Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Diabetic nephropathy (DN), the primary risk factor for end-stage kidney disease (ESKD) that requires dialysis or renal transplantation, affects up to 50% of individuals with diabetes.

Objective

In this article, potential mechanisms, biomarkers, and possible therapeutic targets will be discussed, as well as their interventional therapies.

Methods

A literature review was done from databases like Google Scholar, PUBMED-MEDLINE, and Scopus using standard keywords “Diabetic Nephropathy,” “Biomarkers,” “Pathophysiology,” “Cellular Mechanism,” “Cell Therapy,” “Treatment Therapies” from 2010-2023. It has been studied that metabolic as well as hemodynamic pathways resulting from hyperglycemia act as mediators for renal disease.

Results

We identified 270 articles, of which 210 were reviewed in full-text and 90 met the inclusion criteria. Every therapy regimen for the prevention and treatment of DN must include the blocking of ANG-II action. By reducing inflammatory and fibrotic markers brought on by hyperglycemia, an innovative approach to halting the progression of diabetic mellitus (DN) involves combining sodium-glucose cotransporter-2 inhibitors with renin-angiotensin-aldosterone system blockers. When compared to taking either medicine alone, this method works better. AGEs, protein kinase C (PKC), and the renin-angiotensin aldosterone system (RAAS) are among the components that are inhibited in DN management strategies.

Conclusion

Thus, it can be concluded that the multifactorial condition of DN needs to be treated at an early stage. Novel therapies with a combination of cell therapies and diet management are proven to be effective in the management of DN.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998291920240611063402
2024-06-24
2025-04-12
Loading full text...

Full text loading...

References

  1. LimA. Diabetic nephropathy complications and treatment.Int. J. Nephrol. Renovasc. Dis.2014736138110.2147/IJNRD.S4017225342915
    [Google Scholar]
  2. ReidyK. KangH.M. HostetterT. SusztakK. Molecular mechanisms of diabetic kidney disease.J. Clin. Invest.201412462333234010.1172/JCI7227124892707
    [Google Scholar]
  3. RussoG. PiscitelliP. GiandaliaA. ViazziF. PontremoliR. FiorettoP. De CosmoS. Atherogenic dyslipidemia and diabetic nephropathy.J. Nephrol.20203351001100810.1007/s40620‑020‑00739‑832328901
    [Google Scholar]
  4. Duran-SalgadoM.B. Rubio-GuerraA.F. Diabetic nephropathy and inflammation.World J. Diabetes20145339339810.4239/wjd.v5.i3.39324936261
    [Google Scholar]
  5. ReutensA.T. AtkinsR.C. Epidemiology of diabetic nephropathy.Diabetes and the Kidney; Lai KN, Tang SCW. NephrolC. BaselKarger2011Vol. 1701710.1159/000324934
    [Google Scholar]
  6. International Diabetes Federation Diabetes Atlas.Available from: https://diabetesatlas.org/ (Accessed on March 19 2024).
