Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic Retinopathy is a vascular microvascular disease also called diabetic eye disease caused by microangiopathy leading to progressive damage of the retina and blindness. The uncontrolled blood glycemic level or sugar level results in diabetic retinopathy.

There are two stages of diabetic retinopathy: proliferative diabetic retinopathy and non-proliferative diabetic retinopathy. Symptoms of diabetic retinopathy often have no early warning signs, even muscular edema, which can cause rapid vision loss. Macular edema in which the blood vessels leak can also occur at any stage of diabetic retinopathy. Symptoms are darkened or distorted images and blurred vision that are not the same in both eyes. This review study primarily discusses the pathophysiology, genetics, and ALR, AGEs, VEGF, EPO, and eNOS involved in diabetic retinopathy.

The longer a person has diabetes, the higher their risk of developing some ocular problems. During pregnancy, diabetic retinopathy may also be a problem for women with diabetes. NIH are recommends that all pregnant women with diabetes have an overall eye examination. Diagnosis of diabetic retinopathy is made during an eye examination that comprises ophthalmoscopy or fundus photography, and glow-in angiography for Fundus. Here, we present a review of the current insights into pathophysiology in diabetic retinopathy, as well as clinical treatments for diabetic retinopathy patients. Novel laboratory findings and related clinical trials are also analysed.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998296228240521151050
2024-05-31
2025-04-12
Loading full text...

Full text loading...

References

  1. DerongT. YuwenY. RuiS. DandanL. RongL. Analysis of pathological regularity and related risk factors of retinal nerve injury in patients with diabetes mellitus.Recent Adv Ophthalmol20234312964969
    [Google Scholar]
  2. CalderonG.D. JuarezO.H. HernandezG.E. PunzoS.M. De la CruzZ.D. De la CruzZ.D. Oxidative stress and diabetic retinopathy: Development and treatment.Eye (Lond.)20173181122113010.1038/eye.2017.64 28452994
    [Google Scholar]
  3. AkulaJ.D. MockoJ.A. BenadorI.Y. The neurovascular relation in oxygen-induced retinopathy.Mol. Vis.20081424992508 19112532
    [Google Scholar]
  4. HengL.Z. ComynO. PetoT. Diabetic retinopathy: Pathogenesis, clinical grading, management and future developments.Diabet. Med.201330664065010.1111/dme.12089 23205608
    [Google Scholar]
  5. SheuW.H.H. KuoJ.Z. LeeI.T. Genome-wide association study in a Chinese population with diabetic retinopathy.Hum. Mol. Genet.201322153165317310.1093/hmg/ddt161 23562823
    [Google Scholar]
  6. AppleburyM.L. AntochM.P. BaxterL.C. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning.Neuron200027351352310.1016/S0896‑6273(00)00062‑3 11055434
    [Google Scholar]
  7. HoonM. OkawaH. Della SantinaL. WongR.O.L. Functional architecture of the retina: Development and disease.Prog. Retin. Eye Res.201442448410.1016/j.preteyeres.2014.06.003 24984227
    [Google Scholar]
  8. YunW.L. Rajendra AcharyaU. VenkateshY.V. CheeC. MinL.C. NgE.Y.K. Identification of different stages of diabetic retinopathy using retinal optical images.Inf. Sci.2008178110612110.1016/j.ins.2007.07.020
    [Google Scholar]
  9. BlairM. Diabetes mellitus review.Urol. Nurs.2016361273610.7257/1053‑816X.2016.36.1.27 27093761
    [Google Scholar]
  10. LeslieR.D.G. PykeD.A. Diabetic retinopathy in identical twins.Diabetes1982311192110.2337/diab.31.1.19 6759208
    [Google Scholar]
  11. International Diabetes Federation Diabetes Atlas.10th ed2021
    [Google Scholar]
  12. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  13. ThomasA.A. BiswasS. FengB. ChenS. GonderJ. ChakrabartiS. lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy.Diabetologia201962351753010.1007/s00125‑018‑4797‑6 30612136
