Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Contrast agents directly cause kidney toxicity in patients who are candidates for percutaneous intervention having cardiovascular disease with type 2 diabetes.

Aims

This meta-analysis aims to assess the effects of SGLT2i on renal function in individuals undergoing percutaneous intervention.

Methods

The databases used for the search included Google Scholar, PubMed, Cochrane Central Registry of Controlled Trials, and Scopus. We considered randomized controlled and observational studies published from January, 2013, to August, 2023. Eligibility to include the studies was assessed independently. The Cochrane modified data extraction form and Joanna Briggs Institute were used to extract the data. The quality of the studies was evaluated using the Cochrane risk of bias tool and the Newcastle-Ottawa scale. The GradePro software was used to measure the certainty of the evidence.

Results

The pooled estimate showed a substantial reduction in serum creatinine levels at 48 and 72 hours post-PCI who received SGLT2i (MD -9.57; 95% CI -18.36, -0.78; -value 0.03 and MD -14.40; 95% CI -28.57, -0.22; -value 0.05). There was a decrease in the occurrence of the CI-AKI among SGT2i users (RR: 0.46; 95% CI: 0.32, 0.67; value< 0.0001). No substantial difference was observed in the number of patients requiring hemodialysis; however, a lower proportion of patients among SGLT2i users required hemodialysis (RR: 0.88; 95% CI: 0.19, 4.07; -value = 0.87).

Conclusion

The use of SGLT2i confers substantial beneficial effects on kidney function and reduces the occurrence of contrast-induced acute kidney injury among diabetes patients undergoing PCI procedures with cardiovascular disease.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998301228240625065230
2024-07-03
2025-04-18
Loading full text...

Full text loading...

