Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Recent studies have found that a link between people with type 1 diabetes mellitus (T1DM) are at higher risk of morbidity as well as mortality from COVID-19 infection, indicating a need for vaccination. T1DM appears to impair innate and adaptive immunity. The overabundance of pro-inflammatory cytokines produced in COVID-19 illness that is severe and potentially fatal is known as a “cytokine storm.” Numerous cohorts have revealed chronic inflammation as a key risk factor for unfavorable COVID-19 outcomes. TNF-α, interleukin (IL)-1a, IL-1, IL-2, IL-6, and other cytokines were found in higher concentrations in patients with T1DM. Even more importantly, oxidative stress contributes significantly to the severity and course of COVID-19's significant role in the progression and severity of COVID-19 diseases. Severe glucose excursions, a defining characteristic of type 1 diabetes, are widely recognized for their potent role as mediating agents of oxidative stress several routes, such as heightened production of advanced glycation end products (AGEs) and activation of protein kinase C (PKC). Furthermore, persistent endothelial dysfunction and hypercoagulation found in T1DM may impair microcirculation and endothelium, which could result in the development of various organ failure and acute breathing syndrome.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998290807240522045553
2024-05-24
2025-01-18
Loading full text...

Full text loading...

References

  1. HashemiM. Management of environmental health to prevent an outbreak of COVID-19. A review. Environmental and Health Management of Novel Coronavirus Disease (COVID-19).AmsterdamElsevier2021235267
    [Google Scholar]
  2. KoliakiC. TentolourisA. EleftheriadouI. MelidonisA. DimitriadisG. TentolourisN. Clinical management of diabetes mellitus in the era of COVID-19: Practical issues, peculiarities and concerns.J. Clin. Med.202097228810.3390/jcm907228832708504
    [Google Scholar]
  3. VermaA. RajputR. VermaS. BalaniaV.K.B. JangraB. Impact of lockdown in COVID 19 on glycemic control in patients with type 1 Diabetes Mellitus.Diabetes Metab. Syndr.20201451213121610.1016/j.dsx.2020.07.01632679527
    [Google Scholar]
  4. ZhangY. CuiY. ShenM. Association of diabetes mellitus with disease severity and prognosis in COVID-19: A retrospective cohort study.Diabetes Res. Clin. Pract.202016510822710.1016/j.diabres.2020.10822732446795
    [Google Scholar]
  5. KumarA. AroraA. SharmaP. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis.Diabetes Metab. Syndr.202014453554510.1016/j.dsx.2020.04.04432408118
    [Google Scholar]
  6. LimS. BaeJ.H. KwonH.S. NauckM.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management.Nat. Rev. Endocrinol.2021171113010.1038/s41574‑020‑00435‑433188364
    [Google Scholar]
  7. HolmanN. KnightonP. KarP. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study.Lancet Diabetes Endocrinol.202081082383310.1016/S2213‑8587(20)30271‑032798471
    [Google Scholar]
  8. EbekozienO.A. NoorN. GallagherM.P. AlonsoG.T. Type 1 diabetes and COVID-19: Preliminary findings from a multicenter surveillance study in the US.Diabetes Care2020438e83e8510.2337/dc20‑108832503837
    [Google Scholar]
  9. BrufskyA. Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic.J. Med. Virol.202092777077510.1002/jmv.2588732293710
    [Google Scholar]
  10. YangJ.K. FengY. YuanM.Y. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS.Diabet. Med.200623662362810.1111/j.1464‑5491.2006.01861.x16759303
    [Google Scholar]
  11. BarronE. BakhaiC. KarP. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study.Lancet Diabetes Endocrinol.202081081382210.1016/S2213‑8587(20)30272‑232798472
    [Google Scholar]
  12. DiMeglioL.A. COVID-19 and children with diabetes-updates, unknowns, and next steps: First, do no extrapolation.Diabetes Care2020431126312634
    [Google Scholar]
  13. d’AnnunzioG. MaffeisC. CherubiniV. Caring for children and adolescents with type 1 diabetes mellitus: Italian Society for Pediatric Endocrinology and Diabetology (ISPED) statements during COVID-19 pandemia.Diabetes Res. Clin. Pract.202016810837210.1016/j.diabres.2020.10837232827594
