Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects.

This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998287178240403055901
2024-04-16
2024-11-19
Loading full text...

Full text loading...

References

  1. BlairM. Diabetes Mellitus Review.Urol. Nurs.2016361273610.7257/1053‑816X.2016.36.1.27 27093761
    [Google Scholar]
  2. IgnataviciusD. WorkmanL. Medical-Surgical Nursing: Patient-Centered Collaborative Care.8th edSt. Louis: Elsevier20161
    [Google Scholar]
  3. ZieglerD. FonsecaV. From guideline to patient: A review of recent recommendations for pharmacotherapy of painful diabetic neuropathy.J. Diabetes Complications201529114615610.1016/j.jdiacomp.2014.08.008 25239450
    [Google Scholar]
  4. NHSPractice Nurse.2009Available From: https://www.healthcareers.nhs.uk/explore-roles/nursing/roles-nursing/general-practice-nurse
    [Google Scholar]
  5. JamesR. HijazA. Lower urinary tract symptoms in women with diabetes mellitus: A current review.Curr. Urol. Rep.2014151044010.1007/s11934‑014‑0440‑3 25118849
    [Google Scholar]
  6. LiX. Fibroblast Growth Factors.1st edCambridge, MassachusettsAcademic Press2018
    [Google Scholar]
  7. FathallahN. SlimR. LarifS. HmoudaH. Ben SalemC. Drug-induced hyperglycaemia and diabetes.Drug Saf.201538121153116810.1007/s40264‑015‑0339‑z 26370106
    [Google Scholar]
  8. DeFronzoR.A. ReevesW.B. AwadA.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors.Nat. Rev. Nephrol.202117531933410.1038/s41581‑021‑00393‑8 33547417
    [Google Scholar]
  9. AstorB.C. HallanS.I. MillerE.R.III YeungE. CoreshJ. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population.Am. J. Epidemiol.2008167101226123410.1093/aje/kwn033 18385206
    [Google Scholar]
  10. Echouffo-TcheuguiJ.B. GargR. Management of hyperglycemia and diabetes in the emergency department.Curr. Diab. Rep.20171785610.1007/s11892‑017‑0883‑2 28646357
    [Google Scholar]
  11. Al-LawatiJ.A. Diabetes mellitus: A local and global public health emergency!Oman Med. J.201732317717910.5001/omj.2017.34 28584596
    [Google Scholar]
  12. World Health OrganizationImproving diabetes outcomes for all, a hundred years on from the discovery of insulin: Report of the Global Diabetes Summit 2022.2022Available From:https://www.who.int/publications/i/item/9789240038943
  13. HeL. SabetA. DjedjosS. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein.Cell2009137463564610.1016/j.cell.2009.03.016 19450513
    [Google Scholar]
  14. VallerandA.H. SanoskiC.A. Davis’s drug guide for nurses.13th edSt. LouisFA Davis2013
    [Google Scholar]
  15. TanS.Y. Mei WongJ.L. SimY.J. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  16. ChenN.K.F. WongJ.S. KeeI.H.C. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model.PLoS One200833e173410.1371/journal.pone.0001734 18320053
    [Google Scholar]
  17. KimH.S. LeeM.K. β‐Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.J. Diabetes Investig.20167328629610.1111/jdi.12475 27330712
    [Google Scholar]
  18. NauckM.A. MeierJ.J. Incretin hormones: Their role in health and disease.Diabetes Obes. Metab.201820S152110.1111/dom.13129 29364588
    [Google Scholar]
  19. NauckM.A. MeierJ.J. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions.Lancet Diabetes Endocrinol.20164652553610.1016/S2213‑8587(15)00482‑9 26876794
    [Google Scholar]
  20. SeinoY. Understanding the incretin effect.J. Clin. Endocrinol. Metab.201196493493510.1210/jc.2011‑0329 21474688
    [Google Scholar]
  21. BaggerJ.I. KnopF.K. LundA. VestergaardH. HolstJ.J. VilsbøllT. Impaired regulation of the incretin effect in patients with type 2 diabetes.J. Clin. Endocrinol. Metab.201196373774510.1210/jc.2010‑2435 21252240
    [Google Scholar]
  22. GasbjergL.S. ChristensenM.B. HartmannB. GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: A randomised, double-blinded, placebo-controlled, crossover study.Diabetologia201861241342310.1007/s00125‑017‑4447‑4 28948296
