Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Plants are used in medicine because they are low-cost, widely available, and have few side effects (compared to pharmacological treatment). Plants have phytocompounds with antidiabetic properties that can be delivered using nanoparticles (NPs).

Objective

To describe the antidiabetic properties of green synthesized NPs (GSNPs) and their characterization methods.

Methods

Three databases were consulted using the terms “type 2 diabetes mellitus,” “antidiabetic effects,” “phytochemicals,” “plants,” and “nanoparticles.” Studies describing the antidiabetic effects ( or animal models) of NPs synthesized by plant extracts and characterizing them through UV-Vis spectroscopy, FTIR, XRD, SEM, TEM, and DLS were included.

Results

16 studies were included. studies reported enzyme inhibition values between 11% () and 100% () for alfa-amylase and between 41.1% () and 100% () for alfa-glucosidase. Animal studies with Wistar Albino rats having diabetes (induced by alloxan or streptozotocin) reported improved blood glucose, triglycerides, total cholesterol, LDL, and HDL after treatment with GSNPs. Regarding characterization, NP sizes were measured with DLS (25-181.5 nm), SEM (52.1-91 nm), and TEM (8.7-40.6 nm). The surface charge was analyzed with zeta potential (-30.7 to -2.9 mV). UV-Vis spectroscopy was employed to confirm the formations of AgNPs (360-460 nm), AuNPs (524-540 nm), and ZnONPs (300-400 nm), and FTIR was used to identify plant extract functional groups.

Conclusion

GSNP characterization (shape, size, zeta potential, and others) is essential to know the viability and stability, which are important to achieve health benefits for biomedical applications. Studies reported good enzyme inhibition percentages in studies, decreasing blood glucose levels and improving lipid profiles in animal models with diabetes. However, these studies had limitations in the methodology and potential risk of bias, so results need careful interpretation.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998306451240425135229
2024-05-20
2025-05-06
Loading full text...

Full text loading...