References

  1. FaselisC. KatsimardouA. ImprialosK. DeligkarisP. KallistratosM. DimitriadisK. Microvascular complications of type 2 diabetes mellitus.Curr. Vasc. Pharmacol.202018211712410.2174/157016111766619050210373331057114
    [Google Scholar]
  2. UnnikrishnanR. AnjanaR.M. MohanV. Diabetes mellitus and its complications in India.Nat. Rev. Endocrinol.201612635737010.1038/nrendo.2016.5327080137
    [Google Scholar]
  3. LA. CutinhaR.M. SahooS.S. DsouzaJ.D. ShettyS. GururajC. KellaraiA. Effect of healthcare expenditure on the health related quality of life among diabetic patients of South India: A cross- sectional study.Clin. Epidemiol. Glob. Health20242510146010.1016/j.cegh.2023.101460
    [Google Scholar]
  4. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.15129219149
    [Google Scholar]
  5. BasutkarR.S. VargheseR. MathewN.K. Sankar IndiraP. ViswanathanB. SivasankaranP. Systematic review and meta‐analysis of potential pleiotropic effects of sevelamer in chronic kidney disease: Beyond phosphate control.Nephrology202227433735410.1111/nep.1401134882904
    [Google Scholar]
  6. ElhusseinA. AndersonA. BancksM.P. CodayM. KnowlerW.C. PetersA. VaughanE.M. MaruthurN.M. ClarkJ.M. PillaS. Racial/ethnic and socioeconomic disparities in the use of newer diabetes medications in the Look AHEAD study.Lancet Reg. Heal. Am.2022610011110.1016/j.lana.2021.10011135291207
    [Google Scholar]
  7. ChalikiasG. DrososI. TziakasD.N. Contrast-induced acute kidney injury: An update.Cardiovasc. Drugs Ther.201630221522810.1007/s10557‑015‑6635‑026780748
    [Google Scholar]
  8. FeresF. CostaR.A. SiqueiraD. Guideline of the brazilian society of cardiology and the brazilian society of hemodynamics and interventional cardiology on percutaneous coronary intervention.Braz Arch Cardiol.20171091181
    [Google Scholar]
  9. JamesM.T. GhaliW.A. TonelliM. FarisP. KnudtsonM.L. PannuN. KlarenbachS.W. MannsB.J. HemmelgarnB.R. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function.Kidney Int.201078880380910.1038/ki.2010.25820686453
    [Google Scholar]
  10. ChoE. KoG.J. The pathophysiology and the management of radiocontrast-induced nephropathy.Diagnostics202212118010.3390/diagnostics1201018035054347
    [Google Scholar]
  11. HeymanS.N. KhamaisiM. RosenS. RosenbergerC. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease.Am. J. Nephrol.2008286998100610.1159/00014607518635927
    [Google Scholar]
  12. VlachopanosG. SchizasD. HasemakiN. GeorgalisA. Pathophysiology of contrast-induced acute kidney injury (CIAKI).Curr. Pharm. Des.202025444642464710.2174/138161282566619121015294431820694
    [Google Scholar]
  13. ZhangF. LuZ. WangF. Advances in the pathogenesis and prevention of contrast-induced nephropathy.Life Sci.202025911837910.1016/j.lfs.2020.11837932890604
    [Google Scholar]
  14. KrishnanA. ShankarM. LermaE.V. WiegleyN. Sodium glucose cotransporter 2 (SGLT2) inhibitors and CKD: Are you a #flozinator?Kidney Med.20235410060810.1016/j.xkme.2023.10060836915368
    [Google Scholar]
  15. HeerspinkH.J.L. PercoP. MulderS. LeiererJ. HansenM.K. HeinzelA. MayerG. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.Diabetologia20196271154116610.1007/s00125‑019‑4859‑431001673
    [Google Scholar]
  16. GalloL.A. WardM.S. FotheringhamA.K. ZhuangA. BorgD.J. FlemmingN.B. HarvieB.M. KinneallyT.L. YehS.M. McCarthyD.A. KoepsellH. VallonV. PollockC. PanchapakesanU. ForbesJ.M. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice.Sci. Rep.2016612642810.1038/srep2642827226136
    [Google Scholar]
  17. CaoH. LiuT. WangL. JiQ. Comparative efficacy of novel antidiabetic drugs on cardiovascular and renal outcomes in patients with diabetic kidney disease: A systematic review and network meta‐analysis.Diabetes Obes. Metab.20222481448145710.1111/dom.1470235665989
    [Google Scholar]
  18. ÖzkanU. GürdoğanM. The effect of SGLT2 inhibitors on the development of contrast-induced nephropathy in diabetic patients with non-ST segment elevation myocardial infarction.Medicina202359350510.3390/medicina5903050536984506
    [Google Scholar]
  19. Catalá-LópezF. Macías Saint-GeronsD. González-BermejoD. RosanoG.M. DavisB.R. RidaoM. ZaragozaA. Montero-CorominasD. TobíasA. de la Fuente-HonrubiaC. Tabarés-SeisdedosR. HuttonB. Cardiovascular and renal outcomes of renin–angiotensin system blockade in adult patients with diabetes mellitus: A systematic review with network meta-analyses.PLoS Med.2016133e100197110.1371/journal.pmed.100197126954482
    [Google Scholar]
  20. WhittyC.J.M. WattF.M. Map clusters of diseases to tackle multimorbidity.Nature2020579780049449610.1038/d41586‑020‑00837‑432210388
