Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting β-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly β-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998322754240802063730
2024-08-12
2025-05-04
The full text of this item is not currently available.

References

  1. Al-LawatiJ.A. Diabetes mellitus: A local and global public health emergency!Oman Med. J.201732317717910.5001/omj.2017.3428584596
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  3. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  4. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  5. SinghV.P. BaliA. SinghN. JaggiA.S. Advanced glycation end products and diabetic complications.Korean J. Physiol. Pharmacol.201418111410.4196/kjpp.2014.18.1.124634591
    [Google Scholar]
  6. Rask-MadsenC. KingG.L. Vascular complications of diabetes: Mechanisms of injury and protective factors.Cell Metab.2013171203310.1016/j.cmet.2012.11.01223312281
    [Google Scholar]
  7. VlassaraH. UribarriJ. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both?Curr. Diab. Rep.201414145310.1007/s11892‑013‑0453‑124292971
    [Google Scholar]
  8. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom1204054235454131
    [Google Scholar]
  9. RaveendranA.V. ChackoE.C. PappachanJ.M. Non-pharmacological treatment options in the management of diabetes mellitus.Eur. Endocrinol.2018142313930349592
    [Google Scholar]
  10. HashemiR. RahimlouM. BaghdadianS. ManafiM. Investigating the effect of DASH diet on blood pressure of patients with type 2 diabetes and prehypertension: Randomized clinical trial.Diabetes Metab. Syndr.20191311410.1016/j.dsx.2018.06.01430641678
    [Google Scholar]
  11. RahimlouM. YariZ. RayyaniE. KeshavarzS.A. HosseiniS. MorshedzadehN. HekmatdoostA. Effects of ginger supplementation on anthropometric, glycemic and metabolic parameters in subjects with metabolic syndrome: A randomized, double-blind, placebo-controlled study.J. Diabetes Metab. Disord.201918111912510.1007/s40200‑019‑00397‑z31275882
    [Google Scholar]
  12. WaddenT.A. TronieriJ.S. ButrynM.L. Lifestyle modification approaches for the treatment of obesity in adults.Am. Psychol.202075223525110.1037/amp000051732052997
    [Google Scholar]
  13. ZengZ. HuangS.Y. SunT. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes.Diabetes Ther.202011112521253810.1007/s13300‑020‑00922‑x32930968
    [Google Scholar]
  14. PatelD.K. KumarR. LalooD. HemalathaS. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity.Asian Pac. J. Trop. Biomed.20122541142010.1016/S2221‑1691(12)60067‑723569941
    [Google Scholar]
  15. LiuJ. ZhouH. SongL. YangZ. QiuM. WangJ. ShiS. Anthocyanins: Promising natural products with diverse pharmacological activities.Molecules20212613380710.3390/molecules2613380734206588
    [Google Scholar]
  16. GhanavatiM. RahmaniJ. ClarkC.C.T. HosseinabadiS.M. RahimlouM. Pistachios and cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled clinical trials.Complement. Ther. Med.20205210251310.1016/j.ctim.2020.10251332951758
    [Google Scholar]
  17. RahimlouM. MorshedzadehN. KarimiS. JafariradS. Association between dietary glycemic index and glycemic load with depression: A systematic review.Eur. J. Nutr.20185772333234010.1007/s00394‑018‑1710‑529744611
    [Google Scholar]
  18. MorvaridzadehM. SepidarkishM. FazelianS. RahimlouM. OmidiA. ArdehaliS.H. SanoobarM. HeshmatiJ. Effect of calcium and Vitamin D co-supplementation on blood pressure: A systematic review and meta-analysis.Clin. Ther.2020423e45e6310.1016/j.clinthera.2020.01.00532067744
    [Google Scholar]
  19. ChaiyasutC. WoraharnS. SivamaruthiB.S. LailerdN. KesikaP. PeerajanS. Lactobacillus fermentum HP3 mediated fermented Hericium erinaceus juice as a health promoting food supplement to manage diabetes mellitus.J. Evid. Based Integr. Med.2018232515690X187656910.1177/2515690X1876569929619846
    [Google Scholar]
  20. SivamaruthiB.S. KesikaP. PrasanthM.I. ChaiyasutC. A mini review on antidiabetic properties of fermented foods.Nutrients20181012197310.3390/nu1012197330551623
    [Google Scholar]
  21. YedjouC.G. GrigsbyJ. MbemiA. NelsonD. MildortB. LatinwoL. TchounwouP.B. The management of diabetes mellitus using medicinal plants and vitamins.Int. J. Mol. Sci.20232410908510.3390/ijms2410908537240430
    [Google Scholar]
  22. SivamaruthiB. KesikaP. ChaiyasutC. A comprehensive review on anti-diabetic property of rice bran.Asian Pac. J. Trop. Biomed.201881798410.4103/2221‑1691.221142
    [Google Scholar]
  23. SivamaruthiB.S. KesikaP. ChaiyasutC. Anthocyanins in thai rice varieties: Distribution and pharmacological significance.Int. Food Res. J.201825520242032
    [Google Scholar]
  24. ChaiyasutC. SivamaruthiB.S. KesikaP. SubasankariK. Beneficial effects of anthocyanins against diabetes mellitus associated consequences-A mini review.Asian Pac. J. Trop. Biomed.201881047147710.4103/2221‑1691.244137
    [Google Scholar]
  25. SharmaS. PanditaG. BhosaleY.K. Anthocyanin: Potential tool for diabetes management and different delivery aspects.Trends Food Sci. Technol.202314010417010.1016/j.tifs.2023.104170
    [Google Scholar]
  26. MaoT. AkshitF.N.U. MohanM.S. Effects of anthocyanin supplementation in diet on glycemic and related cardiovascular biomarkers in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials.Front. Nutr.202310119981510.3389/fnut.2023.119981537810926
    [Google Scholar]
  27. KozłowskaA. Nitsch-OsuchA. Anthocyanins and type 2 diabetes: An update of human study and clinical trial.Nutrients20241611167410.3390/nu1611167438892607
    [Google Scholar]
  28. YeX. ChenW. HuangX.F. YanF.J. DengS.G. ZhengX.D. ShanP.F. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: Data from insulin resistant hepatocyte and diabetic mouse.Nutr. Diabetes2024141710.1038/s41387‑024‑00265‑738429305
    [Google Scholar]
  29. OliveiraH. FernandesA. F BrásN. MateusN. de FreitasV. FernandesI. Anthocyanins as antidiabetic agents-in vitro and in silico approaches of preventive and therapeutic effects.Molecules20202517381310.3390/molecules2517381332825758