    [Google Scholar]
  14. MatuszewskiW. Prevalence of diabetic retinopathy in type 1 and type 2 diabetes mellitus patients in North-East Poland.Medicina2020564164
    [Google Scholar]
  15. GurudasS. FruddK. MaheshwariJ.J. Multicenter evaluation of diagnostic circulating biomarkers to detect sight-threatening diabetic retinopathy.JAMA Ophthalmol.2022140658759710.1001/jamaophthalmol.2022.1175 35511139
    [Google Scholar]
  16. GurelZ. SheibaniN. O-Linked β- N -acetylglucosamine (O-GlcNAc) modification: A new pathway to decode pathogenesis of diabetic retinopathy.Clin. Sci.2018132218519810.1042/CS20171454 29352075
    [Google Scholar]
  17. SiyuanS.D.L. Risk disclosure and key factors analysis of diabetic retinopathy.Chin J Med Phys2022639783787
    [Google Scholar]
  18. BaynesJ.W. ThorpeS.R. The role of oxidative stress in diabetic complications.Curr. Opin. Endocrinol. Diabetes19963427728410.1097/00060793‑199608000‑00001
    [Google Scholar]
  19. MishraS. KumarP. TripathiM. OjhaS. TripathiS.M. Diabetic Retinopathy: Clinical Features, Risk Factors, and Treatment Options.Curr. Diabetes Rev.20232073340 37929721
    [Google Scholar]
  20. FerreiraF.N. CrispimD. CananiL.H. GrossJ.L. dos SantosK.G. Association study of sorbitol dehydrogenase −888G>C polymorphism with type 2 diabetic retinopathy in Caucasian-Brazilians.Exp. Eye Res.201311514014310.1016/j.exer.2013.06.027 23850972
    [Google Scholar]
  21. WangY. EshwaranR. BeckS.C. HammesH-P. WielandT. FengY. Contribution of the hexosamine biosynthetic pathway in the hyperglycemia-dependent and -independent breakdown of the retinal neurovascular unit.Mol. Metab.20237310173610.1016/j.molmet.2023.101736
    [Google Scholar]
  22. CoomerM. EssopM.F. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes.Mol. Genet. Metab. Rep.2014115816910.1016/j.ymgmr.2014.03.003
    [Google Scholar]
  23. LiW. ChenS. MeiZ. ZhaoF. XiangY. Polymorphisms in sorbitol-aldose reductase (polyol) pathway genes and their influence on risk of diabetic retinopathy among Han Chinese, Medical Sci. Monitor: Int.Med J Experimental Clinical Res2019257073
    [Google Scholar]
  24. ShiL. HuangY.F. Postvitrectomy diabetic vitreous hemorrhage in proliferative diabetic retinopathy.J. Res. Med. Sci.2012179865871 23826015
    [Google Scholar]
  25. SembaR.D. HuangH. LuttyG.A. Van EykJ.E. HartG.W. The role of O ‐GlcNAc signaling in the pathogenesis of diabetic retinopathy.Proteomics Clin. Appl.201483-421823110.1002/prca.201300076 24550151
    [Google Scholar]
  26. GeraldesP. KingG.L. Activation of protein kinase C isoforms and its impact on diabetic complications.Circ. Res.201010681319133110.1161/CIRCRESAHA.110.217117 20431074
    [Google Scholar]
  27. GabrieleE. The Role of Protein Kinase C in Diabetic Retinopathy.Diabetic Retinopathy200221911769776
    [Google Scholar]
  28. HalaO. Role of advanced glycation end product receptors in the pathogenesis of diabetic retinopathy.J. Diabetes Complications2011253168174
    [Google Scholar]
  29. YingL. ShenY. ZhangY. Association of advanced glycation end products with diabetic retinopathy in type 2 diabetes mellitus.Diabetes Res. Clin. Pract.202117710888010.1016/j.diabres.2021.108880 34058298
    [Google Scholar]
  30. SumelA.H. AbdulmalikA. AltamimiS.A. A correlation between oxidative stress and diabetic retinopathy: An updated review.Exp. Eye Res.2023109116
    [Google Scholar]
  31. RendraE. RiabovV. MosselD.M. SevastyanovaT. HarmsenM.C. KzhyshkowskaJ. Reactive oxygen species (ROS) in macrophage activation and function in diabetes.Immunobiology2019224224225310.1016/j.imbio.2018.11.010 30739804
    [Google Scholar]