References

  1. TinajeroM.G. MalikV.S. An update on the epidemiology of type 2 diabetes.Endocrinol. Metab. Clin. North Am.202150333735510.1016/j.ecl.2021.05.013 34399949
    [Google Scholar]
  2. AkinyeluJ. AladetuyiA. MbathaL.S. OladimejiO. Evaluation of the antioxidant, antidiabetic, and anticholinesterase potential of biogenic silver nanoparticles from Khaya grandifoliola.Pharm. Nanotechnol.2023111829210.2174/2211738511666221101123633 36321240
    [Google Scholar]
  3. ZolkepliH. WidodoR.T. MahmoodS. SalimN. AwangK. AhmadN. A review on the delivery of plant-based antidiabetic agents using nanocarriers: Current status and their role in combatting hyperglycaemia.Polymers202214152991
    [Google Scholar]
  4. NieX.Jnr ChenZ. PangL. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds.Int. J. Nanomedicine202015102151024010.2147/IJN.S285134 33364755
    [Google Scholar]
  5. OliveiraS. Monteiro-AlfredoT. SilvaS. MatafomeP. Curcumin derivatives for Type 2 Diabetes management and prevention of complications.Arch. Pharm. Res.202043656758110.1007/s12272‑020‑01240‑3 32557163
    [Google Scholar]
  6. BlahovaJ. MartiniakovaM. BabikovaM. KovacovaV. MondockovaV. OmelkaR. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus.Pharmaceuticals202114880610.3390/ph14080806
    [Google Scholar]
  7. PannuN. BhatnagarA. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases.Biomed. Pharmacother.20191091092237225110.1016/j.biopha.2018.11.075 30551481
    [Google Scholar]
  8. DewanjeeS. ChakrabortyP. MukherjeeB. De FeoV. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy.Int. J. Molec Sci.202021144
    [Google Scholar]
  9. DelphinoF.M. Munhoz FigueiredoL. Resveratrol supplementation and type 2 diabetes: A systematic review and meta-analysis.Food Sci. Nutr.202116
    [Google Scholar]
  10. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. The effects of curcumin on diabetes mellitus: A systematic review.Front. Endocrinol.202112May66944810.3389/fendo.2021.669448 34012421
    [Google Scholar]
  11. OnaolapoA.Y. OnaolapoO.J. Nutraceuticals and diet-based phytochemicals in type 2 diabetes mellitus: From whole food to components with defined roles and mechanisms.Curr. Diabetes Rev.2019161122510.2174/1573399814666181031103930 30378500
    [Google Scholar]
  12. GanesanP. ArulselvanP. ChoiD.K. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus current status.Int. J. Nanomedicine2017121097111110.2147/IJN.S124601 28223801
    [Google Scholar]
  13. HuF. SunD.S. WangK.L. ShangD.Y. Nanomedicine of plant origin for the treatment of metabolic disorders.Front. Bioeng. Biotechnol.20229February81191710.3389/fbioe.2021.811917 35223819
    [Google Scholar]
  14. HossainN. IslamM.A. ChowdhuryM.A. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications.Heliyon2022812e1231310.1016/j.heliyon.2022.e12313 36590472
    [Google Scholar]
  15. HooijmansC.R. RoversM.M. de VriesR.B.M. LeenaarsM. Ritskes-HoitingaM. LangendamM.W. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  16. ChangC.L.T. LinY. BartolomeA.P. ChenY.C. ChiuS.C. YangW.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds.In: Evidence-based Complement Altern Med20132013378657
    [Google Scholar]
  17. MandalD. SarkarT. ChakrabortyR. Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology.In: Appl Biochem Biotechnol20231952131951310.1007/s12010‑022‑04132‑y
    [Google Scholar]
  18. EssghaierB. DridiR. MottolaF. RoccoL. ZidM.F. Biosynthesis and characterization of silver nanoparticles from the extremophile plant Aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities.Nanomaterials2023131100
    [Google Scholar]
  19. MokgalaboniK. NtamoY. ZiqubuK. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence.Food Funct.20211224122351224910.1039/D1FO02696H 34847213
    [Google Scholar]
  20. PivariF. MingioneA. BrasacchioC. SoldatiL. Curcumin and type 2 diabetes mellitus: prevention and treatment.Nutrients2019118183710.3390/nu11081837 31398884