    [Google Scholar]
  30. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  31. SlavinJ.L. LloydB. Health benefits of fruits and vegetables.Adv. Nutr.20123450651610.3945/an.112.00215422797986
    [Google Scholar]
  32. CâmaraJ.S. LocatelliM. PereiraJ.A.M. OliveiraH. ArlorioM. FernandesI. PerestreloR. FreitasV. BordigaM. Behind the scenes of anthocyanins-from the health benefits to potential applications in food, pharmaceutical and cosmetic fields.Nutrients20221423513310.3390/nu1423513336501163
    [Google Scholar]
  33. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  34. KhooH.E. AzlanA. TangS.T. LimS.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits.Food Nutr. Res.2017611136177910.1080/16546628.2017.136177928970777
    [Google Scholar]
  35. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules2517380932825684
    [Google Scholar]
  36. PuttaS. YarlaN.S. Kumar KE. LakkappaD.B. KamalM.A. ScottiL. ScottiM.T. AshrafG.M. RaoB.S.B. DS.K. ReddyG.V. TarasovV.V. ImandiS.B. AlievG. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications.Curr. Med. Chem.201925395347537110.2174/092986732566617120610194529210634
    [Google Scholar]
  37. FangJ. Classification of fruits based on anthocyanin types and relevance to their health effects.Nutrition20153111-121301130610.1016/j.nut.2015.04.01526250485
    [Google Scholar]
  38. JuliaM. María JoséN. Ana MaríaJ.M. AgustínG.A. Anthocyanin pigments: Importance, sample preparation and extraction.Phenolic Compounds-Natural Sources, Importance and Applications. MarcosS.H. MarianaP.T. Maria del RosarioG.M. LondonIntechOpen201710.5772/66892
    [Google Scholar]
  39. LuoX. WangR. WangJ. LiY. LuoH. ChenS. ZengX. HanZ. Acylation of anthocyanins and their applications in the food industry: Mechanisms and recent research advances.Foods20221114216610.3390/foods1114216635885408
    [Google Scholar]
  40. EnaruB. DrețcanuG. PopT.D. StǎnilǎA. DiaconeasaZ. Anthocyanins: Factors affecting their stability and degradation.Antioxidants20211012196710.3390/antiox1012196734943070
    [Google Scholar]
  41. NurtianaW. Anthocyanin as natural colorant: A review.Food Sci. Tech J.20191117
    [Google Scholar]
  42. AlappatB. AlappatJ. Anthocyanin pigments: Beyond aesthetics.Molecules20202523550010.3390/molecules2523550033255297
    [Google Scholar]
  43. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  44. HeF. MuL. YanG.L. LiangN.N. PanQ.H. WangJ. ReevesM.J. DuanC.Q. Biosynthesis of anthocyanins and their regulation in colored grapes.Molecules201015129057909110.3390/molecules1512905721150825
    [Google Scholar]
  45. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box.Molecules2015209168521689110.3390/molecules20091685226389876
    [Google Scholar]
  46. LiuY. TikunovY. SchoutenR.E. MarcelisL.F.M. VisserR.G.F. BovyA. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review.Front Chem.201865210.3389/fchem.2018.0005229594099
    [Google Scholar]
  47. ChengJ. WeiG. ZhouH. GuC. VimolmangkangS. LiaoL. HanY. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach.Plant Physiol.201416621044105810.1104/pp.114.24687625106821
    [Google Scholar]
  48. ThilavechT. NgamukoteS. AbeywardenaM. AdisakwattanaS. Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation.Int. J. Biol. Macromol.20157551552010.1016/j.ijbiomac.2015.02.00425684571
    [Google Scholar]
  49. KrauseK.M. SerioA.W. KaneT.R. ConnollyL.E. Aminoglycosides: An overview.Cold Spring Harb. Perspect. Med.201666a02702910.1101/cshperspect.a02702927252397
    [Google Scholar]
  50. FarrJ.E. SigurdsonG.T. GiustiM.M. Stereochemistry and glycosidic linkages of C3-glycosylations affected the reactivity of cyanidin derivatives.Food Chem.201927844345110.1016/j.foodchem.2018.11.07630583395
    [Google Scholar]
  51. BlaszczykS.A. HomanT.C. TangW. Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts.Carbohydr. Res.2019471647710.1016/j.carres.2018.11.01230508658
    [Google Scholar]
  52. ZhaoC.L. ChenZ.J. BaiX.S. DingC. LongT.J. WeiF.G. MiaoK.R. Structure–activity relationships of anthocyanidin glycosylation.Mol. Divers.201418368770010.1007/s11030‑014‑9520‑z24792223
    [Google Scholar]
  53. GonçalvesA.C. NunesA.R. FalcãoA. AlvesG. SilvaL.R. Dietary effects of anthocyanins in human health: A comprehensive review.Pharmaceuticals202114769010.3390/ph1407069034358116
    [Google Scholar]
  54. de Pascual-TeresaS. Sanchez-BallestaM.T. García-VigueraC. Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. SpringerBerlin Heidelberg201318031819
    [Google Scholar]
  55. Merecz-SadowskaA. SitarekP. KowalczykT. ZajdelK. JęcekM. NowakP. ZajdelR. Food Anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits.Nutrients20231513301610.3390/nu1513301637447342
    [Google Scholar]
  56. HuangW. ZhuY. LiC. SuiZ. MinW. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells.Oxid. Med. Cell. Longev.2016201611010.1155/2016/159180327034731
    [Google Scholar]
  57. GonzaliS. PerataP. Anthocyanins from purple tomatoes as novel antioxidants to promote human health.Antioxidants2020910101710.3390/antiox910101733092051
    [Google Scholar]
  58. EkerM.E. AabyK. Budic-LetoI. Rimac BrnčićS. ElS.N. KarakayaS. SimsekS. ManachC. WiczkowskiW. de Pascual-TeresaS. A Review of factors affecting anthocyanin bioavailability: possible implications for the inter-individual variability.Foods201991210.3390/foods901000231861362
    [Google Scholar]
  59. KuntzS. RudloffS. AsseburgH. BorschC. FröhlingB. UngerF. DoldS. SpenglerB. RömppA. KunzC. Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo.Br. J. Nutr.201511371044105510.1017/S000711451500016125778541
    [Google Scholar]
  60. WiczkowskiW. Szawara-NowakD. RomaszkoJ. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma.Food Chem.201619073074010.1016/j.foodchem.2015.06.02126213032
    [Google Scholar]
  61. AyvazH. CabarogluT. AkyildizA. PalaC.U. TemizkanR. AğçamE. AyvazZ. DurazzoA. LucariniM. DireitoR. DiaconeasaZ. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential.Antioxidants20221214810.3390/antiox1201004836670910