    [Google Scholar]
  21. U.S. Department of Health and Human ServicesFinal Guidance for Industry: Guidance for Industry: Diabetes Mellitus – Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes.U.S. Department of Health and Human Resources2008Available from: https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic
    [Google Scholar]
  22. AdamC.A. AnghelR. MarcuD.T.M. MituO. RocaM. MituF. Impact of sodium–glucose cotransporter 2 (SGLT2) inhibitors on arterial stiffness and vascular aging : What do we know so far? (a narrative review).Life (Basel)202212680310.3390/life1206080335743834
    [Google Scholar]
  23. TentolourisA. VlachakisP. TzeraviniE. EleftheriadouI. TentolourisN. SGLT2 Inhibitors: A review of their antidiabetic and cardioprotective effects.Int. J. Environ. Res. Public Health20191616296510.3390/ijerph1616296531426529
    [Google Scholar]
  24. ChoiC.I. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: Discovery of next-generation antihyperglycemic agents.Molecules2016219113610.3390/molecules2109113627618891
    [Google Scholar]
  25. XieL. XiaoY. TaiS. YangH. ZhouS. ZhouZ. Emerging roles of sodium glucose cotransporter 2 (SGLT-2) inhibitors in diabetic cardiovascular diseases: Focusing on immunity, inflammation and metabolism.Front. Pharmacol.20221383684910.3389/fphar.2022.83684935295328
    [Google Scholar]
  26. da SilvaP.N. da ConceiçãoR.A. do Couto MaiaR. de Castro BarbosaM.L. Sodium–glucose cotransporter 2 (SGLT-2) inhibitors: A new antidiabetic drug class.MedChemComm2018981273128110.1039/C8MD00183A30151080
    [Google Scholar]
  27. NiL. YuanC. ChenG. ZhangC. WuX. SGLT2i: Beyond the glucose-lowering effect.Cardiovasc. Diabetol.20201919810.1186/s12933‑020‑01071‑y32590982
    [Google Scholar]
  28. PerkovicV. JardineM.J. NealB. BompointS. HeerspinkH.J.L. CharytanD.M. EdwardsR. AgarwalR. BakrisG. BullS. CannonC.P. CapuanoG. ChuP.L. de ZeeuwD. GreeneT. LevinA. PollockC. WheelerD.C. YavinY. ZhangH. ZinmanB. MeiningerG. BrennerB.M. MahaffeyK.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.N. Engl. J. Med.2019380242295230610.1056/NEJMoa181174430990260
    [Google Scholar]
  29. HeerspinkH.J.L. StefánssonB.V. Correa-RotterR. ChertowG.M. GreeneT. HouF.F. MannJ.F.E. McMurrayJ.J.V. LindbergM. RossingP. SjöströmC.D. TotoR.D. LangkildeA.M. WheelerD.C. Dapagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2020383151436144610.1056/NEJMoa202481632970396
    [Google Scholar]
  30. HerringtonW.G. StaplinN. WannerC. GreenJ.B. HauskeS.J. EmbersonJ.R. PreissD. JudgeP. MayneK.J. NgS.Y.A. SammonsE. ZhuD. HillM. StevensW. WallendszusK. BrennerS. CheungA.K. LiuZ.H. LiJ. HooiL.S. LiuW. KadowakiT. NangakuM. LevinA. CherneyD. MaggioniA.P. PontremoliR. DeoR. GotoS. RosselloX. TuttleK.R. SteublD. PetriniM. MasseyD. EilbrachtJ. BrueckmannM. LandrayM.J. BaigentC. HaynesR. Empagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2023388211712710.1056/NEJMoa220423336331190
    [Google Scholar]
  31. TangH. ChenH. LiZ. XuS. YanG. TangC. LiuH. Association between uric acid level and contrast-induced acute kidney injury in patients with type 2 diabetes mellitus after coronary angiography: A retrospective cohort study.BMC Nephrol.202223139910.1186/s12882‑022‑03030‑z36510177
    [Google Scholar]
  32. HuangX. GuoX. YanG. ZhangY. YaoY. QiaoY. WangD. ChenG. ZhangW. TangC. CaoF. Dapagliflozin attenuates contrast-induced acute kidney injury by regulating the HIF-1α/HE4/NF-κB pathway.J. Cardiovasc. Pharmacol.202279690491310.1097/FJC.000000000000126835383661
    [Google Scholar]
  33. LiN. LvD. ZhuX. WeiP. GuiY. LiuS. ZhouE. ZhengM. ZhouD. ZhangL. Effects of SGLT2 inhibitors on renal outcomes in patients with chronic kidney disease: A meta-analysis.Front. Med.2021872808910.3389/fmed.2021.72808934790672
    [Google Scholar]
  34. GilbertR.E. ThorpeK.E. Acute kidney injury with sodium‐glucose co‐transporter‐2 inhibitors: A meta‐analysis of cardiovascular outcome trials.Diabetes Obes. Metab.20192181996200010.1111/dom.1375431050116
    [Google Scholar]
  35. HuaR. DingN. GuoH. WuY. YuanZ. LiT. Contrast-induced acute kidney injury in patients on SGLT2 inhibitors undergoing percutaneous coronary interventions: A propensity-matched analysis.Front. Cardiovasc. Med.2022991816710.3389/fcvm.2022.91816735795364
    [Google Scholar]