  7. KanwarY.S. SunL. XieP. LiuF. ChenS. A glimpse of various pathogenetic mechanisms of diabetic nephropathy.Annu. Rev. Pathol.20116139542310.1146/annurev.pathol.4.110807.09215021261520
    [Google Scholar]
  8. Papadopoulou-MarketouN. Kanaka-GantenbeinC. MarketosN. ChrousosG.P. PapassotiriouI. Biomarkers of diabetic nephropathy: A 2017 update.Crit. Rev. Clin. Lab. Sci.201754532634210.1080/10408363.2017.1377682
    [Google Scholar]
  9. ChanG.C.W. TangS.C.W. Diabetic nephropathy: landmark clinical trials and tribulations.Nephrol. Dial. Transplant.201631335936810.1093/ndt/gfu41125637638
    [Google Scholar]
  10. DingY. ChoiM.E. Autophagy in diabetic nephropathy.J. Endocrinol.20152241R15R3010.1530/JOE‑14‑043725349246
    [Google Scholar]
  11. SunY.M. SuY. LiJ. WangL.F. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy.Biochem. Biophys. Res. Commun.2013433435936110.1016/j.bbrc.2013.02.12023541575
    [Google Scholar]
  12. AroraM.K. SinghU.K. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update.Vascul. Pharmacol.201358425927110.1016/j.vph.2013.01.00123313806
    [Google Scholar]
  13. RuggenentiP. CravediP. RemuzziG. The RAAS in the pathogenesis and treatment of diabetic nephropathy.Nat. Rev. Nephrol.20106631933010.1038/nrneph.2010.5820440277
    [Google Scholar]
  14. HuQ. ChenY. DengX. LiY. MaX. ZengJ. ZhaoY. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation.Biomed. Pharmacother.202315911425210.1016/j.biopha.2023.11425236641921
    [Google Scholar]
  15. ChaD.R. KangY.S. HanS.Y. JeeY.H. HanK.H. KimH.K. HanJ.Y. KimY.S. Role of aldosterone in diabetic nephropathy.Nephrology200510s2Suppl.S37S3910.1111/j.1440‑1797.2005.00455.x16174286
    [Google Scholar]
  16. HagiwaraS. GohdaT. KantharidisP. OkabeJ. MurakoshiM. SuzukiY. Potential of modulating aldosterone signaling and mineralocorticoid receptor with microRNAs to attenuate diabetic kidney disease.Int. J. Mol. Sci.202425286910.3390/ijms2502086938255942
    [Google Scholar]
  17. BondevaT. WolfG. Reactive oxygen species in diabetic nephropathy: Friend or foe?Nephrol. Dial. Transplant.201429111998200310.1093/ndt/gfu03724589719
    [Google Scholar]
  18. KanwarY.S. WadaJ. SunL. XieP. WallnerE.I. ChenS. ChughS. DaneshF.R. Diabetic nephropathy: mechanisms of renal disease progression.Exp. Biol. Med.2008233141110.3181/0705‑MR‑13418156300
    [Google Scholar]
  19. CarvalhoR.H. IdaE.I. MadrugaM.S. ShimokomakiM. EstévezM. Collapse of the endogenous antioxidant enzymes in post-mortem broiler thigh muscles triggers oxidative stress and impairs water-holding capacity.J. Food Sci. Technol.20195631371137910.1007/s13197‑019‑03611‑130956316
    [Google Scholar]
  20. ThomasM.C. Advanced glycation end products.Diabetes and the kidney; Lai KN, Tang SCW, ED.; Contrib Nephrol.BaselKarger20111706674
    [Google Scholar]
  21. DarouxM. PrévostG. Maillard-LefebvreH. GaxatteC. D’AgatiV.D. SchmidtA.M. BoulangerÉ. Advanced glycation end-products: Implications for diabetic and non-diabetic nephropathies.Diabetes Metab.201036111010.1016/j.diabet.2009.06.00519932633
    [Google Scholar]
  22. AnX. ZhangL. YaoQ. LiL. WangB. ZhangJ. HeM. ZhangJ. The receptor for advanced glycation endproducts mediates podocyte heparanase expression through NF-κB signaling pathway.Mol. Cell. Endocrinol.2018470142510.1016/j.mce.2017.05.00428478303
    [Google Scholar]
  23. SanajouD. Ghorbani HaghjoA. ArganiH. AslaniS. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.Eur. J. Pharmacol.201883315816410.1016/j.ejphar.2018.06.00129883668
    [Google Scholar]