    [Google Scholar]
  62. TalavéraS. FelginesC. TexierO. BessonC. ManachC. LamaisonJ.L. RémésyC. Anthocyanins are efficiently absorbed from the small intestine in rats.J. Nutr.200413492275227910.1093/jn/134.9.227515333716
    [Google Scholar]
  63. YangM. KooS.I. SongW.O. ChunO.K. Food matrix affecting anthocyanin bioavailability: review.Curr. Med. Chem.201118229130010.2174/09298671179408838021110799
    [Google Scholar]
  64. LiuZ. HuM. Natural polyphenol disposition via coupled metabolic pathways.Expert Opin. Drug Metab. Toxicol.20073338940610.1517/17425255.3.3.38917539746
    [Google Scholar]
  65. WinterA.N. BickfordP.C. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease.Antioxidants20198933310.3390/antiox809033331443476
    [Google Scholar]
  66. BendokasV. StanysV. MažeikienėI. TrumbeckaiteS. BanieneR. LiobikasJ. Anthocyanins: From the field to the antioxidants in the body.Antioxidants20209981910.3390/antiox909081932887513
    [Google Scholar]
  67. GuiH. SunL. LiuR. SiX. LiD. WangY. ShuC. SunX. JiangQ. QiaoY. LiB. TianJ. Current knowledge of anthocyanin metabolism in the digestive tract: Absorption, distribution, degradation, and interconversion.Crit. Rev. Food Sci. Nutr.202363225953596610.1080/10408398.2022.202629135057688
    [Google Scholar]
  68. JokiojaJ. YangB. LinderborgK.M. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation.Compr. Rev. Food Sci. Food Saf.20212065570561510.1111/1541‑4337.1283634611984
    [Google Scholar]
  69. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_2033437689
    [Google Scholar]
  70. FajansS.S. BellG.I. PolonskyK.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young.N. Engl. J. Med.20013451397198010.1056/NEJMra00216811575290
    [Google Scholar]
  71. KühlC. Etiology and pathogenesis of gestational diabetes.Diabetes Care199821Suppl. 2B19B269704223
    [Google Scholar]
  72. SapraA. BhandariP. Diabetes. In: StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  73. MoedeT. LeibigerI.B. BerggrenP.O. Alpha cell regulation of beta cell function.Diabetologia202063102064207510.1007/s00125‑020‑05196‑332894317
    [Google Scholar]
  74. Da Silva XavierG. The cells of the islets of langerhans.J. Clin. Med.2018735410.3390/jcm703005429534517
    [Google Scholar]
  75. American Diabetes Association Diagnosis and classification of diabetes mellitus.Diabetes Care200932Suppl 1S62S6719118289
    [Google Scholar]
  76. WilcoxG. Insulin and insulin resistance.Clin. Biochem. Rev.2005262193916278749
    [Google Scholar]
  77. YanL.J. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress.J. Diabetes Res.2014201411110.1155/2014/13791925019091
    [Google Scholar]
  78. RöderP.V. WuB. LiuY. HanW. Pancreatic regulation of glucose homeostasis.Exp. Mol. Med.2016483e21910.1038/emm.2016.626964835
    [Google Scholar]
  79. JahandidehF. BourqueS.L. WuJ. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides.Food Chem. X20221310022210.1016/j.fochx.2022.10022235498998
    [Google Scholar]
  80. SharabiK. TavaresC.D.J. RinesA.K. PuigserverP. Molecular pathophysiology of hepatic glucose production.Mol. Aspects Med.201546213310.1016/j.mam.2015.09.00326549348
    [Google Scholar]
  81. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  82. FarmakiP. DamaskosC. GarmpisN. GarmpiA. SavvanisS. DiamantisE. Complications of the type 2 diabetes mellitus.Curr. Cardiol. Rev.202116424925110.2174/1573403X160420122911553133407062
    [Google Scholar]
  83. PerkinsB.A. SherrJ.L. MathieuC. Type 1 diabetes glycemic management: Insulin therapy, glucose monitoring, and automation.Science2021373655452252710.1126/science.abg450234326234
    [Google Scholar]
  84. VaughanE.M. RuedaJ.J. SamsonS.L. HymanD.J. Reducing the burden of diabetes treatment: A review of low-cost oral hypoglycemic medications.Curr. Diabetes Rev.202016885185810.2174/157339981666620020611231832026779
    [Google Scholar]
  85. KellyJ. KarlsenM. SteinkeG. Type 2 diabetes remission and lifestyle medicine: A position statement from the American college of lifestyle medicine.Am. J. Lifestyle Med.202014440641910.1177/155982762093096233281521
    [Google Scholar]
  86. Gökçay CanpolatA. ŞahinM. Glucose lowering treatment modalities of type 2 diabetes mellitus.Adv. Exp. Med. Biol.2020130772710.1007/5584_2020_51632200500
    [Google Scholar]
  87. LiakosC.I. PapadopoulosD.P. SanidasE.A. MarkouM.I. HatziagelakiE.E. GrassosC.A. VelliouM.L. BarbetseasJ.D. Blood pressure-lowering effect of newer antihyperglycemic agents (SGLT-2 inhibitors, GLP-1 receptor agonists, and DPP-4 inhibitors).Am. J. Cardiovasc. Drugs202121212313710.1007/s40256‑020‑00423‑z32780214
    [Google Scholar]
  88. ChuzhoN. MishraN. TandonN. KumarN. Therapies for type 1 diabetes: Is a cure possible?Curr. Diabetes Rev.2023197e02122221156510.2174/157339981966622120216125936476434
    [Google Scholar]
  89. JingZ. LiY. MaY. ZhangX. LiangX. ZhangX. Leverage biomaterials to modulate immunity for type 1 diabetes.Front. Immunol.20221399728710.3389/fimmu.2022.99728736405706
    [Google Scholar]
  90. SuJ. LuoY. HuS. TangL. OuyangS. Advances in research on type 2 diabetes mellitus targets and therapeutic agents.Int. J. Mol. Sci.202324171338110.3390/ijms24171338137686185
    [Google Scholar]
  91. ChenS. DuK. ZouC. Current progress in stem cell therapy for type 1 diabetes mellitus.Stem Cell Res. Ther.202011127510.1186/s13287‑020‑01793‑632641151
    [Google Scholar]
  92. GiriB. DeyS. DasT. SarkarM. BanerjeeJ. DashS.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity.Biomed. Pharmacother.201810730632810.1016/j.biopha.2018.07.15730098549
    [Google Scholar]
  93. NazR. SaqibF. AwadallahS. WahidM. LatifM.F. IqbalI. MubarakM.S. Food polyphenols and type ii diabetes mellitus: Pharmacology and mechanisms.Molecules20232810399610.3390/molecules2810399637241737
    [Google Scholar]
  94. ZajecA. Trebušak PodkrajšekK. TesovnikT. ŠketR. Čugalj KernB. Jenko BizjanB. Šmigoc SchweigerD. BattelinoT. KovačJ. Pathogenesis of type 1 diabetes: Established facts and new insights.Genes202213470610.3390/genes1304070635456512
