I. Akash M.S.H. Jabeen K. Haider K. Naringenin downregulates inflammation-mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. J. Food Biochem. 2020 44 10 e13422 10.1111/jfbc.13422 32770581
    [Google Scholar]
  92. Maity S. Mukhopadhyay P. Kundu P.P. Chakraborti A.S. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals - An in vitro and in vivo approach. Carbohydr. Polym. 2017 170 124 132 10.1016/j.carbpol.2017.04.066 28521977
    [Google Scholar]
  93. Jayaraman R. Subramani S. Sheik Abdullah S.H. Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2018 97 98 106 10.1016/j.biopha.2017.10.102 29080465
    [Google Scholar]
  94. Yoshida H. Tsuhako R. Sugita C. Kurokawa M. Glucosyl hesperidin has an anti-diabetic effect in high-fat diet-induced obese mice. Biol. Pharm. Bull. 2021 44 3 422 430 10.1248/bpb.b20‑00849 33642550
    [Google Scholar]
  95. Lee A. Gu H. Gwon M.H. Yun J.M. Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells. Nutr. Res. Pract. 2021 15 5 591 603 10.4162/nrp.2021.15.5.591 34603607
    [Google Scholar]
  96. Ji X. Zhang C. Yang J. Tian Y. You L. Yang H. Li Y. Liu H. Pan D. Liu Z. Kaempferol improves exercise performance by regulating glucose uptake, mitochondrial biogenesis, and protein synthesis via PI3K/AKT and MAPK signaling pathways. Foods 2024 13 7 1068 10.3390/foods13071068 38611372
    [Google Scholar]
  97. Kitakaze T. Jiang H. Nomura T. Hironao K. Yamashita Y. Ashida H. Kaempferol promotes glucose uptake in myotubes through a JAK2-dependent pathway. J. Agric. Food Chem. 2020 68 47 13720 13729 10.1021/acs.jafc.0c05236 33197173
    [Google Scholar]
  98. Zhang Y. Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol. 2011 670 1 325 332 10.1016/j.ejphar.2011.08.011 21914439
    [Google Scholar]
  99. Kashyap B. Saikia K. Samanta S.K. Thakur D. Banerjee S.K. Borah J.C. Talukdar N.C. Kaempferol 3-O-rutinoside from Antidesma acidum Retz. Stimulates glucose uptake through SIRT1 induction followed by GLUT4 translocation in skeletal muscle L6 cells. J. Ethnopharmacol. 2023 301 115788 10.1016/j.jep.2022.115788 36223844
    [Google Scholar]
  100. Alkhalidy H. Moore W. Wang Y. Luo J. McMillan R.P. Zhen W. Zhou K. Liu D. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules 2018 23 9 2338 10.3390/molecules23092338 30216981
    [Google Scholar]
  101. Dhanya R. Arya A.D. Nisha P. Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front. Pharmacol. 2017 8 336 10.3389/fphar.2017.00336 28642704
    [Google Scholar]
  102. Oyedemi S.O. Nwaogu G. Chukwuma C.I. Adeyemi O.T. Matsabisa M.G. Swain S.S. Aiyegoro O.A. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. J. Food Biochem. 2020 44 2 e13127 10.1111/jfbc.13127 31876980
    [Google Scholar]
  103. Yarahmadi A. Khademi F. Mostafavi-Pour Z. Zal F. In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (diabetes and cancer connection). Nutr. Cancer 2018 70 5 770 775 10.1080/01635581.2018.1470654 29781726
    [Google Scholar]
  104. Jeong S.M. Kang M.J. Choi H.N. Kim J.H. Kim J.I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 2012 6 3 201 207 10.4162/nrp.2012.6.3.201 22808343
    [Google Scholar]
  105. Dong B. Shi Z. Dong Y. Chen J. Wu Z.X. Wu W. Chen Z.S. Han C. Quercetin ameliorates oxidative stress-induced cell apoptosis of seminal vesicles via activating Nrf2 in type 1 diabetic rats. Biomed. Pharmacother. 2022 151 113108 10.1016/j.biopha.2022.113108 35594707
    [Google Scholar]
  106. Alam M.M. Meerza D. Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014 109 1 8 14 10.1016/j.lfs.2014.06.005 24946265
    [Google Scholar]
  107. Jiang H. Horiuchi Y. Hironao K. Kitakaze T. Yamashita Y. Ashida H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J. Clin. Biochem. Nutr. 2020 67 1 75 83 10.3164/jcbn.20‑47 32801472
    [Google Scholar]
  108. Zhang Y. Dong H. Wang M. Zhang J. Quercetin isolated from Toona sinensis leaves attenuates hyperglycemia and protects hepatocytes in high-carbohydrate/high-fat diet and alloxan induced experimental diabetic mice. J. Diabetes Res. 2016 2016 1 10 10.1155/2016/8492780 27975068