  24. Kumar PasupulatiA. ChitraP.S. ReddyG.B. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy.Biomol. Concepts201675-629330910.1515/bmc‑2016‑002127816946
    [Google Scholar]
  25. YamagishiS. MatsuiT. Advanced glycation end products, oxidative stress and diabetic nephropathy.Oxid. Med. Cell. Longev.20103210110810.4161/oxim.3.2.1114820716934
    [Google Scholar]
  26. KumeS. ThomasM.C. KoyaD. Nutrient sensing, autophagy, and diabetic nephropathy.Diabetes2012611232910.2337/db11‑055522187371
    [Google Scholar]
  27. WarrenA.M. KnudsenS.T. CooperM.E. Diabetic nephropathy: An insight into molecular mechanisms and emerging therapies.Expert Opin. Ther. Targets201923757959110.1080/14728222.2019.162472131154867
    [Google Scholar]
  28. KochE.A.T. NakhoulR. NakhoulF. NakhoulN. Autophagy in diabetic nephropathy: A review.Int. Urol. Nephrol.20205291705171210.1007/s11255‑020‑02545‑432661628
    [Google Scholar]
  29. Papadopoulou-MarketouN. ChrousosG.P. Kanaka-GantenbeinC. Diabetic nephropathy in type 1 diabetes: A review of early natural history, pathogenesis, and diagnosis.Diabetes Metab. Res. Rev.2017332e284110.1002/dmrr.284127457509
    [Google Scholar]
  30. AgarwalR. Pathogenesis of diabetic nephropathy.Diabetes2021202112734279881
    [Google Scholar]
  31. GeraldesP. KingG.L. Activation of protein kinase C isoforms and its impact on diabetic complications.Circ. Res.201010681319133110.1161/CIRCRESAHA.110.21711720431074
    [Google Scholar]
  32. KizuA. MediciD. KalluriR. Endothelial-mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy.Am. J. Pathol.200917541371137310.2353/ajpath.2009.09069819729485
    [Google Scholar]
  33. CarewR.M. WangB. KantharidisP. The role of EMT in renal fibrosis.Cell Tissue Res.2012347110311610.1007/s00441‑011‑1227‑121845400
    [Google Scholar]
  34. HillsC.E. Al-RasheedN. Al-RasheedN. WillarsG.B. BrunskillN.J. C-peptide reverses TGF-β1-induced changes in renal proximal tubular cells: Implications for treatment of diabetic nephropathy.Am. J. Physiol. Renal Physiol.20092963F614F62110.1152/ajprenal.90500.200819091788
    [Google Scholar]
  35. YangD. LivingstonM.J. LiuZ. DongG. ZhangM. ChenJ.K. DongZ. Autophagy in diabetic kidney disease: Regulation, pathological role and therapeutic potential.Cell. Mol. Life Sci.201875466968810.1007/s00018‑017‑2639‑128871310
    [Google Scholar]
  36. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/149744934307650
    [Google Scholar]
  37. Pérez-MoralesR.E. del PinoM.D. ValdivielsoJ.M. OrtizA. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammation in diabetic kidney disease.Nephron J.20191431121610.1159/00049327830273931
    [Google Scholar]
  38. TavafiM. Diabetic nephropathy and antioxidants.J. Nephropathol.201321202710.5812/nephropathol.909324475422
    [Google Scholar]
  39. JiangT. HuangZ. LinY. ZhangZ. FangD. ZhangD.D. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy.Diabetes201059485086010.2337/db09‑134220103708
    [Google Scholar]
  40. CostantinoV.V. Gil LorenzoA.F. BocanegraV. VallésP.G. Molecular mechanisms of hypertensive nephropathy: Renoprotective effect of losartan through Hsp70.Cells20211011314610.3390/cells1011314634831368
    [Google Scholar]
  41. WangX.X. LeviJ. LuoY. MyakalaK. Herman-EdelsteinM. QiuL. WangD. PengY. GrenzA. LuciaS. DobrinskikhE. D’AgatiV.D. KoepsellH. KoppJ.B. RosenbergA.Z. LeviM. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice.J. Biol. Chem.2017292135335534810.1074/jbc.M117.77952028196866
    [Google Scholar]
  42. LiuR. Tubuloglomerular feedback: A key player in obesity-associated kidney injury.Am. J. Physiol. Renal Physiol.20223226F587F58810.1152/ajprenal.00068.202235403452