    [Google Scholar]
  95. Pop-BusuiR. KelloggA. ChengH. Cyclooxygenase-2 pathway as a potential therapeutic target in diabetic peripheral neuropathy.Curr. Drug Targets200891687610.2174/13894500878343169118220714
    [Google Scholar]
  96. SalehiB. Sharifi-RadJ. CappelliniF. ReinerŽ. ZorzanD. ImranM. SenerB. KilicM. El-ShazlyM. FahmyN.M. Al-SayedE. MartorellM. TonelliC. PetroniK. DoceaA.O. CalinaD. MaroyiA. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action.Front. Pharmacol.202011130010.3389/fphar.2020.0130032982731
    [Google Scholar]
  97. AlnajjarM. Kumar BarikS. BestwickC. CampbellF. CruickshankM. FarquharsonF. HoltropG. HorganG. LouisP. MoarK.M. RussellW.R. ScobbieL. HoggardN. Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin.J. Funct. Foods20206410359710.1016/j.jff.2019.103597
    [Google Scholar]
  98. Castro-AcostaM.L. SmithL. MillerR.J. McCarthyD.I. FarrimondJ.A. HallW.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations.J. Nutr. Biochem.20163815416110.1016/j.jnutbio.2016.09.00227764725
    [Google Scholar]
  99. MaZ. DuB. LiJ. YangY. ZhuF. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro Investigations.Int. J. Mol. Sci.202122201107610.3390/ijms22201107634681733
    [Google Scholar]
  100. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/841676328819546
    [Google Scholar]
  101. SpeerH. D’CunhaN.M. AlexopoulosN.I. McKuneA.J. NaumovskiN. Anthocyanins and human health-a focus on oxidative stress, inflammation and disease.Antioxidants20209536610.3390/antiox905036632353990
    [Google Scholar]
  102. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017211702310.1038/sigtrans.2017.2329158945
    [Google Scholar]
  103. Del Bo’C. MarinoM. RisoP. MøllerP. PorriniM. Anthocyanins and metabolites resolve TNF-α-mediated production of E-selectin and adhesion of monocytes to endothelial cells.Chem. Biol. Interact.2019300495510.1016/j.cbi.2019.01.00230611791
    [Google Scholar]
  104. IjinuT.P. De LellisL.F. ShanmugaramaS. Pérez-GregorioR. SasikumarP. UllahH. BuccatoD.G. Di MinnoA. BaldiA. DagliaM. Anthocyanins as immunomodulatory dietary supplements: A nutraceutical perspective and micro-/nano-strategies for enhanced bioavailability.Nutrients20231519415210.3390/nu1519415237836436
    [Google Scholar]
  105. KolluruG.K. BirS.C. KevilC.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing.Int. J. Vasc. Med.2012201213010.1155/2012/91826722611498
    [Google Scholar]
  106. FörstermannU. LiH. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling.Br. J. Pharmacol.2011164221322310.1111/j.1476‑5381.2010.01196.x21198553
    [Google Scholar]
  107. BelwalT. NabaviS. NabaviS. HabtemariamS. Dietary anthocyanins and insulin resistance: When food becomes a medicine.Nutrients2017910111110.3390/nu910111129023424
    [Google Scholar]
  108. García-AlonsoM. RimbachG. Rivas-GonzaloJ.C. de Pascual-TeresaS. Antioxidant and cellular activities of anthocyanins and their corresponding vitisins A--studies in platelets, monocytes, and human endothelial cells.J. Agric. Food Chem.200452113378338410.1021/jf035360v15161201
    [Google Scholar]
  109. CerqueiraJ.V.A. de AndradeM.T. RafaelD.D. ZhuF. MartinsS.V.C. Nunes-NesiA. BeneditoV. FernieA.R. ZsögönA. Anthocyanins and reactive oxygen species: A team of rivals regulating plant development?Plant Mol. Biol.20231124-521322310.1007/s11103‑023‑01362‑437351824
    [Google Scholar]
  110. FliegerJ. FliegerW. BajJ. MaciejewskiR. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles.Materials20211415413510.3390/ma1415413534361329
    [Google Scholar]
  111. GupteA.A. LyonC.J. HsuehW.A. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis.Curr. Diab. Rep.201313336237110.1007/s11892‑013‑0372‑123475581
    [Google Scholar]
  112. ZhongQ. MishraM. KowluruR.A. Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.20135463941394810.1167/iovs.13‑1159823633659
    [Google Scholar]
  113. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  114. ZaaC.A. MarceloÁ.J. AnZ. Medina-FrancoJ.L. Velasco-VelázquezM.A. Anthocyanins: Molecular aspects on their neuroprotective activity.Biomolecules20231311159810.3390/biom1311159838002280
    [Google Scholar]
  115. ZhaoX. AnX. YangC. SunW. JiH. LianF. The crucial role and mechanism of insulin resistance in metabolic disease.Front. Endocrinol.202314114923910.3389/fendo.2023.114923937056675
    [Google Scholar]
  116. MohamedJ. HN.N.A. HZ.A. BB.S. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation.Sultan Qaboos Univ. Med. J.2016162e132e14110.18295/squmj.2016.16.02.00227226903
    [Google Scholar]
  117. StullA. Blueberries’ impact on insulin resistance and glucose intolerance.Antioxidants2016544410.3390/antiox504004427916833
    [Google Scholar]
  118. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/cphy.c13002424692138
    [Google Scholar]
  119. SavovaM.S. MihaylovaL.V. TewsD. WabitschM. GeorgievM.I. Targeting PI3K/AKT signaling pathway in obesity.Biomed. Pharmacother.202315911424410.1016/j.biopha.2023.11424436638594
    [Google Scholar]
  120. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a00165120457564
    [Google Scholar]
  121. GaoZ. HwangD. BatailleF. LefevreM. YorkD. QuonM.J. YeJ. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex.J. Biol. Chem.200227750481154812110.1074/jbc.M20945920012351658
    [Google Scholar]
  122. YungJ.H.M. GiaccaA. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes.Cells20209370610.3390/cells903070632183037
    [Google Scholar]
  123. Diep NguyenT.M. Adiponectin: Role in physiology and pathophysiology.Int. J. Prev. Med.202011113610.4103/ijpvm.IJPVM_193_2033088464
    [Google Scholar]
  124. ChenP.N. ChuS.C. ChiouH.L. KuoW.H. ChiangC.L. HsiehY.S. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line.Cancer Lett.2006235224825910.1016/j.canlet.2005.04.03315975709
    [Google Scholar]