    [Google Scholar]
  21. QuispeC. Herrera-BravoJ. JavedZ. KhanK. RazaS. Gulsunoglu-KonuskanZ. Therapeutic applications of curcumin in diabetes: A review and perspective.Biomed Res. Int.20222022137589210.1155/2022/1375892
    [Google Scholar]
  22. AltobelliE. AngelettiP.M. MarzilianoC. MastrodomenicoM. GiulianiA.R. PetrocelliR. Potential therapeutic effects of curcumin on glycemic and lipid profile in uncomplicated type 2 diabetes—a meta-analysis of randomized controlled trial.Nutrients202113240410.3390/nu13020404 33514002
    [Google Scholar]
  23. SatoS. MukaiY. Modulation of chronic inflammation by quercetin: The beneficial effects on obesity.J. Inflamm. Res.20201342143110.2147/JIR.S228361 32848440
    [Google Scholar]
  24. DhanyaR. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy.Biomed. Pharmacother.202214611256010.1016/j.biopha.2021.112560
    [Google Scholar]
  25. AnsariP. ChoudhuryS.T. SeidelV. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life12081146 36013325
    [Google Scholar]
  26. MahjabeenW. KhanD.A. MirzaS.A. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial.Complement. Ther. Med.20226610281910.1016/j.ctim.2022.102819
    [Google Scholar]
  27. WickramasingheA.S.D. KalansuriyaP. AttanayakeA.P. Nanoformulation of plant-based natural products for type 2 diabetes mellitus: from formulation design to therapeutic applications.Curr. Ther. Res. Clin. Exp.20229610067210.1016/j.curtheres.2022.100672 35586563
    [Google Scholar]
  28. NagarajaS. AhmedS.S. BharathiD.R. GoudanavarP. Green synthesis and characterization of silver nanoparticles of psidium guajava leaf extract and evaluation for its antidiabetic activity.Molecules202227144336
    [Google Scholar]
  29. IqbalJ. AndleebA. AshrafH. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles.RSC Adv.20221222140691408310.1039/D2RA01929A 35558860
    [Google Scholar]
  30. JamilS. DastagirG. FoudahA.I. Carduus edelbergii Rech. f. mediated fabrication of gold nanoparticles; characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs.Molecules20222719666910.3390/molecules27196669 36235206
    [Google Scholar]
  31. DasG. ShinH.S. PatraJ.K. Comparative assessment of antioxidant, anti-diabetic and cytotoxic effects of three peel/shell food waste extract-mediated silver nanoparticles.Int. J. Nanomedicine2020159075908810.2147/IJN.S277625 33235452
    [Google Scholar]
  32. AnjumS. NawazK. AhmadB. HanoC. AbbasiB.H. Green synthesis of biocompatible core–shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities.RSC Advances20221237238452385910.1039/D2RA03196E 36093232
    [Google Scholar]
  33. ChinnasamyG. ChandrasekharanS. BhatnagarS. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities.Int. J. Nanomedicine2019149823983610.2147/IJN.S231340 31849471
    [Google Scholar]
  34. ShaikhI.A. MuddapurU.M. BagewadiZ.K. Characterization of bioactive compounds from Acacia concinna and Citrus limon, silver nanoparticles’ production by A. concinna extract, and their biological properties.Molecules2022279271510.3390/molecules27092715 35566068
    [Google Scholar]
  35. DasG. ShinH.S. PatraJ.K. Key health benefits of korean ueong dry root extract combined silver nanoparticles.Int. J. Nanomedicine202217September4261427510.2147/IJN.S357343 36134204
    [Google Scholar]
  36. AmmuluM.A. Vinay ViswanathK. GiduturiA.K. VemuriP.K. MangamuriU. PodaS. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications.J. Genet. Eng. Biotechnol.20211912110.1186/s43141‑021‑00119‑0 33507438
    [Google Scholar]
  37. Ul HaqM.N. ShahG.M. GulA. Biogenic synthesis of silver nanoparticles using Phagnalon niveum and its in vivo anti-diabetic effect against alloxan-induced diabetic wistar rats.Nanomaterials202212583010.3390/nano12050830 35269321
    [Google Scholar]
  38. Ul HaqM.N. ShahG.M. MenaaF. Green silver nanoparticles synthesized from Taverniera couneifolia elicits effective anti-diabetic effect in alloxan-induced diabetic wistar rats.Nanomaterials2022127103510.3390/nano12071035 35407153