    [Google Scholar]
  14. TittelS.R. RosenbauerJ. KamrathC. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany?Diabetes Care20204311e172e17310.2337/dc20‑163332826282
    [Google Scholar]
  15. KountouriA. KorakasE. IkonomidisI. Type 1 diabetes mellitus in the SARS-CoV-2 pandemic: Oxidative stress as a major patho-physiological mechanism linked to adverse clinical outcomes.Antioxidants202110575210.3390/antiox1005075234065123
    [Google Scholar]
  16. CastañoL. EisenbarthG.S. Type-I diabetes: A chronic autoimmune disease of human, mouse, and rat.Annu. Rev. Immunol.19908164767910.1146/annurev.iy.08.040190.0032432188676
    [Google Scholar]
  17. LedermanM.M. SchiffmanG. RodmanH.M. Pneumococcal immunization in adult diabetics.Diabetes198130211912110.2337/diab.30.2.1197202857
    [Google Scholar]
  18. PozzilliP. GaleE.A.M. VisallilN. The immune response to influenza vaccination in diabetic patients.Diabetologia1986291285085410.1007/BF008701393569690
    [Google Scholar]
  19. ValleA. GiamporcaroG.M. ScaviniM. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes.Diabetes20136262072207710.2337/db12‑134523349491
    [Google Scholar]
  20. JacksonM.H. CollierA. NicollJ.J. Neutrophil count and activation in vascular disease.Scott. Med. J.1992372414310.1177/0036933092037002051609264
    [Google Scholar]
  21. MarhofferW. SteinM. SchleinkoferL. FederlinK. Evidence of ex vivo and in vitro impaired neutrophil oxidative burst and phagocytic capacity in type 1 diabetes mellitus.Diabetes Res. Clin. Pract.199319318318810.1016/0168‑8227(93)90112‑I8319516
    [Google Scholar]
  22. DelamaireM. MaugendreD. MorenoM. Le GoffM.C. AllannicH. GenetetB. Exploration of the various steps of polymorphonuclear neutrophil function in diabetic patients.J. Mal. Vasc.19952021071127650435
    [Google Scholar]
  23. MeradM. MartinJ.C. Author Correction: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020744810.1038/s41577‑020‑0353‑y32488203
    [Google Scholar]
  24. WangJ.Z. ZhangR.Y. BaiJ. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients.Int. J. Cardiol.202031213713810.1016/j.ijcard.2020.04.00932321655
    [Google Scholar]
  25. BarnesB.J. AdroverJ.M. Baxter-StoltzfusA. Targeting potential drivers of COVID-19: Neutrophil extracellular traps.J. Exp. Med.20202176e2020065210.1084/jem.2020065232302401
    [Google Scholar]
  26. BrinkmannV. ZychlinskyA. Neutrophil extracellular traps: Is immunity the second function of chromatin?J. Cell Biol.2012198577378310.1083/jcb.20120317022945932
    [Google Scholar]
  27. WangY. XiaoY. ZhongL. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes.Diabetes201463124239424810.2337/db14‑048025092677
    [Google Scholar]
  28. QinJ. FuS. SpeakeC. GreenbaumC.J. OdegardJ.M. NETosis-associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count.Clin. Exp. Immunol.2016184331832210.1111/cei.1278326939803
    [Google Scholar]
  29. RiyapaD. BuddhisaS. KorbsrisateS. Neutrophil extracellular traps exhibit antibacterial activity against burkholderia pseudomallei and are influenced by bacterial and host factors.Infect. Immun.201280113921392910.1128/IAI.00806‑1222927051
    [Google Scholar]
  30. JoshiM.B. LadA. Bharath PrasadA.S. BalakrishnanA. RamachandraL. SatyamoorthyK. High glucose modulates IL‐6 mediated immune homeostasis through impeding neutrophil extracellular trap formation.FEBS Lett.2013587142241224610.1016/j.febslet.2013.05.05323735697
    [Google Scholar]
  31. LiY. LiuY. ChuC-Q. Th17 cells in type 1 diabetes: Role in the pathogenesis and regulation by gut microbiome.Mediators Inflamm.2015201563847010.1155/2015/638470
    [Google Scholar]
  32. BradshawE.M. RaddassiK. ElyamanW. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cy-tokines inducing Th17 cells.J. Immunol.200918374432443910.4049/jimmunol.090057619748982
    [Google Scholar]