  125. AhnS.W. GangG.T. TadiS. NedumaranB. KimY.D. ParkJ.H. KweonG.R. KooS.H. LeeK. AhnR.S. YimY.H. LeeC.H. HarrisR.A. ChoiH.S. Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells.J. Biol. Chem.201228750418754188710.1074/jbc.M112.42155223074219
    [Google Scholar]
  126. NakaeJ. KitamuraT. SilverD.L. AcciliD. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression.J. Clin. Invest.200110891359136710.1172/JCI20011287611696581
    [Google Scholar]
  127. BaeU.J. JungE.S. JungS.J. ChaeS.W. ParkB.H. Mulberry leaf extract displays antidiabetic activity in db/db mice via Akt and AMP-activated protein kinase phosphorylation.Food Nutr. Res.201862010.29219/fnr.v62.147330150922
    [Google Scholar]
  128. AlqahtaniA.S. HidayathullaS. RehmanM.T. ElGamalA.A. Al-MassaraniS. Razmovski-NaumovskiV. AlqahtaniM.S. El DibR.A. AlAjmiM.F. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules20191016110.3390/biom1001006131905962
    [Google Scholar]
  129. HullattiK. TelagariM. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions.Indian J. Pharmacol.201547442542910.4103/0253‑7613.16127026288477
    [Google Scholar]
  130. KoepsellH. Glucose transporters in the small intestine in health and disease.Pflugers Arch.202047291207124810.1007/s00424‑020‑02439‑532829466
    [Google Scholar]
  131. OuassouH. ZahidiT. BouknanaS. BouhrimM. MekhfiH. ZiyyatA. Legssyer AzizM. BnouhamM. Inhibition of α-glucosidase, intestinal glucose absorption, and antidiabetic properties by Caralluma europaea. Evid. Based Complement. Alternat. Med.201820181810.1155/2018/958947230228829
    [Google Scholar]
  132. ZulfiqarS. MarshallL.J. BoeschC. Hibiscus sabdariffa inhibits α-glucosidase activity in vitro and lowers postprandial blood glucose response in humans.Human Nutrition & Metabolism20223020016410.1016/j.hnm.2022.200164
    [Google Scholar]
  133. SariD. CairnsJ. SafitriA. FatchiyahF. Virtual prediction of the delphinidin-3-O-glucoside and peonidin-3-O-glucoside as anti-inflammatory of TNF-α signaling.Acta Inform. Med.201927315215710.5455/aim.2019.27.152‑15731762569
    [Google Scholar]
  134. PromyosN. TemviriyanukulP. SuttisansaneeU. Investigation of anthocyanidins and anthocyanins for targeting α-glucosidase in diabetes mellitus.Prev. Nutr. Food Sci.202025326327110.3746/pnf.2020.25.3.26333083375
    [Google Scholar]
  135. Olivas-AguirreF. Rodrigo-GarcíaJ. Martínez-RuizN. Cárdenas-RoblesA. Mendoza-DíazS. Álvarez-ParrillaE. González-AguilarG. De la RosaL. Ramos-JiménezA. Wall-MedranoA. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects.Molecules2016219126410.3390/molecules2109126427657039
    [Google Scholar]
  136. AkkarachiyasitS. Yibchok-AnunS. WacharasindhuS. AdisakwattanaS. In vitro inhibitory effects of cyandin-3-rutinoside on pancreatic α-amylase and its combined effect with acarbose.Molecules20111632075208310.3390/molecules1603207521368719
    [Google Scholar]
  137. SeinoY. FukushimaM. YabeD. GIP and GLP‐1, the two incretin hormones: Similarities and differences.J. Diabetes Investig.201011-282310.1111/j.2040‑1124.2010.00022.x24843404
    [Google Scholar]
  138. HattingM. TavaresC.D.J. SharabiK. RinesA.K. PuigserverP. Insulin regulation of gluconeogenesis.Ann. N. Y. Acad. Sci.201814111213510.1111/nyas.1343528868790
    [Google Scholar]
  139. RichterB. Bandeira-EchtlerE. BergerhoffK. LerchC. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes.Vasc. Health Risk Manag.20084475376810.2147/VHRM.S170719065993
    [Google Scholar]
  140. CerfM.E. Beta cell dysfunction and insulin resistance.Front. Endocrinol.201343710.3389/fendo.2013.0003723542897
    [Google Scholar]
  141. LyuX. ZhuX. ZhaoB. DuL. ChenD. WangC. LiuG. RanX. Effects of dipeptidyl peptidase-4 inhibitors on beta-cell function and insulin resistance in type 2 diabetes: meta-analysis of randomized controlled trials.Sci. Rep.2017714486510.1038/srep4486528322294
    [Google Scholar]
  142. FanJ. JohnsonM.H. LilaM.A. YousefG. de MejiaE.G. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management.Evid. Based Complement. Alternat. Med.2013201311310.1155/2013/47950524069048
    [Google Scholar]
  143. JohnsonM.H. de MejiaE.G. FanJ. LilaM.A. YousefG.G. Anthocyanins and proanthocyanidins from blueberry–blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate‐utilizing enzymes in vitro.Mol. Nutr. Food Res.20135771182119710.1002/mnfr.20120067823526625
    [Google Scholar]
  144. LilaM.A. Anthocyanins and human health: An in vitro investigative approach.J. Biomed. Biotechnol.20042004530631315577194
    [Google Scholar]
  145. TangvarasittichaiS. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus.World J. Diabetes20156345648010.4239/wjd.v6.i3.45625897356
    [Google Scholar]
  146. KangG.G. FrancisN. HillR. LE WatersD. BlanchardC.L. SanthakumarA.B. Coloured rice phenolic extracts increase expression of genes associated with insulin secretion in rat pancreatic insulinoma β-cells.Int. J. Mol. Sci.2020219331410.3390/ijms2109331432392844
    [Google Scholar]
  147. LiH. ParkH.M. JiH.S. HanJ. KimS.K. ParkH.Y. JeongT.S. Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice.Nutr. Res.202073839610.1016/j.nutres.2019.09.00531923607
    [Google Scholar]
  148. LesF. CásedasG. GómezC. MolinerC. ValeroM.S. LópezV. The role of anthocyanins as antidiabetic agents: From molecular mechanisms to in vivo and human studies.J. Physiol. Biochem.202177110913110.1007/s13105‑020‑00739‑z32504385
    [Google Scholar]
  149. SunC.D. ZhangB. ZhangJ.K. XuC.J. WuY.L. LiX. ChenK.S. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice.J. Med. Food201215328829810.1089/jmf.2011.180622181073
    [Google Scholar]
  150. SzotI. ŁysiakG.P. SosnowskaB. Chojdak-ŁukasiewiczJ. Health-promoting properties of anthocyanins from cornelian cherry (Cornus mas L.) fruits.Molecules202429244910.3390/molecules2902044938257363
    [Google Scholar]
  151. ChatterjeeC. SparksD.L. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia.Am. J. Pathol.201117841429143310.1016/j.ajpath.2010.12.05021406176
    [Google Scholar]