    [Google Scholar]
  39. DugganaboyanaG.K. Kumar MukundaC. JainA. Environmentally benign silver bio-nanomaterials as potent antioxidant, antibacterial, and antidiabetic agents: Green synthesis using Salacia oblonga root extract.Front Chem.202311February111410910.3389/fchem.2023.1114109 36817178
    [Google Scholar]
  40. YarrappagaariS. GuthaR. NarayanaswamyL. Eco-friendly synthesis of silver nanoparticles from the whole plant of Cleome viscosa and evaluation of their characterization, antibacterial, antioxidant and antidiabetic properties.Saudi J. Biol. Sci.202027123601361410.1016/j.sjbs.2020.07.034 33304171
    [Google Scholar]
  41. RehmanH. AliW. Zaman KhanN. AasimM. KhanT. Ali KhanA. Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities.Saudi J. Biol. Sci.202330110348510.1016/j.sjbs.2022.103485 36387032
    [Google Scholar]
  42. Al-RadadiN.S. Single-step green synthesis of gold conjugated polyphenol nanoparticle using extracts of Saudi’s myrrh: Their characterization, molecular docking and essential biological applications.Saudi Pharm. J.20223091215124210.1016/j.jsps.2022.06.028 36249941
    [Google Scholar]
  43. MahmoudiF. MahmoudiF. GolloK.H. AminiM.M. Biosynthesis of novel silver nanoparticles using eryngium thyrsoideum boiss extract and comparison of their antidiabetic activity with chemical synthesized silver nanoparticles in diabetic rats.Biol. Trace Elem. Res.202119951967197810.1007/s12011‑020‑02315‑4 32749577
    [Google Scholar]
  44. Martínez-EsquiviasF. Guzmán-FloresJ.M. Pérez-LariosA. RicoJ.L. Becerra-RuizJ.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models.Mini Rev. Med. Chem.202121141798181210.2174/18755607MTEziOTEv4 33535949
    [Google Scholar]
  45. JavedB. IkramM. FarooqF. SultanaT. MashwaniZ.R. RajaN.I. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview.Appl. Microbiol. Biotechnol.202110562261227510.1007/s00253‑021‑11171‑8 33591386
    [Google Scholar]
  46. KoushkiK. ShahbazS.K. KeshavarzM. BezsonovE.E. SathyapalanT. SahebkarA. Gold nanoparticles: Multifaceted roles in the management of autoimmune disorders.Biomolecules202111139
    [Google Scholar]
  47. VinothaV. IswaryaA. ThayaR. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties.J. Photochem. Photobiol. B2019197June11154110.1016/j.jphotobiol.2019.111541 31272033
    [Google Scholar]
  48. Mohammadi ArvanagF. BayramiA. Habibi-YangjehA. Rahim PouranS. A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract.Mater. Sci. Eng. C2019979739740510.1016/j.msec.2018.12.058 30678925
    [Google Scholar]
  49. BayramiA. ParvinrooS. Habibi-YangjegA. RahimS. Bio-extract-mediated ZnO nanoparticles: microwave-assited synthesis, characterization and antidiabetic activity evaluation.Artif. Cells Nanomed. Biotechnol.20172110 28617629
    [Google Scholar]
  50. KambaleE.K. KatemoF.M. Quetin-LeclercqJ. MemvangaP.B. BeloquiA. “Green”-synthesized zinc oxide nanoparticles and plant extracts: A comparison between synthesis processes and antihyperglycemic activity.Int. J. Pharm.20222023635 36773728
    [Google Scholar]
  51. BayramiA. GhorbaniE. Rahim PouranS. Habibi-YangjehA. KhataeeA. BayramiM. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition.Ultrason. Sonochem.201958March10461310.1016/j.ultsonch.2019.104613 31450359
    [Google Scholar]
  52. AnandK. TilokeC. NaidooP. ChuturgoonA.A. Phytonanotherapy for management of diabetes using green synthesis nanoparticles.J. Photochem. Photobiol. B201717362663910.1016/j.jphotobiol.2017.06.028 28709077
    [Google Scholar]
  53. MahmoudiF. MahmoudiF. GolloK.H. AminiM.M. Novel gold nanoparticles: Green synthesis with eryngium thyrsoideum boiss extract, characterization, and in vivo investigations on inflammatory gene expression and biochemical parameters in type 2 diabetic rats.Biol. Trace Elem. Res.202220052223223210.1007/s12011‑021‑02819‑7 34264446
    [Google Scholar]