    [Google Scholar]
  109. Kim J.H. Kang M.J. Choi H.N. Jeong S.M. Lee Y.M. Kim J.I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011 5 2 107 111 10.4162/nrp.2011.5.2.107 21556223
    [Google Scholar]
  110. Gaballah H.H. Zakaria S.S. Mwafy S.E. Tahoon N.M. Ebeid A.M. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomed. Pharmacother. 2017 92 331 339 10.1016/j.biopha.2017.05.086 28554128
    [Google Scholar]
  111. Peng J. Li Q. Li K. Zhu L. Lin X. Lin X. Shen Q. Li G. Xie X. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of Akt signaling and SIRT1. J. Diabetes Res. 2017 2017 1 10 10.1155/2017/3417306 29379801
    [Google Scholar]
  112. Zhang F. Feng J. Zhang J. Kang X. Qian D. Quercetin modulates AMPK/SIRT1/NF-κB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Exp. Ther. Med. 2020 20 6 1 10.3892/etm.2020.9410 33200005
    [Google Scholar]
  113. Yang D.K. Kang H.S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. (Seoul) 2018 26 2 130 138 10.4062/biomolther.2017.254 29462848
    [Google Scholar]
  114. Li Y. Zheng X. Yi X. Liu C. Kong D. Zhang J. Gong M. Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J. 2017 31 6 2603 2611 10.1096/fj.201601339R 28270518
    [Google Scholar]
  115. Zhao Z. Chen Y. Li X. Zhu L. Wang X. Li L. Sun H. Han X. Li J. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora. Biomed. Pharmacother. 2022 153 113530 10.1016/j.biopha.2022.113530 36076610
    [Google Scholar]
  116. Karunakaran U. Elumalai S. Moon J.S. Jeon J.H. Kim N.D. Park K.G. Won K.C. Leem J. Lee I.K. Myricetin protects against high glucose-induced β-cell apoptosis by attenuating endoplasmic reticulum stress via inactivation of cyclin-dependent kinase 5. Diabetes Metab. J. 2019 43 2 192 205 10.4093/dmj.2018.0052 30688049
    [Google Scholar]
  117. Yang L. Gao Y. Gong J. Wang H. Farag M.A. Simal-Gandara J. Zhao Y. Nie S. Xiao J. Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction. Food Front. 2022 3 4 749 772 10.1002/fft2.152
    [Google Scholar]
  118. Kang S.J. Park J.H.Y. Choi H.N. Kim J.I. α-glucosidase inhibitory activities of myricetin in animal models of diabetes mellitus. Food Sci. Biotechnol. 2015 24 5 1897 1900 10.1007/s10068‑015‑0249‑y
    [Google Scholar]
  119. Nallappan D. Ong K.C. Palanisamy U.D. Chua K.H. Kuppusamy U.R. Myricetin derivative-rich fraction from Syzygium malaccense prevents high-fat diet-induced obesity, glucose intolerance and oxidative stress in C57BL/6J mice. Arch. Physiol. Biochem. 2023 129 1 186 197 10.1080/13813455.2020.1808019 32813560
    [Google Scholar]
  120. Li Y.X. Cheng K.C. Liu I.M. Niu H.S. Myricetin increases circulating adropin level after activation of Glucagon-like Peptide 1 (GLP-1) receptor in type-1 diabetic rats. Pharmaceuticals (Basel) 2022 15 2 173 10.3390/ph15020173 35215286
    [Google Scholar]
  121. Lalitha N. Sadashivaiah B. Ramaprasad T.R. Singh S.A. Anti-hyperglycemic activity of myricetin, through inhibition of DPP-4 and enhanced GLP-1 levels, is attenuated by co-ingestion with lectin-rich protein. PLoS One 2020 15 4 e0231543 10.1371/journal.pone.0231543 32282828
    [Google Scholar]
  122. Ahiskali I. Pinar C.L. Kiki M. Mammadov R. Ozbek Bilgin A. Hacimuftuoglu A. Cankaya M. Keskin Cimen F. Altuner D. Effect of taxifolin on development of retinopathy in alloxan-induced diabetic rats. Cutan. Ocul. Toxicol. 2019 38 3 227 232 10.1080/15569527.2019.1588289 30897968
    [Google Scholar]
  123. Gurumayum S. Bharadwaj S. Sheikh Y. Barge S.R. Saikia K. Swargiary D. Ahmed S.A. Thakur D. Borah J.C. Taxifolin-3-O-glucoside from Osbeckia nepalensis Hook. mediates antihyperglycemic activity in CC1 hepatocytes and in diabetic Wistar rats via regulating AMPK/G6Pase/PEPCK signaling axis. J. Ethnopharmacol. 2023 303 115936 10.1016/j.jep.2022.115936 36403743
    [Google Scholar]
  124. Taldaev A. Savina A.D. Olicheva V.V. Ivanov S.V. Terekhov R.P. Ilyasov I.R. Zhevlakova A.K. Selivanova I.A. Protective properties of spheroidal taxifolin form in streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2023 24 15 11962 10.3390/ijms241511962 37569337