  152. ShahK. ShahP. Effect of Anthocyanin supplementations on lipid profile and inflammatory markers: A systematic review and meta-analysis of randomized controlled trials.Cholesterol2018201811210.1155/2018/845079329850238
    [Google Scholar]
  153. KhanA. ZamanG. AndersonR.A. Bay leaves improve glucose and lipid profile of people with type 2 diabetes.J. Clin. Biochem. Nutr.2009441525610.3164/jcbn.08‑18819177188
    [Google Scholar]
  154. SchenkS. SaberiM. OlefskyJ.M. Insulin sensitivity: Modulation by nutrients and inflammation.J. Clin. Invest.200811892992300210.1172/JCI3426018769626
    [Google Scholar]
  155. FarbsteinD. LevyA.P. HDL dysfunction in diabetes: Causes and possible treatments.Expert Rev. Cardiovasc. Ther.201210335336110.1586/erc.11.18222390807
    [Google Scholar]
  156. RóżańskaD. Regulska-IlowB. The significance of anthocyanins in the prevention and treatment of type 2 diabetes.Adv. Clin. Exp. Med.201827113514210.17219/acem/6498329521054
    [Google Scholar]
  157. FatimaM.T. BhatA.A. NisarS. FakhroK.A. Al-Shabeeb AkilA.S. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile.Heliyon202391e1269810.1016/j.heliyon.2022.e1269836632095
    [Google Scholar]
  158. Herrera-BalandranoD.D. ChaiZ. HutabaratR.P. BetaT. FengJ. MaK. LiD. HuangW. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies.Redox Biol.20214610210010.1016/j.redox.2021.10210034416477
    [Google Scholar]
  159. LiuJ. GaoF. JiB. WangR. YangJ. LiuH. ZhouF. Anthocyanins-rich extract of wild Chinese blueberry protects glucolipotoxicity-induced INS832/13 β-cell against dysfunction and death.J. Food Sci. Technol.20155253022302910.1007/s13197‑014‑1379‑625892804
    [Google Scholar]
  160. Grahame HardieD. AMP ‐activated protein kinase: A key regulator of energy balance with many roles in human disease.J. Intern. Med.2014276654355910.1111/joim.1226824824502
    [Google Scholar]
  161. NizamutdinovaI.T. JinY.C. ChungJ.I. ShinS.C. LeeS.J. SeoH.G. LeeJ.H. ChangK.C. KimH.J. The anti‐diabetic effect of anthocyanins in streptozotocin‐induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis.Mol. Nutr. Food Res.200953111419142910.1002/mnfr.20080052619785000
    [Google Scholar]
  162. SuwannasomN. ThepmaleeC. KhoothiamK. ThephinlapC. Evaluation of anti-hyperglycemia and complications of red and black thai jasmine rice cultivars in streptozotocin-induced diabetic rats.Molecules20222722804310.3390/molecules2722804336432144
    [Google Scholar]
  163. BarikS.K. RussellW.R. MoarK.M. CruickshankM. ScobbieL. DuncanG. HoggardN. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.J. Nutr. Biochem.20207810832510.1016/j.jnutbio.2019.10832531952012
    [Google Scholar]
  164. JohnsonM.H. de MejiaE.G. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic β-cells in vitro.J. Agric. Food Chem.201664122569258110.1021/acs.jafc.6b0023926967923
    [Google Scholar]
  165. EsatbeyogluT. Rodríguez-WernerM. SchlösserA. WinterhalterP. RimbachG. Fractionation, enzyme inhibitory and cellular antioxidant activity of bioactives from purple sweet potato (Ipomoea batatas).Food Chem.201722144745610.1016/j.foodchem.2016.10.07727979226
    [Google Scholar]
  166. LeeJ.S. KimY.R. SongI.G. HaS.J. KimY.E. BaekN.I. HongE.K. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis.Int. J. Mol. Med.201535240541210.3892/ijmm.2014.201325435295
    [Google Scholar]
  167. SuantaweeT. ElazabS. HsuW. YaoS. ChengH. AdisakwattanaS. Cyanidin stimulates insulin secretion and pancreatic β-cell gene expression through activation of l-type voltage-dependent Ca2+ channels.Nutrients20179881410.3390/nu908081428788070
    [Google Scholar]
  168. YanF. DaiG. ZhengX. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice.J. Nutr. Biochem.201636688010.1016/j.jnutbio.2016.07.00427580020
    [Google Scholar]
  169. VuongT. MartineauL.C. RamassamyC. MatarC. HaddadP.S. Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytesThis article is one of a selection of papers published in this special issue (part 1 of 2) on the safety and efficacy of natural health products.Can. J. Physiol. Pharmacol.200785995696510.1139/Y07‑09018066143
    [Google Scholar]
  170. GuoH. XiaM. ZouT. LingW. ZhongR. ZhangW. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1.J. Nutr. Biochem.201223434936010.1016/j.jnutbio.2010.12.01321543211
    [Google Scholar]
  171. TakikawaM. InoueS. HorioF. TsudaT. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice.J. Nutr.2010140352753310.3945/jn.109.11821620089785
    [Google Scholar]
  172. ChenZ. WangC. PanY. GaoX. ChenH. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice.Food Funct.20189142643910.1039/C7FO00983F29220052
    [Google Scholar]
  173. HsuJ.D. WuC.C. HungC.N. WangC.J. HuangH.P. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice.Yao Wu Shi Pin Fen Xi201624473073728911610
    [Google Scholar]
  174. JiangT. ShuaiX. LiJ. YangN. DengL. LiS. HeY. GuoH. LiY. HeJ. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice.J. Agric. Food Chem.20206861596160810.1021/acs.jafc.9b0691631927925
    [Google Scholar]
  175. YeX. ChenW. TuP. JiaR. LiuY. LiY. TangQ. ZhengX. ChuQ. Food-derived cyanidin-3- O -glucoside alleviates oxidative stress: evidence from the islet cell line and diabetic db/db mice.Food Funct.20211222115991161010.1039/D1FO02385C34713882
    [Google Scholar]
  176. ZhangZ.F. LuJ. ZhengY.L. WuD.M. HuB. ShanQ. ChengW. LiM.Q. SunY.Y. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice.J. Nutr. Biochem.20132461008101810.1016/j.jnutbio.2012.07.00922995384
    [Google Scholar]
  177. JeonY.D. KangS.H. MoonK.H. LeeJ.H. KimD.G. KimW. KimJ.S. AhnB.Y. JinJ.S. The effect of aronia berry on type 1 diabetes in vivo and in vitro.J. Med. Food201821324425310.1089/jmf.2017.393929470134
    [Google Scholar]
  178. DeFuriaJ. BennettG. StrisselK.J. JamesW.P.II MilburyP.E. GreenbergA.S. ObinM.S. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae.J. Nutr.200913981510151610.3945/jn.109.10515519515743
    [Google Scholar]
  179. TsudaT. HorioF. KitohJ. OsawaT. Protective effects of dietary cyanidin 3-O-beta-D-glucoside on liver ischemia-reperfusion injury in rats.Arch. Biochem. Biophys.1999368236136610.1006/abbi.1999.131110441388