    [Google Scholar]
  43. ZhangD. YeS. PanT. The role of serum and urinary biomarkers in the diagnosis of early diabetic nephropathy in patients with type 2 diabetes.PeerJ20197e707910.7717/peerj.7079
    [Google Scholar]
  44. CurrieG. McKayG. DellesC. Biomarkers in diabetic nephropathy: Present and future.World J. Diabetes20145676377610.4239/wjd.v5.i6.76325512779
    [Google Scholar]
  45. HammadH. HeshamD. Urinary podocalyxin as an early marker of diabetic nephropathy in Egyptian population.Al-Azhar Assiut Med. J.2015133369375
    [Google Scholar]
  46. CowlandJ.B. SørensenO.E. SehestedM. BorregaardN. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 β, but not by TNF-α.J. Immunol.2003171126630663910.4049/jimmunol.171.12.663014662866
    [Google Scholar]
  47. NielsenS.E. SchjoedtK.J. AstrupA.S. TarnowL. LajerM. HansenP.R. ParvingH.H. RossingP. Neutrophil gelatinase‐associated lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: A cross‐sectional study and the effects of lisinopril.Diabet. Med.201027101144115010.1111/j.1464‑5491.2010.03083.x20854382
    [Google Scholar]
  48. VaidyaV.S. NiewczasM.A. FicocielloL.H. JohnsonA.C. CollingsF.B. WarramJ.H. KrolewskiA.S. BonventreJ.V. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase.Kidney Int.201179446447010.1038/ki.2010.40420980978
    [Google Scholar]
  49. FuW.J. LiB.L. WangS.B. ChenM.L. DengR.T. YeC.Q. LiuL. FangA.J. XiongS.L. WenS. TangH.H. ChenZ.X. HuangZ.H. PengL.F. ZhengL. WangQ. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration.Diabetes Res. Clin. Pract.201295110510910.1016/j.diabres.2011.09.03122015481
    [Google Scholar]
  50. YuanY. WangC. ShaoX. WangQ. CheX. ZhangM. XieY. TianL. NiZ. MouS. Urinary retinol-binding protein as a risk factor of poor prognosis in acute-on-chronic renal injury.J. Nephrol.201629682783310.1007/s40620‑016‑0331‑427387426
    [Google Scholar]
  51. Abd El-HalimS.S. Abd El-MaksoudA.M. Abdel-RahmanM.A. AwatifM. Abdel-RahmanM.A. El-TamanyE.S. El-HefnawyM.H. El-RazekA. AmalH. Urinary markers for early detection of diabetic nephropathy in type 1 diabetes mellitus.Egypt. J. Hosp. Med.201561147948810.12816/0018752
    [Google Scholar]
  52. KamijoA. SugayaT. HikawaA. YamanouchiM. HirataY. IshimitsuT. NumabeA. TakagiM. HayakawaH. TabeiF. SugimotoT. MiseN. OmataM. KimuraK. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease.Mol. Cell. Biochem.20062841-217518210.1007/s11010‑005‑9047‑916532260
    [Google Scholar]
  53. NielsenS.E. SugayaT. TarnowL. LajerM. SchjoedtK.J. AstrupA.S. BabaT. ParvingH.H. RossingP. Tubular and glomerular injury in diabetes and the impact of ACE inhibition.Diabetes Care20093291684168810.2337/dc09‑042919502542
    [Google Scholar]
  54. MiseK. HoshinoJ. UenoT. HazueR. HasegawaJ. SekineA. SumidaK. HiramatsuR. HasegawaE. YamanouchiM. HayamiN. SuwabeT. SawaN. FujiiT. HaraS. OhashiK. TakaichiK. UbaraY. Prognostic value of tubulointerstitial lesions, urinary N-acetyl-β-D-glucosaminidase, and urinary β2-microglobulin in patients with type 2 diabetes and biopsy–proven diabetic nephropathy.Clin. J. Am. Soc. Nephrol.201611459360110.2215/CJN.0498051526801478
    [Google Scholar]
  55. AbbasiF. MoosaieF. KhalooP. Dehghani FirouzabadiF. Fatemi AbhariS.M. AtainiaB. ArdeshirM. NakhjavaniM. EsteghamatiA. Neutrophil gelatinase-associated lipocalin and retinol-binding protein-4 as biomarkers for diabetic kidney disease.Kidney Blood Press. Res.202045222223210.1159/00050515532008005
    [Google Scholar]
  56. UrbaniakS.K. BoguszewskaK. SzewczukM. Kaźmierczak-BarańskaJ. KarwowskiB.T. 8-Oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development.Molecules202025120210.3390/molecules2501020231947819