  33. KaizerE.C. GlaserC.L. ChaussabelD. BanchereauJ. PascualV. WhiteP.C. Gene expression in peripheral blood mononuclear cells from children with diabetes.J. Clin. Endocrinol. Metab.20079293705371110.1210/jc.2007‑097917595242
    [Google Scholar]
  34. Menart-HoutermansB. RütterR. NowotnyB. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: Results from the German Diabetes Study (GDS).Diabetes Care20143782326233310.2337/dc14‑031625061140
    [Google Scholar]
  35. LongS.A. BucknerJ.H. CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game.J. Immunol.201118752061206610.4049/jimmunol.100322421856944
    [Google Scholar]
  36. KukrejaA. CostG. MarkerJ. Multiple immuno-regulatory defects in type-1 diabetes.J. Clin. Invest.2002109113114010.1172/JCI021360511781358
    [Google Scholar]
  37. HuangI. LimM.A. PranataR. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – A systematic review, meta-analysis, and meta-regression.Diabetes Metab. Syndr.202014439540310.1016/j.dsx.2020.04.01832334395
    [Google Scholar]
  38. ChenY. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: A systematic review and meta-analysis.MedRxiv202010.1101/2020.03.25.20043133
    [Google Scholar]
  39. PambiancoG. CostacouT. OrchardT.J. The prediction of major outcomes of type 1 diabetes: A 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: The Pittsburgh Epidemiology of Diabetes Complications Study experience.Diabetes Care20073051248125410.2337/dc06‑205317303788
    [Google Scholar]
  40. PriyaG. KalraS. A review of insulin resistance in type 1 diabetes: Is there a place for adjunctive metformin?Diabetes Ther.20189134936110.1007/s13300‑017‑0333‑929139080
    [Google Scholar]
  41. KaulK. ApostolopoulouM. RodenM. Insulin resistance in type 1 diabetes mellitus.Metabolism201564121629163910.1016/j.metabol.2015.09.00226455399
    [Google Scholar]
  42. NishidaK. OtsuK. Inflammation and metabolic cardiomyopathy.Cardiovasc. Res.2017113438939810.1093/cvr/cvx01228395010
    [Google Scholar]
  43. PanX. KamingaA.C. WenS.W. AcheampongK. LiuA. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis.PLoS One20191412e022629210.1371/journal.pone.022629231821362
    [Google Scholar]
  44. LucK. Schramm-LucA. GuzikT.J. MikolajczykT.P. Oxidative stress and inflammatory markers in prediabetes and diabetes.J. Physiol. Pharmacol.201970632084643
    [Google Scholar]
  45. DominguetiC.P. DusseL.M.S.A. CarvalhoM.G. de SousaL.P. GomesK.B. FernandesA.P. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.J. Diabetes Complications201630473874510.1016/j.jdiacomp.2015.12.01826781070
    [Google Scholar]
  46. GoudaW. MageedL. Abd El DayemS.M. AshourE. AfifyM. Evaluation of pro-inflammatory and anti-inflammatory cytokines in type 1 diabetes mellitus.Bull. Natl. Res. Cent.20184211410.1186/s42269‑018‑0016‑3
    [Google Scholar]
  47. DoganY. MathML Namespace.2006Available From: http://www.w3.org/1998/Math/MathML
  48. TalaatI.M. NasrA. AlsulaimaniA.A. Association between type 1, type 2 cytokines, diabetic autoantibodies and 25-hydroxyvitamin D in children with type 1 diabetes.J. Endocrinol. Invest.201639121425143410.1007/s40618‑016‑0514‑927541155
    [Google Scholar]
  49. UrurahyM.A.G. LoureiroM.B. Freire-NetoF.P. Increased TLR2 expression in patients with type 1 diabetes: Evidenced risk of microalbuminuria.Pediatr. Diabetes201213214715410.1111/j.1399‑5448.2011.00794.x21848584
    [Google Scholar]
  50. HuntK.J. BakerN.L. ClearyP.A. KleinR. VirellaG. Lopes-VirellaM.F. Longitudinal association between endothelial dysfunction, inflam-mation, and clotting biomarkers with subclinical atherosclerosis in Type 1 Diabetes: An evaluation of the DCCT/EDIC cohort.Diabetes Care20153871281128910.2337/dc14‑287725852210
    [Google Scholar]
  51. DevarajS. GlaserN. GriffenS. Wang-PolagrutoJ. MiguelinoE. JialalI. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes.Diabetes200655377477910.2337/diabetes.55.03.06.db05‑141716505242
    [Google Scholar]
  52. WuC. ChenX. CaiY. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus dis-ease 2019 pneumonia in Wuhan, China.JAMA Intern. Med.2020180793494310.1001/jamainternmed.2020.099432167524
    [Google Scholar]