    [Google Scholar]
  180. MatsuiT. EbuchiS. KobayashiM. FukuiK. SugitaK. TeraharaN. MatsumotoK. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory action.J. Agric. Food Chem.200250257244724810.1021/jf025913m12452639
    [Google Scholar]
  181. FeshaniA.M. KouhsariS.M. MohammadiS. Vaccinium arctostaphylos, a common herbal medicine in Iran: Molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats.J. Ethnopharmacol.20111331677410.1016/j.jep.2010.09.00220850514
    [Google Scholar]
  182. BrunettiL. WangL. WassefA. GongY. BrinkerA. BuckleyB. LipskyP.E. OndarP. PoianiG. ZhaoL. KongA.N. SchlesingerN. Pharmacokinetics and pharmacodynamics of anthocyanins after administration of tart cherry juice to individuals with gout.Mol. Nutr. Food Res.2023679220055010.1002/mnfr.20220055036843307
    [Google Scholar]
  183. de FerrarsR.M. CzankC. ZhangQ. BottingN.P. KroonP.A. CassidyA. KayC.D. The pharmacokinetics of anthocyanins and their metabolites in humans.Br. J. Pharmacol.2014171133268328210.1111/bph.1267624602005
    [Google Scholar]
  184. CelliG.B. GhanemA. BrooksM.S.L. A theoretical physiologically based pharmacokinetic approach for modeling the fate of anthocyanins in vivo.Crit. Rev. Food Sci. Nutr.201757153197320710.1080/10408398.2015.110429027002538
    [Google Scholar]
  185. GuoY. ZhangP. LiuY. ZhaL. LingW. GuoH. A dose-response evaluation of purified anthocyanins on inflammatory and oxidative biomarkers and metabolic risk factors in healthy young adults: A randomized controlled trial.Nutrition20207411074510.1016/j.nut.2020.11074532278858
    [Google Scholar]
  186. YangL. LingW. YangY. ChenY. TianZ. DuZ. ChenJ. XieY. LiuZ. YangL. Role of purified anthocyanins in improving cardiometabolic risk factors in chinese men and women with prediabetes or early untreated diabetes—a randomized controlled trial.Nutrients2017910110410.3390/nu910110428994705
    [Google Scholar]
  187. YangL. LingW. QiuY. LiuY. WangL. YangJ. WangC. MaJ. Anthocyanins increase serum adiponectin in newly diagnosed diabetes but not in prediabetes: A randomized controlled trial.Nutr. Metab.20201717810.1186/s12986‑020‑00498‑032973912
    [Google Scholar]
  188. YangL. QiuY. LingW. LiuZ. YangL. WangC. PengX. WangL. ChenJ. Anthocyanins regulate serum adipsin and visfatin in patients with prediabetes or newly diagnosed diabetes: A randomized controlled trial.Eur. J. Nutr.20216041935194410.1007/s00394‑020‑02379‑x32930848
    [Google Scholar]
  189. ParkE. EdirisingheI. WeiH. VijayakumarL.P. BanaszewskiK. CappozzoJ.C. Burton-FreemanB. A dose–response evaluation of freeze‐dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single‐blinded, diet‐controlled crossover trial.Mol. Nutr. Food Res.20166051099110910.1002/mnfr.20150084526842771
    [Google Scholar]
  190. LiD. ZhangY. LiuY. SunR. XiaM. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients.J. Nutr.2015145474274810.3945/jn.114.20567425833778
    [Google Scholar]
  191. GowdV. JiaZ. ChenW. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances.Trends Food Sci. Technol.20176811310.1016/j.tifs.2017.07.015
    [Google Scholar]
  192. GaizA.A. MosawyS. ColsonN. SinghI. Potential of anthocyanin to prevent cardiovascular disease in diabetes.Altern. Ther. Health Med.2018243404729477135
    [Google Scholar]
  193. LinK. Lloyd-JonesD.M. LiD. CarrJ.C. Quantitative imaging biomarkers for the evaluation of cardiovascular complications in type 2 diabetes mellitus.J. Diabetes Complications201428223424210.1016/j.jdiacomp.2013.09.00824309215
    [Google Scholar]
  194. ChenY.F. ShibuM.A. FanM.J. ChenM.C. ViswanadhaV.P. LinY.L. LaiC.H. LinK.H. HoT.J. KuoW.W. HuangC.Y. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis.J. Nutr. Biochem.2016319810510.1016/j.jnutbio.2015.12.02027133428
    [Google Scholar]
  195. HanssonJ. LindL. HultheJ. SundströmJ. Relations of serum MMP-9 and TIMP-1 levels to left ventricular measures and cardiovascular risk factors: A population-based study.Eur. J. Cardiovasc. Prev. Rehabil.200916329730310.1097/HJR.0b013e328321310819387352
    [Google Scholar]
  196. NajjarR.S. FeresinR.G. Protective role of polyphenols in heart failure: Molecular targets and cellular mechanisms underlying their therapeutic potential.Int. J. Mol. Sci.2021224166810.3390/ijms2204166833562294
    [Google Scholar]
  197. QiC. MaoX. ZhangZ. WuH. Classification and differential diagnosis of diabetic nephropathy.J. Diabetes Res.201720171710.1155/2017/863713828316995
    [Google Scholar]
  198. WadaJ. MakinoH. Inflammation and the pathogenesis of diabetic nephropathy.Clin. Sci.2013124313915210.1042/CS2012019823075333
    [Google Scholar]
  199. KangM.K. LiJ. KimJ.L. GongJ.H. KwakS.N. ParkJ.H.Y. LeeJ.Y. LimS.S. KangY.H. Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration.Am. J. Physiol. Renal Physiol.20123037F1060F106910.1152/ajprenal.00106.201222791342
    [Google Scholar]
  200. QinY. ZhaiQ. LiY. CaoM. XuY. ZhaoK. WangT. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool.Biomed. Pharmacother.20181031223123010.1016/j.biopha.2018.04.13729864902
    [Google Scholar]
  201. DamianoS. LauritanoC. LongobardiC. AndrettaE. ElagozA.M. RapisardaP. Di IorioM. FlorioS. CiarciaR. Effects of a red orange and lemon extract in obese diabetic Zucker rats: Role of nicotinamide adenine dinucleotide phosphate oxidase.J. Clin. Med.202095160010.3390/jcm905160032466228
    [Google Scholar]
  202. StevensM. NealC.R. CraciunE.C. DroncaM. HarperS.J. OlteanS. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy.PLoS One2019143e021291010.1371/journal.pone.021291030865689
    [Google Scholar]
  203. KohE.S. LimJ.H. KimM.Y. ChungS. ShinS.J. ChoiB.S. KimH.W. HwangS.Y. KimS.W. ParkC.W. ChangY.S. Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice.J. Transl. Med.201513120310.1186/s12967‑015‑0563‑426116070
    [Google Scholar]
  204. ZhengH.X. QiS.S. HeJ. HuC.Y. HanH. JiangH. LiX.S. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/Smad expression.J. Agric. Food Chem.202068154399441010.1021/acs.jafc.0c0068032192334