  54. JamilK. KhattakS.H. FarrukhA. Biogenic synthesis of silver nanoparticles using catharanthus roseus and its cytotoxicity effect on vero cell lines.Molecules20222719619110.3390/molecules27196191 36234756
    [Google Scholar]
  55. ModenaM.M. RühleB. BurgT.P. WuttkeS. Nanoparticle characterization: What to measure?Adv. Mater.20193132190155610.1002/adma.201901556 31148285
    [Google Scholar]
  56. Ferreyra MaillardA.P.V. EspecheJ.C. MaturanaP. CutroA.C. HollmannA. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials.Biochim. Biophys. Acta Biomembr.20211863618359710.1016/j.bbamem.2021.183597 33652005
    [Google Scholar]
  57. TitusD. James Jebaseelan SamuelE. RoopanS.M. Nanoparticle characterization techniques.Green Synth201830331910.1016/B978‑0‑08‑102579‑6.00012‑5
    [Google Scholar]
  58. PatelK.V. SembaR.D. FerrucciL. NewmanA.B. FriedL.P. WallaceR.B. Red Cell distribution width and mortality in older adults: A meta-analysis.J. Gerontol. Ser A Biol. Sci. Med. Sci.2010653258265
    [Google Scholar]
  59. ShahM. NawazS. JanH. UddinN. AliA. AnjumS. Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities.Mater. Sci. Eng. C202011211088910.1016/j.msec.2020.110889
    [Google Scholar]
  60. JoD.H. KimJ.H. LeeT.G. KimJ.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases.Nanomedicine20151171603161110.1016/j.nano.2015.04.015 25989200
    [Google Scholar]
  61. BhattacharjeeS. DLS and zeta potential: What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  62. ShirazM. ImtiazH. AzamA. HayatS. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants.Biometals2024371237010.1007/s10534‑023‑00542‑5
    [Google Scholar]
  63. DolaiJ. MandalK. JanaN.R. Nanoparticle size effects in biomedical applications.ACS Appl. Nano Mater.2021476471649610.1021/acsanm.1c00987
    [Google Scholar]
  64. SharmaS. JaiswalS. DuffyB. JaiswalA. Nanostructured materials for food applications: spectroscopy, microscopy and physical properties.Bioengineering2019612610.3390/bioengineering6010026 30893761
    [Google Scholar]
  65. DikshitP. KumarJ. DasA. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  66. StetefeldJ. McKennaS.A. PatelT.R. Dynamic light scattering: A practical guide and applications in biomedical sciences.Biophys. Rev.20168440942710.1007/s12551‑016‑0218‑6 28510011
    [Google Scholar]
  67. DorofeevG.A. StreletskiiA.N. PovstugarI.V. ProtasovA.V. ElsukovE.P. Determination of nanoparticle sizes by X-ray diffraction.Colloid J.201274667568510.1134/S1061933X12060051
    [Google Scholar]
  68. BykkamS. AhmadipourM. NarisngamS. KalagaddaV.R. ChiduralaS.C. Extensirve studies on X-ray Diffraction of green synthesized silver nanoparticles.Adv. Nanopart.20154111010.4236/anp.2015.41001
    [Google Scholar]
  69. SharmaR. BisenD.P. ShuklaU. SharmaB.G. X-ray diffraction: A powerful method of characterizing nanomaterials.Recent Res Sci Technol2012487779Available from: http://recentscience.com/
    [Google Scholar]
  70. BunaciuA.A. UdriştioiuE. Aboul-EneinH.Y. X-ray diffraction: instrumentation and applications.Crit. Rev. Anal. Chem.201545428929910.1080/10408347.2014.949616 25831472
    [Google Scholar]
  71. RochaF.S. GomesA.J. LundardiC.N. KaliaguineS. PatienceG.S. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis.Can. J. Chem. Eng.2018961225122517
    [Google Scholar]
  72. RamohlolaK.E. IwuohaE.I. HatoM.J. ModibaneK.D. Instrumental techniques for characterization of molybdenum disulphide nanostructures.J. Anal. Methods Chem.20202020112910.1155/2020/8896698 33381353
    [Google Scholar]
  73. AmendolaV. MeneghettiM. Size evaluation of gold nanoparticles by UV-vis spectroscopy.J. Phys. Chem. C2009113114277428510.1021/jp8082425
    [Google Scholar]
  74. EidM.M. Characterization of Nanoparticles by FTIR and FTIR-Microscopy.Handbook of Consumer Nanoproducts.SingaporeSpringer Singapore202113010.1007/978‑981‑15‑6453‑6_89‑1
    [Google Scholar]
  75. HossainU. DasA.K. GhoshS. SilP.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications.Food Chem. Toxicol.2020145January11173810.1016/j.fct.2020.111738 32916220