  32. YehP.T. YangC.M. HuangJ.S. Vitreous levels of reactive oxygen species in proliferative diabetic retinopathy.Ophthalmology20081154734737.e110.1016/j.ophtha.2007.05.041 18177940
    [Google Scholar]
  33. AdamisA.P. MillerJ.W. BernalM.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.Am. J. Ophthalmol.1994118444545010.1016/S0002‑9394(14)75794‑0 7943121
    [Google Scholar]
  34. UhlmannK. KovacsP. BoettcherY. HammesH.P. PaschkeR. Genetics of diabetic retinopathy.Exp. Clin. Endocrinol. Diabetes2006114627529410.1055/s‑2006‑924260 16868886
    [Google Scholar]
  35. NakanishiK. WatanabeC. Single nucleotide polymorphisms of vascular endothelial growth factor gene intron 2 are markers for early progression of diabetic retinopathy in Japanese with type 1 diabetes.Clin. Chim. Acta20094021-217117510.1016/j.cca.2009.01.004 19263526
    [Google Scholar]
  36. ShangF. TaylorA. Function of the ubiquitin proteolytic pathway in the eye.Exp. Eye Res.200478111410.1016/j.exer.2003.10.003 14667823
    [Google Scholar]
  37. SimóR. SundstromJ.M. AntonettiD.A. Ocular Anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy.Diabetes Care201437489389910.2337/dc13‑2002 24652720
    [Google Scholar]
  38. VempatiP. PopelA.S. Mac GabhannF. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: Computational analysis.BMC Syst. Biol.2011515910.1186/1752‑0509‑5‑59 21535871
    [Google Scholar]
  39. OzawaC.R. BanfiA. GlazerN.L. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis.J. Clin. Invest.2004113451652710.1172/JCI18420 14966561
    [Google Scholar]
  40. TanY. FukutomiA. SunM.T. DurkinS. GilhotraJ. ChanW.O. Anti-VEGF crunch syndrome in proliferative diabetic retinopathy: A review.Surv. Ophthalmol.202166692693210.1016/j.survophthal.2021.03.001 33705807
    [Google Scholar]
  41. RoyM.S. AffoufM. Six-year progression of retinopathy and associated risk factors in African American patients with type 1 diabetes mellitus: The New Jersey 725.Arch. Ophthalmol.200612491297130610.1001/archopht.124.9.1297 16966625
    [Google Scholar]
  42. DengY. YangX. GuH. Association of C(-106)T polymorphism in aldose reductase gene with diabetic retinopathy in Chinese patients with type 2 diabetes mellitus.Chin. Med. Sci. J.20142911610.1016/S1001‑9294(14)60016‑X 24698671
    [Google Scholar]
  43. Van GeestR.J. Lesnik-ObersteinS.Y. TanH.S. A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy.Br. J. Ophthalmol.201296458759010.1136/bjophthalmol‑2011‑301005 22289291
    [Google Scholar]
  44. AbharyS. BurdonK.P. LaurieK.J. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility.Diabetes Care20103381834183610.2337/dc09‑1893 20424224
    [Google Scholar]
  45. Harris NwanyanwuK. TalwarN. GardnerT.W. WrobelJ.S. HermanW.H. SteinJ.D. Predicting development of proliferative diabetic retinopathy.Diabetes Care20133661562156810.2337/dc12‑0790 23275374
    [Google Scholar]
  46. MoeH. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes.J. Neurosci.2014343726736
    [Google Scholar]
  47. FungT.H.M. PatelB. WilmotE.G. AmoakuW.M.K. Diabetic retinopathy for the non-ophthalmologist.Clin. Med. (Lond.)202222211211610.7861/clinmed.2021‑0792 35304370
    [Google Scholar]
  48. BianchiE. RipandelliG. TauroneS. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study.Int. J. Immunopathol. Pharmacol.2016291405310.1177/0394632015615592 26604209
    [Google Scholar]
  49. WangW. LoA. Diabetic Retinopathy: Pathophysiology and Treatments.Int. J. Mol. Sci.2018196181610.3390/ijms19061816 29925789
    [Google Scholar]
  50. RaniP.K. ParameswarappaD.C. RajalakshmiR. Severity of diabetic retinopathy and its relationship with age at onset of diabetes mellitus in India: A multicentric study.Indian J. Ophthalmol.202169113255326110.4103/ijo.IJO_1459_21 34708783
    [Google Scholar]