    [Google Scholar]
  57. BroedbaekK. WeimannA. StovgaardE.S. PoulsenH.E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes.Free Radic. Biol. Med.20115181473147910.1016/j.freeradbiomed.2011.07.00721820047
    [Google Scholar]
  58. CalabreseV. MancusoC. SapienzaM. PuleoE. CalafatoS. CorneliusC. FinocchiaroM. MangiameliA. Di MauroM. StellaA.M.G. CastellinoP. Oxidative stress and cellular stress response in diabetic nephropathy.Cell Stress Chaperones200712429930610.1379/CSC‑270.118229449
    [Google Scholar]
  59. FournierT. Medjoubi-NN. PorquetD. Alpha-1-acid glycoprotein.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200014821-215717110.1016/S0167‑4838(00)00153‑9
    [Google Scholar]
  60. GomesM.B. NogueiraV.G. Acute-phase proteins and microalbuminuria among patients with type 2 diabetes.Diabetes Res. Clin. Pract.2004661313910.1016/j.diabres.2004.02.00915364159
    [Google Scholar]
  61. NavarroJ.F. MoraC. MacıéaM. GarcıéaJ. Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus.Am. J. Kidney Dis.2003421536110.1016/S0272‑6386(03)00408‑612830456
    [Google Scholar]
  62. MoriwakiY. YamamotoT. ShibutaniY. AokiE. TsutsumiZ. TakahashiS. OkamuraH. KogaM. FukuchiM. HadaT. Elevated levels of interleukin-18 and tumor necrosis factor-α in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy.Metabolism200352560560810.1053/meta.2003.5009612759891
    [Google Scholar]
  63. HovindP. TarnowL. OestergaardP.B. ParvingH.H. Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy.Kidney Int.200057S56S6110.1046/j.1523‑1755.2000.07504.x10828763
    [Google Scholar]
  64. SharmaD. BhattacharyaP. KaliaK. TiwariV. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets.Diabetes Res. Clin. Pract.20171289110810.1016/j.diabres.2017.04.01028453961
    [Google Scholar]
  65. RaoV. RaoL.V. TanS.H. CandasamyM. BhattamisraS.K. Diabetic nephropathy: An update on pathogenesis and drug development.Diabetes Metab. Syndr.201913175476210.1016/j.dsx.2018.11.05430641802
    [Google Scholar]
  66. PittB. FilippatosG. AgarwalR. AnkerS.D. BakrisG.L. RossingP. JosephA. KolkhofP. NowackC. SchloemerP. RuilopeL.M. Cardiovascular events with finerenone in kidney disease and Type 2 diabetes.N. Engl. J. Med.2021385242252226310.1056/NEJMoa211095634449181
    [Google Scholar]
  67. American Diabetes Association Professional Practice Committee11. Chronic kidney disease and risk management: Standards of medical care in Diabetes-2022.Diabetes Care202245Suppl. 1S175S18410.2337/dc22‑S01134964873
    [Google Scholar]
  68. BlazekO. BakrisG.L. Slowing the progression of diabetic kidney disease.Cells20231215197510.3390/cells1215197537566054
    [Google Scholar]
  69. Martínez-CastelaoA. Diabetes mellitus and diabetic kidney disease: The future is already here.J. Clin. Med.2023128291410.3390/jcm1208291437109250
    [Google Scholar]
  70. ZhongY. WangL. JinR. LiuJ. LuoR. ZhangY. ZhuL. PengX. Diosgenin inhibits ROS generation by modulating nox4 and mitochondrial respiratory chain and suppresses apoptosis in diabetic nephropathy.Nutrients2023159216410.3390/nu1509216437432297
    [Google Scholar]
  71. JinQ. LiuT. QiaoY. LiuD. YangL. MaoH. MaF. WangY. PengL. ZhanY. Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols.Front. Immunol.202314118531710.3389/fimmu.2023.118531737545494
    [Google Scholar]
  72. AlshehriA.S. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis.Arch. Physiol. Biochem.2023129498499710.1080/13813455.2021.189012933625930
    [Google Scholar]