  36. PaolissoP. BergamaschiL. CesaroA. GallinoroE. GragnanoF. SarduC. MilevaN. FoàA. ArmillottaM. SansonettiA. AmiconeS. ImpellizzeriA. BelmonteM. EspositoG. MoriciN. Andrea OregliaJ. CasellaG. MauroC. VassilevD. GalieN. SantulliG. CalabròP. BarbatoE. MarfellaR. PizziC. Impact of SGLT2-inhibitors on contrast-induced acute kidney injury in diabetic patients with acute myocardial infarction with and without chronic kidney disease: Insight from SGLT2-I AMI PROTECT registry.Diabetes Res. Clin. Pract.202320211076610.1016/j.diabres.2023.11076637276980
    [Google Scholar]
  37. FeitosaM.P.M. LimaE.G. AbizaidA.A.C. MehranR. LopesN.H.M. de Assis Fischer RamosT. Hideo-KajitaA. FilhoR.K. JuniorC.V.S. The safety of SGLT-2 inhibitors in diabetic patients submitted to elective percutaneous coronary intervention regarding kidney function: SAFE-PCI pilot study.Diabetol. Metab. Syndr.202315113810.1186/s13098‑023‑01107‑937365618
    [Google Scholar]
  38. The American Diabetes Association Releases the Standards of Care in Diabetes.Available from: https://diabetes.org/newsroom/press-releases/american-diabetes-association-releases-standards-care-diabetes-2024 (Last accessed on 19 April 2024).
  39. ElSayedN.A. AleppoG. BannuruR.R. BruemmerD. CollinsB.S. EkhlaspourL. HilliardM.E. JohnsonE.L. KhuntiK. LingvayI. MatfinG. McCoyR.G. PerryM.L. PillaS.J. PolskyS. PrahaladP. PratleyR.E. SegalA.R. SeleyJ.J. StantonR.C. GabbayR.A. Chronic kidney disease and risk management: Standards of Care in Diabetes—2024.Diabetes Care2024471S219S23010.2337/dc24‑S01138078574
    [Google Scholar]
  40. SůvaM. KalaP. PoloczekM. KaňovskýJ. ŠtípalR. RadvanM. HlasenskyJ. HudecM. BrázdilV. ŘehořováJ. Contrast-induced acute kidney injury and its contemporary prevention.Front. Cardiovasc. Med.20229107307210.3389/fcvm.2022.107307236561776
    [Google Scholar]
  41. ElSayedN.A. AleppoG. BannuruR.R. BruemmerD. CollinsB.S. DasS.R. EkhlaspourL. HilliardM.E. JohnsonE.L. KhuntiK. KosiborodM.N. LingvayI. MatfinG. McCoyR.G. PerryM.L. PillaS.J. PolskyS. PrahaladP. PratleyR.E. SegalA.R. SeleyJ.J. StantonR.C. GabbayR.A. Cardiovascular disease and risk management: Standards of Care in Diabetes—2024.Diabetes Care2024471S179S21810.2337/dc24‑S01038078592
    [Google Scholar]
  42. QiaoH. LiY. XuB. LuZ. ZhangJ. MengD. HeS. HuangJ. Metformin can be safely used in patients exposed to contrast media: A systematic review and meta-analysis.Cardiology20221475-646947810.1159/00052738436202076
    [Google Scholar]
  43. BernardiniF. NuscaA. GiannoneS. MangiacapraF. MelfiR. RicottiniE. UssiaG.P. GrigioniF. 548 Role of new antidiabetic drugs in the prevention of contrast-induced nephropathy in diabetic patients undergoing percutaneous coronary intervention.Eur. Heart J. Suppl.202224Ksuac121.49910.1093/eurheartjsupp/suac121.499
    [Google Scholar]
  44. XuB. KangB. LiS. FanS. ZhouJ. Sodium-glucose cotransporter 2 inhibitors and cancer: A systematic review and meta-analysis.J. Endocrinol. Invest.202410.1007/s40618‑024‑02351‑038530620
    [Google Scholar]
  45. SpiazziB.F. NaiboR.A. WayerbacherL.F. PiccoliG.F. FarenzenaL.P. LonderoT.M. da NatividadeG.R. ZoldanM. DegobiN.A.H. NichesM. LopesG. BoykoE.J. UtzschneiderK.M. ColpaniV. GerchmanF. Sodium-glucose cotransporter-2 inhibitors and cancer outcomes: A systematic review and meta-analysis of randomized controlled trials.Diabetes Res. Clin. Pract.202319811062110.1016/j.diabres.2023.11062136921905
    [Google Scholar]
  46. Center for Drug Evaluation and ResearchCenter for Drug Evaluation and research: CDER.Available from: https://www.fda.gov/about-fda/fda-organization/center-drug-evaluation-and-research-cder (. Last accessed on 19 April 2024).
  47. CaiX. ShiL. YangW. GuS. ChenY. NieL. JiL. Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes.J. Med. Econ.201922433634310.1080/13696998.2019.157022030663458
    [Google Scholar]
  48. McEwanP. MorganA.R. BoyceR. BergenheimK. Gause-NilssonI.A.M. BhattD.L. LeiterL.A. JohanssonP.A. MosenzonO. CahnA. WildingJ.P.H. The cost‐effectiveness of dapagliflozin in treating high‐risk patients with type 2 diabetes mellitus: An economic evaluation using data from the DECLARE‐TIMI 58 trial.Diabetes Obes. Metab.20212341020102910.1111/dom.1430833368855
    [Google Scholar]
  49. BagepallyB.S. GuravY.K. AnothaisintaweeT. YoungkongS. ChaikledkaewU. ThakkinstianA. Cost-utility of sodium-glucose cotransporter 2 inhibitors in the treatment of metformin monotherapy failed type 2 diabetes patients: A systematic review and meta-analysis.Value Health201922121458146910.1016/j.jval.2019.09.275031806203
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998301228240625065230
Loading
/content/journals/cdr/10.2174/0115733998301228240625065230
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test