  51. TranN. GarciaT. AniqaM. AliS. AllyA. NauliS.M. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: In Physiology and in Disease States.Am J Biomed Sci Res2022152153177 35072089
    [Google Scholar]
  52. SongQ. ZhangY. WuY. ZhouF. QuY. Association of erythropoietin gene polymorphisms with retinopathy in a C hinese cohort with type 2 diabetes mellitus.Clin. Exp. Ophthalmol.201543654454910.1111/ceo.12505 25675872
    [Google Scholar]
  53. SvikleZ. PeterfeldeB. SjaksteN. Ubiquitin-proteasome system in diabetic retinopathy.PeerJ202210e1371510.7717/peerj.13715 35873915
    [Google Scholar]
  54. PajaresM. Jiménez-MorenoN. DiasI.H.K. Redox control of protein degradation.Redox Biol.2015640942010.1016/j.redox.2015.07.003 26381917
    [Google Scholar]
  55. ShangF. TaylorA. Roles for the ubiquitin–proteasome pathway in protein quality control and signaling in the retina: Implications in the pathogenesis of age-related macular degeneration.Mol. Aspects Med.201233444646610.1016/j.mam.2012.04.001 22521794
    [Google Scholar]
  56. ParasharR. VyasA. SahA.K. HemnaniN. ThangarajuP. SureshP.K. Recent updates on nanocarriers for drug delivery in posterior segment diseases with emphasis on diabetic retinopathy.Curr. Diabetes Rev.2024206e17102322228210.2174/0115733998240053231009060654
    [Google Scholar]
  57. ShahA.M. WondisfordF.E. Tracking the carbons supplying gluconeogenesis.J. Biol. Chem.202029542144191442910.1074/jbc.REV120.012758 32817317
    [Google Scholar]
  58. CampelloL. Esteve-RuddJ. CuencaN. Martín-NietoJ. The ubiquitin–proteasome system in retinal health and disease.Mol. Neurobiol.201347790810
    [Google Scholar]
  59. KuriharaT. OzawaY. NagaiN. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina.Diabetes20085782191219810.2337/db07‑1281 18487452
    [Google Scholar]
  60. GiurdanellaG. LupoG. GennusoF. Activation of the VEGF-A/ERK/PLA2 axis mediates early retinal endothelial cell damage induced by high glucose: New insight from an in vitro Model of Diabetic Retinopathy.Int. J. Mol. Sci.20202120752810.3390/ijms21207528 33065984
    [Google Scholar]
  61. VadlapatlaR. VadlapudiA. MitraA. Hypoxia-inducible factor-1 (HIF-1): A potential target for intervention in ocular neovascular diseases.Curr. Drug Targets201314891993510.2174/13894501113149990015 23701276
    [Google Scholar]
  62. GelchoG.N. GariF.S. Time to Diabetic Retinopathy and Its Risk Factors among Diabetes Mellitus Patients in Jimma University Medical Center, Jimma, Southwest Ethiopia.Ethiop. J. Health Sci.2022325937946 36262700
    [Google Scholar]
  63. KingP. PeacockI. DonnellyR. The UK Prospective Diabetes Study (UKPDS): Clinical and therapeutic implications for type 2 diabetes.Br. J. Clin. Pharmacol.199948564364810.1046/j.1365‑2125.1999.00092.x 10594464
    [Google Scholar]
  64. WrightA.D. DodsonP.M. Diabetic retinopathy and blockade of the renin–angiotensin system: New data from the DIRECT study programme.Eye (Lond.)20102411610.1038/eye.2009.189 19648902
    [Google Scholar]
  65. ShiferawW.S. AkaluT.Y. DestaM. Glycated hemoglobin A1c level and the risk of diabetic retinopathy in Africa: A systematic review and meta-analysis.Diabetes Metab. Syndr.20201461941194910.1016/j.dsx.2020.10.003 33039936
    [Google Scholar]
  66. LindM. PivodicA. SvenssonA.M. ÓlafsdóttirA.F. WedelH. LudvigssonJ. HbA 1c level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study.BMJ2019366l489410.1136/bmj.l4894 31462492
    [Google Scholar]
  67. WarramJ.H. MansonJ.E. KrolewskiA.S. Glycosylated hemoglobin and the risk of retinopathy in insulin-dependent diabetes mellitus.N. Engl. J. Med.1995332191305130610.1056/NEJM199505113321915 7708084
    [Google Scholar]
  68. KourV. SwainJ. SinghJ. SinghH. KourH. A Review on Diabetic Retinopathy.Curr. Diabetes Rev.20232067488 37867267
    [Google Scholar]