    [Google Scholar]
  23. GasbjergL.S. BergmannN.C. StensenS. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists.Peptides202012517018310.1016/j.peptides.2019.170183 31693916
    [Google Scholar]
  24. WangX.L. YeF. LiJ. Impaired secretion of glucagon-like peptide 1 during oral glucose tolerance test in patients with newly diagnosed type 2 diabetes mellitus.Saudi Med. J.2016371485410.15537/smj.2016.1.12035 26739974
    [Google Scholar]
  25. FærchK. TorekovS.S. VistisenD. GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type 2 Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study.Diabetes20156472513252510.2337/db14‑1751 25677912
    [Google Scholar]
  26. PerreaultL. FærchK. Approaching pre-diabetes.J. Diabetes Complications201428222623310.1016/j.jdiacomp.2013.10.008 24342268
    [Google Scholar]
  27. LarsenM.P. TorekovS.S. Glucagon-like peptide 1: A predictor of Type 2 Diabetes?J. Diabetes Res.2017201711310.1155/2017/7583506 29082261
    [Google Scholar]
  28. ManandharB. AhnJ.M. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications.J. Med. Chem.20155831020103710.1021/jm500810s 25349901
    [Google Scholar]
  29. HolstJ.J. The physiology of glucagon-like peptide 1.Physiol. Rev.20078741409143910.1152/physrev.00034.2006 17928588
    [Google Scholar]
  30. NauckM. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors.Diabetes Obes. Metab.201618320321610.1111/dom.12591 26489970
    [Google Scholar]
  31. DruckerD.J. The biology of incretin hormones.Cell Metab.20063315316510.1016/j.cmet.2006.01.004 16517403
    [Google Scholar]
  32. ShahM. VellaA. Effects of GLP-1 on appetite and weight.Rev. Endocr. Metab. Disord.201415318118710.1007/s11154‑014‑9289‑5 24811133
    [Google Scholar]
  33. NäslundE. EdholmT. GLP-1 suppresses gastrointestinal motility and inhibits the migrating motor complex in healthy subjects and patients with irritable bowel syndrome.Neurogastroenterol. Motil.20082064965910.1111/j.1365‑2982.2007.01079.x
    [Google Scholar]
  34. BunckM.C. CornérA. EliassonB. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes.Diabetes Care20113492041204710.2337/dc11‑0291 21868779
    [Google Scholar]
  35. GiuglianoD. SportielloL. CapuanoA. MaiorinoM. RossiF. EspositoK. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy – focus on alogliptin.Drug Des. Devel. Ther.201398998910.2147/DDDT.S37647
    [Google Scholar]
  36. SeghieriM. RebelosE. GastaldelliA. Direct effect of GLP-1 infusion on endogenous glucose production in humans.Diabetologia201356115616110.1007/s00125‑012‑2738‑3 23064290
    [Google Scholar]
  37. ChenJ.J. WuC.Y. JenqC.C. Association of glucagon-like peptide-1 receptor agonist vs. dipeptidyl peptidase-4 inhibitor use with mortality among patients with type 2 diabetes and advanced chronic kidney disease.JAMA Netw. Open202253e22116910.1001/jamanetworkopen.2022.1169 35254430
    [Google Scholar]
  38. BruntonS. GLP‐1 receptor agonists vs. DPP‐4 inhibitors for type 2 diabetes: Is one approach more successful or preferable than the other?Int. J. Clin. Pract.201468555756710.1111/ijcp.12361 24499291
    [Google Scholar]
  39. HolstJ.J. KnopF.K. VilsbøllT. KrarupT. MadsbadS. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes.Diabetes Care2011342S251S25710.2337/dc11‑s227 21525464
    [Google Scholar]
  40. JensenD.H. AaboeK. HenriksenJ.E. Steroid-induced insulin resistance and impaired glucose tolerance are both associated with a progressive decline of incretin effect in first-degree relatives of patients with type 2 diabetes.Diabetologia20125551406141610.1007/s00125‑012‑2459‑7 22286551
    [Google Scholar]
  41. NauckM.A. QuastD.R. WefersJ. MeierJ.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art.Mol. Metab.20214610110210.1016/j.molmet.2020.101102 33068776