  53. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. COVID-19: Consider cytokine storm syndromes and immunosup-pression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑032192578
    [Google Scholar]
  54. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a11742414
    [Google Scholar]
  55. Delgado-RocheL. MestaF. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection.Arch. Med. Res.202051538438710.1016/j.arcmed.2020.04.01932402576
    [Google Scholar]
  56. FatimaN. FaisalS.M. ZubairS. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects.PLoS One2016118e016154810.1371/journal.pone.016154827575603
    [Google Scholar]
  57. FiroozraiM. NourbakhshM. Razzaghy-AzarM. Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes.Diabetes Res. Clin. Pract.200777342743210.1016/j.diabres.2007.02.00117360068
    [Google Scholar]
  58. GleisnerA. MartinezL. PinoR. Oxidative stress markers in plasma and urine of prepubertal patients with type 1 diabetes mellitus.J. Pediatr. Endocrinol. Metab.2006198995100010.1515/JPEM.2006.19.8.99516995584
    [Google Scholar]
  59. RincónJ. CorreiaD. ArcayaJ.L. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension.Life Sci.2015124819010.1016/j.lfs.2015.01.00525623850
    [Google Scholar]
  60. Beltrán-GarcíaJ. Osca-VerdegalR. PallardóF.V. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression.Antioxidants202091093610.3390/antiox910093633003552
    [Google Scholar]
  61. CecchiniR. CecchiniA.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression.Med. Hypotheses202014311010210.1016/j.mehy.2020.11010232721799
    [Google Scholar]
  62. NanduriJ. YuanG. KumarG.K. SemenzaG.L. PrabhakarN.R. Transcriptional responses to intermittent hypoxia.Respir. Physiol. Neurobiol.20081641-227728110.1016/j.resp.2008.07.00618692603
    [Google Scholar]
  63. CavezziA. TroianiE. CorraoS. COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review.Clin. Pract.2020102127110.4081/cp.2020.127132509258
    [Google Scholar]
  64. SchechterA.N. GladwinM.T. Hemoglobin and the paracrine and endocrine functions of nitric oxide.N. Engl. J. Med.2003348151483148510.1056/NEJMcibr02304512686706
    [Google Scholar]
  65. FurchgottR.F. ZawadzkiJ.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature1980288578937337610.1038/288373a0
    [Google Scholar]
  66. DeanfieldJ.E. HalcoxJ.P. RabelinkT.J. Endothelial function and dysfunction: Testing and clinical relevance.Circulation2007115101285129510.1161/CIRCULATIONAHA.106.65285917353456
    [Google Scholar]
  67. MachnicaL. DejaG. PolanskaJ. Blood pressure disturbances and endothelial dysfunction markers in children and adolescents with type 1 diabetes.Atherosclerosis2014237112913410.1016/j.atherosclerosis.2014.09.00625238220
    [Google Scholar]
  68. PerrinR.M. HarperS.J. BatesD.O. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus.Cell Biochem. Biophys.2007492657210.1007/s12013‑007‑0041‑617906361
    [Google Scholar]
  69. OnatD. BrillonD. ColomboP.C. SchmidtA.M. Human vascular endothelial cells: A model system for studying vascular inflammation in diabetes and atherosclerosis.Curr. Diab. Rep.201111319320210.1007/s11892‑011‑0182‑221337131
    [Google Scholar]
  70. LemkesB.A. NieuwdorpM. HoekstraJ.B.L. HollemanF. The glycocalyx and cardiovascular disease in diabetes: Should we judge the endothelium by its cover?Diabetes Technol. Ther.201214S1Suppl. 1S-3S-1010.1089/dia.2012.001122650222
    [Google Scholar]
  71. NieuwdorpM. van HaeftenT.W. GouverneurM.C.L.G. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo.Diabetes200655248048610.2337/diabetes.55.02.06.db05‑110316443784
    [Google Scholar]
  72. GianniniC. MohnA. ChiarelliF. KelnarC.J.H. Macrovascular angiopathy in children and adolescents with type 1 diabetes.Diabetes Metab. Res. Rev.201127543646010.1002/dmrr.119521433262
    [Google Scholar]
  73. KesslerL. WieselM.L. AttaliP. MossardJ.M. CazenaveJ.P. PingetM. Von Willebrand factor in diabetic angiopathy.Diabetes Metab.19982443273369805643
    [Google Scholar]
  74. MargeticS. Inflammation and haemostasis.Biochem. Med. (Zagreb)20122214962