    [Google Scholar]
  205. WuC.C. HungC.N. ShinY.C. WangC.J. HuangH.P. Myrciaria cauliflora extracts attenuate diabetic nephropathy involving the Ras signaling pathway in streptozotocin/nicotinamide mice on a high fat diet.Yao Wu Shi Pin Fen Xi201624113614628911396
    [Google Scholar]
  206. WeiJ. WuH. ZhangH. LiF. ChenS. HouB. ShiY. ZhaoL. DuanH. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice.Int. J. Mol. Med.20184131608161810.3892/ijmm.2018.337829328429
    [Google Scholar]
  207. Juster-SwitlykK. SmithA.G. Updates in diabetic peripheral neuropathy.F1000Res2016510.12688/f1000research.7898.1
    [Google Scholar]
  208. FeldmanE.L. CallaghanB.C. Pop-BusuiR. ZochodneD.W. WrightD.E. BennettD.L. BrilV. RussellJ.W. ViswanathanV. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑131197153
    [Google Scholar]
  209. AlbersJ.W. Pop-BusuiR. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes.Curr. Neurol. Neurosci. Rep.201414847310.1007/s11910‑014‑0473‑524954624
    [Google Scholar]
  210. OyenihiA.B. AyelesoA.O. MukwevhoE. MasolaB. Antioxidant strategies in the management of diabetic neuropathy.BioMed Res. Int.2015201511510.1155/2015/51504225821809
    [Google Scholar]
  211. LiS. WuB. FuW. ReddivariL. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis.Int. J. Mol. Sci.20192010258810.3390/ijms2010258831137777
    [Google Scholar]
  212. KozłowskaA. DzierżanowskiT. Targeting inflammation by anthocyanins as the novel therapeutic potential for chronic diseases: An update.Molecules20212614438010.3390/molecules2614438034299655
    [Google Scholar]
  213. SongY. HuangL. YuJ. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling.J. Neuroimmunol.20163011610.1016/j.jneuroim.2016.11.00127847126
    [Google Scholar]
  214. KimJ. KimC.S. LeeY.M. SohnE. JoK. KimJ.S. Vaccinium myrtillus extract prevents or delays the onset of diabetes--induced blood–retinal barrier breakdown.Int. J. Food Sci. Nutr.201566223624210.3109/09637486.2014.97931925582181
    [Google Scholar]
  215. ZhaoF. GaoX. GeX. CuiJ. LiuX. Cyanidin-3-o-glucoside (C3G) inhibits vascular leakage regulated by microglial activation in early diabetic retinopathy and neovascularization in advanced diabetic retinopathy.Bioengineered20211229266927810.1080/21655979.2021.199651234699316
    [Google Scholar]
  216. AltmannC. SchmidtM. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration.Int. J. Mol. Sci.201819111010.3390/ijms1901011029301251
    [Google Scholar]
  217. TianJ.L. SiX. ShuC. WangY.H. TanH. ZangZ.H. ZhangW.J. XieX. ChenY. LiB. Synergistic effects of combined anthocyanin and metformin treatment for hyperglycemia in vitro and in vivo.J. Agric. Food Chem.20227041182119510.1021/acs.jafc.1c0779935044756
    [Google Scholar]
  218. WenH. TianH. LiuC. ZhangX. PengY. YangX. ChenF. LiJ. Metformin and cyanidin 3- O -galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice.Food Funct.20211221109941100810.1039/D1FO02122B34657937
    [Google Scholar]
  219. SivamaruthiB.S. KesikaP. ChaiyasutC. The influence of supplementation of anthocyanins on obesity-associated comorbidities: A concise review.Foods20209668710.3390/foods906068732466434
    [Google Scholar]
  220. TsaiH.Y. HuangP.H. LinF.Y. ChenJ.S. LinS.J. ChenJ.W. Ginkgo biloba extract reduces high-glucose-induced endothelial reactive oxygen species generation and cell adhesion molecule expression by enhancing HO-1 expression via Akt/eNOS and p38 MAP kinase pathways.Eur. J. Pharm. Sci.2013484-580381110.1016/j.ejps.2013.01.00223357604
    [Google Scholar]
  221. PetroskiW. MinichD.M. Is there such a thing as “Anti-nutrients”? A narrative review of perceived problematic plant compounds.Nutrients20201210292910.3390/nu1210292932987890
    [Google Scholar]
  222. YangK. ChenJ. ZhangT. YuanX. GeA. WangS. XuH. ZengL. GeJ. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis.Front. Immunol.20221394974610.3389/fimmu.2022.94974636159792
    [Google Scholar]
  223. ChusakC. PasukamonsetP. ChantarasinlapinP. AdisakwattanaS. Postprandial glycemia, insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich riceberry rice.Nutrients202012378210.3390/nu1203078232188005
    [Google Scholar]
  224. JawiI.M. ArijanaI.G.K.N. SubawaA.A.N. WirasutaI.M.A.G. The pharmacological mechanisms of anthocyanin in aqueous extract of purple sweet potato as antihyperglycemic herbal remedy.Glob. J. Med. Res.20161622732
    [Google Scholar]
  225. YangY. ZhangJ. ZhouQ. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: A comprehensive review.Crit. Rev. Food Sci. Nutr.20226241119114310.1080/10408398.2020.183581933078617
    [Google Scholar]
  226. LiZ. TianJ. ChengZ. TengW. ZhangW. BaoY. WangY. SongB. ChenY. LiB. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways.Crit. Rev. Food Sci. Nutr.202363267878789510.1080/10408398.2022.205552635333674
    [Google Scholar]
  227. MatoutM. HalmeA.S. WisemanJ. A case of acute kidney injury secondary to black cherry concentrate in a patient with chronic kidney disease secondary to type 2 diabetes mellitus.CEN Case Rep.20198321221510.1007/s13730‑019‑00396‑230963415
    [Google Scholar]
  228. Burton-FreemanB. BrzezińskiM. ParkE. SandhuA. XiaoD. EdirisingheI. A selective role of dietary anthocyanins and flavan-3-ols in reducing the risk of type 2 diabetes mellitus: A review of recent evidence.Nutrients201911484110.3390/nu1104084131013914
    [Google Scholar]
  229. Rodriguez-MateosA. IstasG. BoschekL. FelicianoR.P. MillsC.E. BobyC. Gomez-AlonsoS. MilenkovicD. HeissC. Circulating anthocyanin metabolites mediate vascular benefits of blueberries: Insights from randomized controlled trials, metabolomics, and nutrigenomics.J. Gerontol. A Biol. Sci. Med. Sci.201974796797610.1093/gerona/glz04730772905
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998322754240802063730
Loading
/content/journals/cdr/10.2174/0115733998322754240802063730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test