  69. JenniferR. Evans,corresponding author Manuele Michelessi, Gianni Virgili, Laser photocoagulation for proliferative diabetic retinopathy.Cochrane Database Syst. Rev.201411112118
    [Google Scholar]
  70. Early photocoagulation for diabetic retinopathy. ETDRS report number 9.Ophthalmology1991985Suppl.76678510.1016/S0161‑6420(13)38011‑7 2062512
    [Google Scholar]
  71. RamachandranN. HongS.C. SimeM.J. WilsonG.A. Diabetic retinopathy screening using deep neural network.Clin. Exp. Ophthalmol.201846441241610.1111/ceo.13056 28881490
    [Google Scholar]
  72. SchreurV. BrouwersJ. Van HuetR.A.C. Long‐term outcomes of vitrectomy for proliferative diabetic retinopathy.Acta Ophthalmol.2021991838910.1111/aos.14482 32643273
    [Google Scholar]
  73. ElgafiM. SharafeldeenA. ElnakibA. Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images.Sensors20222220783310.3390/s22207833 36298186
    [Google Scholar]
  74. LeD. DadzieA. SonT. LimJ.I. YaoX. Comparative analysis of OCT and OCT angiography characteristics in early diabetic retinopathy.Retina202343699299810.1097/IAE.0000000000003761 36763982
    [Google Scholar]
  75. OngJ.X. FawziA.A. Perspectives on diabetic retinopathy from advanced retinal vascular imaging.Eye (Lond.)202236231932710.1038/s41433‑021‑01825‑2 34987198
    [Google Scholar]
  76. ElsharkawyM. ElrazzazM. SharafeldeenA. The role of different retinal imaging modalities in predicting progression of diabetic retinopathy: A survey.Sensors 2022229349010.3390/s22093490 35591182
    [Google Scholar]
  77. ChuaJ. SimR. TanB. Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy.J. Clin. Med.202096172310.3390/jcm9061723 32503234
    [Google Scholar]
  78. EndersC. BaeuerleF. LangG.E. Comparison between findings in optical coherence tomography angiography and in fluorescein angiography in patients with diabetic retinopathy.Ophthalmologica20202431212610.1159/000499114 31137028
    [Google Scholar]
  79. RastaS.H. NikfarjamS. JavadzadehA. Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy.Bioimpacts20165418319010.15171/bi.2015.27 26929922
    [Google Scholar]
  80. KupisM. SamelskaK. SzaflikJ. SkopińskiP. Novel therapies for diabetic retinopathy.Cent. Eur. J. Immunol.202247110210810.5114/ceji.2022.112993 35600148
    [Google Scholar]
  81. PanW.W. LinF. FortP.E. The innate immune system in diabetic retinopathy.Prog. Retin. Eye Res.20218410094010.1016/j.preteyeres.2021.100940 33429059
    [Google Scholar]
  82. Diaz-LlopisM. UdaondoP. MillánJ.M. ArevaloJ.F. Enzymatic vitrectomy for diabetic retinopathy and diabetic macular edema.World J. Diabetes20134631932310.4239/wjd.v4.i6.319 24379923
    [Google Scholar]
  83. KumarA. PadhyS.K. TakkarB. ChawlaR. Artificial intelligence in diabetic retinopathy: A natural step to the future.Indian J. Ophthalmol.20196771004100910.4103/ijo.IJO_1989_18 31238395
    [Google Scholar]
  84. DuttaS. GhoshS. GhoshS. Association of sleep disturbance with diabetic retinopathy.Eur. J. Ophthalmol.202232146847410.1177/1120672120974296 33222518
    [Google Scholar]
  85. LiuK. ZouH. FanH. The role of aldosterone in the pathogenesis of diabetic retinopathy.Front. Endocrinol. (Lausanne)202314116378710.3389/fendo.2023.1163787 37113483
    [Google Scholar]
  86. YangJ. MiaoX. YangF.J. Therapeutic potential of curcumin in diabetic retinopathy (Review)..Int. J. Mol. Med.20214757510.3892/ijmm.2021.4908 33693955
    [Google Scholar]
  87. HaM. ChoiS.Y. KimM. NaJ.K. ParkY.H. Diabetic nephropathy in type 2 diabetic retinopathy requiring panretinal photocoagulation.Korean J. Ophthalmol.2019331465310.3341/kjo.2018.0034 30746911
    [Google Scholar]
  88. JinL. WHEA. Development and validation of a predictive risk model for vision-threatening diabetic retinopathy in patients with type 2 diabetes.Journal of Sun Yat‐Sen University202364419[Medical Sciences].