    [Google Scholar]
  75. WautierJ.L. GuillausseauP.J. Diabetes, advanced glycation endproducts and vascular disease.Vasc. Med.19983213113710.1177/1358836X98003002079796076
    [Google Scholar]
  76. YamagishiS. MatsuiT. Advanced glycation end products, oxidative stress and diabetic nephropathy.Oxid. Med. Cell. Longev.20103210110810.4161/oxim.3.2.1114820716934
    [Google Scholar]
  77. SenaC.M. PereiraA.M. SeiçaR. Endothelial dysfunction — A major mediator of diabetic vascular disease.Biochim. Biophys. Acta Mol. Basis Dis.20131832122216223110.1016/j.bbadis.2013.08.00623994612
    [Google Scholar]
  78. HeL. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS.J. Pathol.20062103288297
    [Google Scholar]
  79. VargaZ. FlammerA.J. SteigerP. Endothelial cell infection and endotheliitis in COVID-19.Lancet2020395102341417141810.1016/S0140‑6736(20)30937‑532325026
    [Google Scholar]
  80. SuH. YangM. WanC. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China.Kidney Int.202098121922710.1016/j.kint.2020.04.00332327202
    [Google Scholar]
  81. CopinM.C. ParmentierE. DuburcqT. PoissyJ. MathieuD. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection.Intensive Care Med.20204661124112610.1007/s00134‑020‑06057‑832328726
    [Google Scholar]
  82. MorelO. Prothrombotic changes in diabetes mellitus.Semin. Thromb. Hemost.2013395477488
    [Google Scholar]
  83. WinocourP.D. WatalaC. PerryD.W. Kinlough-RathboneR.L. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins.Thromb. Haemost.199268557758210.1055/s‑0038‑16463201455404
    [Google Scholar]
  84. AssertR. ScherkG. BumbureA. PiragsV. SchatzH. PfeifferA.F.H. Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro.Diabetologia200144218819510.1007/s00125005159811270675
    [Google Scholar]
  85. SchaefferG. WascherT.C. KostnerG.M. GraierW.F. Alterations in platelet Ca 2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production.Diabetologia199942216717610.1007/s00125005113510064096
    [Google Scholar]
  86. ZhouF. YuT. DuR. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑332171076
    [Google Scholar]
  87. BornsteinS.R. RubinoF. KhuntiK. Practical recommendations for the management of diabetes in patients with COVID-19.Lancet Diabetes Endocrinol.20208654655010.1016/S2213‑8587(20)30152‑232334646
    [Google Scholar]
  88. BindomS.M. LazartiguesE. The sweeter side of ACE2: Physiological evidence for a role in diabetes.Mol. Cell. Endocrinol.2009302219320210.1016/j.mce.2008.09.02018948167
    [Google Scholar]
  89. Roca-HoH. RieraM. PalauV. PascualJ. SolerM. Characterization of ACE and ACE2 expression within different organs of the NOD mouse.Int. J. Mol. Sci.201718356310.3390/ijms1803056328273875
    [Google Scholar]
  90. MonteilV. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2.Cell20201814905913
    [Google Scholar]
  91. YuM.G. KeenanH.A. ShahH.S. Residual β cell function and monogenic variants in long-duration type 1 diabetes patients.J. Clin. Invest.201912983252326310.1172/JCI12739731264968
    [Google Scholar]
  92. LiJ. WangX. ChenJ. ZuoX. ZhangH. DengA. COVID ‐19 infection may cause ketosis and ketoacidosis.Diabetes Obes. Metab.202022101935194110.1111/dom.1405732314455
    [Google Scholar]
  93. RabboneI. SchiaffiniR. CherubiniV. Has COVID-19 delayed the diagnosis and worsened the presentation of type 1 diabetes in children?Diabetes Care202043112870287210.2337/dc20‑132132778554
    [Google Scholar]
  94. KamrathC. MönkemöllerK. BiesterT. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany.JAMA2020324880180410.1001/jama.2020.1344532702751
    [Google Scholar]
  95. YangJ.K. LinS.S. JiX.J. GuoL.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes.Acta Diabetol.201047319319910.1007/s00592‑009‑0109‑419333547
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998290807240522045553
Loading
/content/journals/cdr/10.2174/0115733998290807240522045553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): coagulopathy; COVID-19; Inflammation; oxidative stress; SARS-CoV-2; type 1 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test