    [Google Scholar]
  125. Kondo S. Adachi S. Yoshizawa F. Yagasaki K. Antidiabetic effect of taxifolin in cultured l6 myotubes and type 2 diabetic model kk-ay/ta mice with hyperglycemia and hyperuricemia. Curr. Issues Mol. Biol. 2021 43 3 1293 1306 10.3390/cimb43030092 34698101
    [Google Scholar]
  126. Rehman K. Chohan T.A. Waheed I. Gilani Z. Akash M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem. 2019 120 1 425 438 10.1002/jcb.27398 30191607
    [Google Scholar]
  127. Lengyel M. Kállai-Szabó N. Antal V. Laki A.J. Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019 87 3 20 10.3390/scipharm87030020
    [Google Scholar]
  128. Kállai-Szabó N. Farkas D. Lengyel M. Basa B. Fleck C. Antal I. Microparticles and multi-unit systems for advanced drug delivery. Eur. J. Pharm. Sci. 2024 194 106704 10.1016/j.ejps.2024.106704 38228279
    [Google Scholar]
  129. Shukla S. Pandit V. Trojan microparticles : A composite nanoparticle delivery system. Curr. Drug Ther. 2024 19 4 413 425 10.2174/1574885518666230726142855
    [Google Scholar]
  130. Bale S. Khurana A. Reddy A.S.S. Singh M. Godugu C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2016 33 4 309 361 10.1615/CritRevTherDrugCarrierSyst.2016015798 27910739
    [Google Scholar]
  131. Rafiee M.H. Abdul Rasool B.K. An overview of microparticulate drug delivery system and its extensive therapeutic applications in diabetes. Adv. Pharm. Bull. 2021 12 4 730 746 10.34172/apb.2022.075 36415632
    [Google Scholar]
  132. Safari J. Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc. 2014 18 2 85 99 10.1016/j.jscs.2012.12.009
    [Google Scholar]
  133. Subramani K. Pathak S. Hosseinkhani H. Recent trends in diabetes treatment using nanotechnology. Dig. J. Nanomater. Biostruct. 7 1 2012 85 95
    [Google Scholar]
  134. Nie X. Chen Z. Pang L. Wang L. Jiang H. Chen Y. Zhang Z. Fu C. Ren B. Zhang J. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int. J. Nanomedicine 2020 15 10215 10240 10.2147/IJN.S285134 33364755
    [Google Scholar]
  135. DiSanto R.M. Subramanian V. Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015 7 4 548 564 10.1002/wnan.1329 25641955
    [Google Scholar]
  136. Perumal O. Murthy S.N. Kalia Y.N. Turning theory into practice: The development of modern transdermal drug delivery systems and future trends. Skin Pharmacol. Physiol. 2013 26 4-6 331 342 10.1159/000351815 23921120
    [Google Scholar]
  137. Gupta D.K. Ahad A. Aqil M. Al-Mohizea A.M. Al-Jenoobi F.I. Chapter 18 - Iontophoretic drug delivery: Concepts, approaches, and applications. Advanced and Modern Approaches for Drug Delivery Academic Press 2023 515 546 10.1016/B978‑0‑323‑91668‑4.00016‑2
    [Google Scholar]
  138. Thirunavukkarasu A. Nithya R. Jeyanthi J. Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review. Diabetes Res. Clin. Pract. 2022 194 109996 10.1016/j.diabres.2022.109996 35850300
    [Google Scholar]
  139. Yu F. Li Y. Chen Q. He Y. Wang H. Yang L. Guo S. Meng Z. Cui J. Xue M. Chen X.D. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur. J. Pharm. Biopharm. 2016 103 136 148 10.1016/j.ejpb.2016.03.019 27020531
    [Google Scholar]
  140. Riddle M.C. Philipson L.H. Rich S.S. Carlsson A. Franks P.W. Greeley S.A.W. Nolan J.J. Pearson E.R. Zeitler P.S. Hattersley A.T. Monogenic Diabetes: From genetic insights to population-based precision in care. Reflections from a Diabetes Care editors' expert forum Diabetes Care 2020 43 12 3117 3128 10.2337/dci20‑0065 33560999
    [Google Scholar]
  141. Rubanyi G.M. The future of human gene therapy. Mol. Aspects Med. 2001 22 3 113 142 10.1016/S0098‑2997(01)00004‑8 11470139
    [Google Scholar]
  142. Wirth T. Parker N. Ylä-Herttuala S. History of gene therapy. Gene 2013 525 2 162 169 10.1016/j.gene.2013.03.137 23618815
    [Google Scholar]
  143. Yong Z. Application of Gene therapy in the perspective of the therapy of type 2 diabetes mellitus. J. Biomed. Biosens. 2 1 26 31 2022
    [Google Scholar]
  144. Memon B. Abdelalim E.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors. Cells 2020 9 2 283 10.3390/cells9020283 31979403