  73. ParwaniK. MandalP. Role of advanced glycation end products and insulin resistance in diabetic nephropathy.Arch. Physiol. Biochem.202312919510710.1080/13813455.2020.179710632730131
    [Google Scholar]
  74. XuJ. ChenL.J. YuJ. WangH.J. ZhangF. LiuQ. WuJ. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy.Cell. Physiol. Biochem.201848270571710.1159/00049189730025404
    [Google Scholar]
  75. RowanS. BejaranoE. TaylorA. Mechanistic targeting of advanced glycation end-products in age-related diseases.Biochim. Biophys. Acta Mol. Basis Dis.20181864123631364310.1016/j.bbadis.2018.08.03630279139
    [Google Scholar]
  76. HanY.P. LiuL.J. YanJ.L. ChenM.Y. MengX.F. ZhouX.R. QianL.B. Autophagy and its therapeutic potential in diabetic nephropathy.Front. Endocrinol.202314113944410.3389/fendo.2023.113944437020591
    [Google Scholar]
  77. IshibashiT. MoritaS. FurutaH. NishiM. MatsuokaT.A. Renoprotective potential of concomittant medications with SGLT2 inhibitors and renin-angiotensin system inhibitors in diabetic nephropathy without albuminuria: A retrospective cohort study.Sci. Rep.20231311637310.1038/s41598‑023‑43614‑937773087
    [Google Scholar]
  78. KawanamiD. MatobaK. TakedaY. NagaiY. AkamineT. YokotaT. SangoK. UtsunomiyaK. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy.Int. J. Mol. Sci.2017185108310.3390/ijms1805108328524098
    [Google Scholar]
  79. SeoY.G. Side effects associated with liraglutide treatment for obesity as well as diabetes.J. Obes. Metab. Syndr.2021301121910.7570/jomes2005933071241
    [Google Scholar]
  80. GonzalezC.D. Carro NegueruelaM.P. Nicora SantamarinaC. ResnikR. VaccaroM.I. Autophagy dysregulation in diabetic kidney disease: From pathophysiology to pharmacological interventions.Cells2021109249710.3390/cells1009249734572148
    [Google Scholar]
  81. PanD. XuL. GuoM. The role of protein kinase C in diabetic microvascular complications.Front. Endocrinol.20221397305810.3389/fendo.2022.97305836060954
    [Google Scholar]
  82. ChenY. ZouH. LuH. XiangH. ChenS. Research progress of endothelial‐mesenchymal transition in diabetic kidney disease.J. Cell. Mol. Med.202226123313332210.1111/jcmm.1735635560773
    [Google Scholar]
  83. WangE. WangH. ChakrabartiS. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications.Front. Endocrinol.202314105054010.3389/fendo.2023.105054036777351
    [Google Scholar]
  84. GuptaA. BehlT. SehgalA. BhatiaS. JaglanD. BungauS. Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy.Mol. Biol. Rep.20214832761277410.1007/s11033‑021‑06257‑533754251
    [Google Scholar]
  85. Robledinos-AntónN. Fernández-GinésR. MandaG. CuadradoA. Activators and inhibitors of NRF2: A review of their potential for clinical development.Oxid. Med. Cell. Longev.2019201912010.1155/2019/937218231396308
    [Google Scholar]
  86. MohanT. NarasimhanK.K.S. RaviD.B. VelusamyP. ChandrasekarN. ChakrapaniL.N. SrinivasanA. KarthikeyanP. KannanP. TamilarasanB. JohnsonT. KalaiselvanP. PeriandavanK. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: Therapeutic prospect of epigallocatechin-3-gallate.Free Radic. Biol. Med.202016022723810.1016/j.freeradbiomed.2020.07.03732768570
    [Google Scholar]
  87. KumarA. MittalR. Nrf2: A potential therapeutic target for diabetic neuropathy.Inflammopharmacology201725439340210.1007/s10787‑017‑0339‑y28353124
    [Google Scholar]
  88. Ganesh YerraV. NegiG. SharmaS.S. KumarA. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy.Redox Biol.20131139439710.1016/j.redox.2013.07.00524024177
    [Google Scholar]
  89. The Complete Remote Site Access Solution Checklist.Available from: https://clinicaltrials.gov/ (Acceseed on 20 March 2024).