    [Google Scholar]
  89. JengC.J. HsiehY.T. YangC.M. YangC.H. LinC.L. WangI.J. Diabetic Retinopathy in Patients with Diabetic Nephropathy: Development and Progression.PLoS One2016118e016189710.1371/journal.pone.0161897 27564383
    [Google Scholar]
  90. Dar AltafPreserving sight: Managing and preventing diabetic retinopathy.Open Health202341110
    [Google Scholar]
  91. KirwanJ.P. SacksJ. NieuwoudtS. The essential role of exercise in the management of type 2 diabetes.Cleve. Clin. J. Med.2017847Suppl. 1S15S21
    [Google Scholar]
  92. TingD.S.W. CheungG.C.M. WongT.Y. Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review.Clin. Exp. Ophthalmol.201644426027710.1111/ceo.12696 26716602
    [Google Scholar]
  93. LiY. BaccoucheB. Del-RiscoN. The slow progression of diabetic retinopathy is associated with transient protection of retinal vessels from death.Int. J. Mol. Sci.202324131086910.3390/ijms241310869 37446043
    [Google Scholar]
  94. CubillosS. KazlauskasA. Manifestation of pathology in animal models of diabetic retinopathy is delayed from the onset of diabetes.Int. J. Mol. Sci.2024253161010.3390/ijms25031610 38338889
    [Google Scholar]
  95. ManjulaS. BhardwajM. PunamK. AshokP. An overview of dietary approaches to prevent the development of diabetic retinopathy.Indian J. Nutr. Diet.201855336739510.21048/ijnd.2018.55.3.18193
    [Google Scholar]
  96. BeaserR.S. TurellW.A. HowsonA. Strategies to improve prevention and management in diabetic retinopathy: Qualitative insights from a mixed-methods study.Diabetes Spectr.2018311657410.2337/ds16‑0043 29456428
    [Google Scholar]
  97. NyenweE.A. JerkinsT.W. UmpierrezG.E. KitabchiA.E. Management of type 2 diabetes: Evolving strategies for the treatment of patients with type 2 diabetes.Metabolism201160112310.1016/j.metabol.2010.09.010 21134520
    [Google Scholar]
  98. BurkeS. SherrD. LipmanR. Partnering with diabetes educators to improve patient outcomes.Diabetes Metab. Syndr. Obes.20147455310.2147/DMSO.S40036 24550679
    [Google Scholar]
  99. KaufmanN. Internet and information technology use in treatment of diabetes.Int. J. Clin. Pract.201064166414610.1111/j.1742‑1241.2009.02277.x 20377663
    [Google Scholar]
  100. LengY. LiX.J. LiC-Y. BaiD. Insights into stem cell therapy for diabetic retinopathy: A bibliometric and visual analysis.Neural Regen. Res.202116117217810.4103/1673‑5374.286974 32788473
    [Google Scholar]
  101. LechnerJ. MedinaR.J. LoisN. StittA.W. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina.Stem Cell Res. Ther.202213138810.1186/s13287‑022‑03073‑x 35907890
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998296228240521151050
Loading
/content/journals/cdr/10.2174/0115733998296228240521151050
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetes mellitus; diabetic retinopathy; ophthalmoscopy; proteasome; retina; ubiquitin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test