    [Google Scholar]
  145. de Klerk E. Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front. Endocrinol. (Lausanne) 2021 12 631463 10.3389/fendo.2021.631463 33716982
    [Google Scholar]
  146. Chen S. Du K. Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res. Ther. 2020 11 1 275 10.1186/s13287‑020‑01793‑6 32641151
    [Google Scholar]
  147. Yazhen Z. Wenyi C. Bing F. Hongcui C. The clinical efficacy and safety of stem cell therapy for diabetes mellitus: A systematic review and meta-analysis. Aging Dis. 2020 11 1 141 153 10.14336/AD.2019.0421 32010488
    [Google Scholar]
  148. Riess M.L. Elorbany R. Weihrauch D. Stowe D.F. Camara A.K.S. PPARγ-independent side effects of thiazolidinediones on mitochondrial redox state in rat isolated hearts. Cells 2020 9 1 252 10.3390/cells9010252 31968546
    [Google Scholar]
  149. Gilbert M.P. Pratley R.E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front. Endocrinol. (Lausanne) 2020 11 178 10.3389/fendo.2020.00178 32308645
    [Google Scholar]
  150. Somtimuang C. Olatunji O.J. Ovatlarnporn C. Evaluation of in vitro α-amylase and α -glucosidase inhibitory potentials of 14 medicinal plants constituted in thai folk antidiabetic formularies. Chem. Biodivers. 2018 15 4 e1800025 10.1002/cbdv.201800025 29460340
    [Google Scholar]
  151. Benjamin M.A.Z. Mohd Mokhtar R.A. Iqbal M. Abdullah A. Azizah R. Sulistyorini L. Mahfudh N. Zakaria Z.A. Medicinal plants of Southeast Asia with anti-α-glucosidase activity as potential source for type-2 diabetes mellitus treatment. J. Ethnopharmacol. 2024 330 118239 10.1016/j.jep.2024.118239 38657877
    [Google Scholar]
  152. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  153. El-Nashar H.A.S. Mostafa N.M. El-Shazly M. Eldahshan O.A. The role of plant-derived compounds in managing diabetes mellitus: A review of literature from 2014 to 2019. Curr. Med. Chem. 2021 28 23 4694 4730 10.2174/1875533XMTExDNzIt5 33231145
    [Google Scholar]
  154. Dias M.C. Pinto D.C.G.A. Silva A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021 26 17 5377 10.3390/molecules26175377 34500810
    [Google Scholar]
  155. Kawabata K. Mukai R. Ishisaka A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015 6 5 1399 1417 10.1039/C4FO01178C 25761771
    [Google Scholar]
  156. Agraharam G. Girigoswami A. Girigoswami K. Myricetin: A multifunctional flavonol in biomedicine. Curr. Pharmacol. Rep. 2022 8 1 48 61 10.1007/s40495‑021‑00269‑2 35036292
    [Google Scholar]
  157. Ramešová Š. Sokolová R. Degano I. Bulíčková J. Žabka J. Gál M. On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Anal. Bioanal. Chem. 2012 402 2 975 982 10.1007/s00216‑011‑5504‑3 22057718
    [Google Scholar]
  158. Chen P. Chen F. Guo Z. Lei J. Zhou B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: challenges and perspectives. Front. Nutr. 2023 10 1221227 10.3389/fnut.2023.1221227 37565039
    [Google Scholar]
  159. Cai J. Wen H. Zhou H. Zhang D. Lan D. Liu S. Li C. Dai X. Song T. Wang X. He Y. He Z. Tan J. Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed. Pharmacother. 2023 164 114990 10.1016/j.biopha.2023.114990 37315435
    [Google Scholar]
  160. Zhao J. Yang J. Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019 570 118642 10.1016/j.ijpharm.2019.118642 31446024
    [Google Scholar]
  161. Liga S. Paul C. Péter F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023 12 14 2732 10.3390/plants12142732 37514347
    [Google Scholar]
  162. Lotfi M.S. Kalalinia F. Flavonoids in combination with stem cells for the treatment of neurological disorders. Neurochem. Res. 2023 48 11 3270 3282 10.1007/s11064‑023‑03986‑w 37462837
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998335480241022084655
Loading
/content/journals/cdr/10.2174/0115733998335480241022084655
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gestational diabetes ; flavanones ; flavanonols ; type 2 diabetes ; flavonols ; type 1 diabetes ; Flavones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test