  90. National Library of Medicine.Available from: https://clinicaltrials.gov/(Acceseed on 16 April 2024).
  91. ClinicalTrials.gov.Available from: https://clinicaltrials.gov/ (Acceseed on 21 March 2024).
  92. XiangE. HanB. ZhangQ. RaoW. WangZ. ChangC. ZhangY. TuC. LiC. WuD. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis.Stem Cell Res. Ther.202011133610.1186/s13287‑020‑01852‑y32746936
    [Google Scholar]
  93. WuZ. XuX. CaiJ. ChenJ. HuangL. WuW. PuglieseA. LiS. RicordiC. TanJ. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: A pilot randomized controlled open-label clinical study with 8-year follow-up.Cytotherapy202224442142710.1016/j.jcyt.2021.09.01535086778
    [Google Scholar]
  94. WalP. TyagiS. PalR.S. YadavA. JaiswalR. A strategic investigation on diabetic nephropathy; its conceptual model and clinical manifestations: A review.Curr. Diabetes Rev.2023195e26042220403610.2174/157339981866622042609123835993472
    [Google Scholar]
  95. SulaimanM.K. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management.Diabetol. Metab. Syndr.2019111710.1186/s13098‑019‑0403‑430679960
    [Google Scholar]
  96. OtodaT. KanasakiK. KoyaD. Low-protein diet for diabetic nephropathy.Curr. Diab. Rep.201414952310.1007/s11892‑014‑0523‑z24986448
    [Google Scholar]
  97. KanauchiN. OokawaraS. ItoK. MogiS. YoshidaI. KakeiM. IshikawaS. MorishitaY. TabeiK. Factors affecting the progression of renal dysfunction and the importance of salt restriction in patients with type 2 diabetic kidney disease.Clin. Exp. Nephrol.20151961120112610.1007/s10157‑015‑1118‑y25920730
    [Google Scholar]
  98. AzarS.T. BeydounH.M. AlbadriM.R. Benefits of ketogenic diet for management of type two diabetes: A review.J. obes. eat. disord.20162213
    [Google Scholar]
  99. PoplawskiM.M. MastaitisJ.W. IsodaF. GrosjeanF. ZhengF. MobbsC.V. Reversal of diabetic nephropathy by a ketogenic diet.PLoS One201164e1860410.1371/journal.pone.001860421533091
    [Google Scholar]
  100. HussainT.A. MathewT.C. DashtiA.A. AsfarS. Al-ZaidN. DashtiH.M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes.Nutrition201228101016102110.1016/j.nut.2012.01.01622673594
    [Google Scholar]
  101. KoG. Kalantar-ZadehK. Goldstein-FuchsJ. RheeC. Dietary approaches in the management of diabetic patients with kidney disease.Nutrients20179882410.3390/nu908082428758978
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998291920240611063402
Loading
/content/journals/cdr/10.2174/0115733998291920240611063402
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test