    [Google Scholar]
  76. VinayakM. MauryaA.K. Quercetin loaded nanoparticles in targeting cancer: recent development.Anticancer. Agents Med. Chem.201919131560157610.2174/1871520619666190705150214 31284873
    [Google Scholar]
  77. AgarwalP. GuptaR. Alpha-amylase inhibition can treat diabetes mellitus.Res Rev J Med Heal Sci20165418
    [Google Scholar]
  78. KaurN. KumarV. NayakS.K. WadhwaP. KaurP. SahuS.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review.Chem. Biol. Drug Des.202198453956010.1111/cbdd.13909 34173346
    [Google Scholar]
  79. ShankaraiaP. ReddyY.N. α-amylase expressions in indian type-2 diabetic patients.J Med Sci201111728028410.3923/jms.2011.280.284
    [Google Scholar]
  80. U R S, C R RK, M S KM, et al. Biogenic synthesis of nio nanoparticles using Areca catechu leaf extract and their antidiabetic and cytotoxic effects.Molecules2021269244810.3390/molecules26092448 33922292
    [Google Scholar]
  81. VisvanathanR. QaderM. JayathilakeC. JayawardanaB.C. LiyanageR. SivakanesanR. Critical review on conventional spectroscopic α ‐amylase activity detection methods: merits, demerits, and future prospects.J. Sci. Food Agric.202010072836284710.1002/jsfa.10315 32031680
    [Google Scholar]
  82. BhatiaA. SinghB. AroraR. AroraS. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants.BMC Complement. Altern. Med.20191917410.1186/s12906‑019‑2482‑z 30909900
    [Google Scholar]
  83. DaouM. ElnakerN.A. OchsenkuhnM.A. AminS.A. YousefA.F. YousefL.F. In vitro α-glucosidase inhibitory activity of Tamarix nilotica shoot extracts and fractions.PLoS One202217123
    [Google Scholar]
  84. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑1
    [Google Scholar]
  85. ZhangX. LiG. WuD. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase.Food Funct.2020111668210.1039/C9FO01590F 31844870
    [Google Scholar]
  86. AykulS. Martinez-HackertE. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.Anal. Biochem.20165085089710310.1016/j.ab.2016.06.025 27365221
    [Google Scholar]
  87. EddouksM. ChattopadhyayD. ZeggwaghN.A. Animal models as tools to investigate antidiabetic and anti-inflammatory plants.In: Evidence-based Complement Altern Med.2012201214208710.1155/2012/142087
    [Google Scholar]
  88. GoyalS.N. ReddyN.M. PatilK.R. Challenges and issues with streptozotocin-induced diabetes: A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics.Chem. Biol. Interact.2016244496310.1016/j.cbi.2015.11.032 26656244
    [Google Scholar]
  89. GandaO.P. RossiniA.A. LikeA.A. Studies on streptozotocin diabetes.Diabetes197625759560310.2337/diab.25.7.595 132382
    [Google Scholar]
  90. FederiukI.F. CaseyH.M. QuinnM.J. WoodM.D. WardW.K. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment.Comp. Med.2004543252257 15253270
    [Google Scholar]
  91. Shaw DunnJ. McletchieN.G.B. Experimental alloxan diabetes in the rat.Lancet1943242626538438710.1016/S0140‑6736(00)87397‑3
    [Google Scholar]
  92. LenzenS. The mechanisms of alloxan and streptozotocin-induced diabetes.Diabetologia200851221622610.1007/s00125‑007‑0886‑7 18087688
    [Google Scholar]
  93. IghodaroO.M. AdeosunA.M. AkinloyeO.A. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies.Medicina201753636537410.1016/j.medici.2018.02.001 29548636
    [Google Scholar]
  94. JainD. AryaR. Anomalies in alloxan-induced diabetic model: It is better to standardize it first.Indian J. Pharmacol.20114319110.4103/0253‑7613.75684 21455436
    [Google Scholar]
  95. Al-RadadiN.S. Biogenic proficient synthesis of (Au-NPs) via aqueous extract of Red Dragon Pulp and seed oil: Characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell lines.Saudi J. Biol. Sci.20222942836285510.1016/j.sjbs.2022.01.001 35531221
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998306451240425135229
Loading
/content/journals/cdr/10.2174/0115733998306451240425135229
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test