    [Google Scholar]
  42. HolstJ.J. Long-acting glucagon-like peptide-1 receptor agonist—status December 2018.Ann. Transl. Med.20197583310.21037/atm.2019.01.09 31019933
    [Google Scholar]
  43. MeierJ.J. MengeB.A. SchenkerN. Effects of sequential treatment with lixisenatide, insulin glargine, or their combination on meal‐related glycaemic excursions, insulin and glucagon secretion, and gastric emptying in patients with type 2 diabetes.Diabetes Obes. Metab.202022459961110.1111/dom.13935 31793165
    [Google Scholar]
  44. MeierJ.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.Nat. Rev. Endocrinol.201281272874210.1038/nrendo.2012.140 22945360
    [Google Scholar]
  45. WangQ. LiL. XuE. WongV. RhodesC. BrubakerP.L. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells.Diabetologia200447347848710.1007/s00125‑004‑1327‑5 14762654
    [Google Scholar]
  46. FuscoJ. XiaoX. PrasadanK. GLP-1/Exendin-4 induces β-cell proliferation via the epidermal growth factor receptor.Sci. Rep.201771910010.1038/s41598‑017‑09898‑4 28831150
    [Google Scholar]
  47. ButeauJ. SpatzM.L. AcciliD. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic β-cell mass.Diabetes20065551190119610.2337/db05‑0825
    [Google Scholar]
  48. LiY. CaoX. LiL.X. BrubakerP.L. EdlundH. DruckerD.J. β-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1.Diabetes200554248249110.2337/diabetes.54.2.482 15677506
    [Google Scholar]
  49. HuiH. NourparvarA. ZhaoX. PerfettiR. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway.Endocrinology200314441444145510.1210/en.2002‑220897 12639928
    [Google Scholar]
  50. JolyE. PrentkiM. ButeauJ. El-AssaadW. RhodesC.J. RosenbergL. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity.Diabetologia200447580681510.1007/s00125‑004‑1379‑6 15095038
    [Google Scholar]
  51. YustaB. BaggioL.L. EstallJ.L. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress.Cell Metab.20064539140610.1016/j.cmet.2006.10.001 17084712
    [Google Scholar]
  52. PeyotM.L. GrayJ.P. LamontagneJ. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic β-cells.PLoS One200947e622110.1371/journal.pone.0006221 19593440
    [Google Scholar]
  53. MeloniA.R. DeYoungM.B. LoweC. ParkesD.G. GLP ‐1 receptor activated insulin secretion from pancreatic β‐cells: Mechanism and glucose dependence.Diabetes Obes. Metab.2013151152710.1111/j.1463‑1326.2012.01663.x 22776039
    [Google Scholar]
  54. RowlandsJ. HengJ. NewsholmeP. CarlessiR. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function.Front. Endocrinol. (Lausanne)2018967210.3389/fendo.2018.00672 30532733
    [Google Scholar]
  55. LightP.E. Manning FoxJ.E. RiedelM.J. WheelerM.B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism.Mol. Endocrinol.20021692135214410.1210/me.2002‑0084 12198249
    [Google Scholar]
  56. KangG. LeechC.A. ChepurnyO.G. CoetzeeW.A. HolzG.G. Role of the cAMP sensor Epac as a determinant of K ATP channel ATP sensitivity in human pancreatic β‐cells and rat INS‐1 cells.J. Physiol.200858651307131910.1113/jphysiol.2007.143818 18202100
    [Google Scholar]
  57. HolzG.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell.Diabetes200453151310.2337/diabetes.53.1.5 14693691
    [Google Scholar]
  58. DonnellyD. The structure and function of the glucagon‐like peptide‐1 receptor and its ligands.Br. J. Pharmacol.20121661274110.1111/j.1476‑5381.2011.01687.x 21950636
    [Google Scholar]
  59. AhrénB. GLP-1 and extra-islet effects.Horm. Metab. Res.20043611/1284284510.1055/s‑2004‑826173 15655717
    [Google Scholar]
  60. NikolaidisL.A. ElahiD. HentoszT. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy.Circulation2004110895596110.1161/01.CIR.0000139339.85840.DD 15313949
    [Google Scholar]
  61. SokosG.G. NikolaidisL.A. MankadS. ElahiD. ShannonR.P. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure.J. Card. Fail.200612969469910.1016/j.cardfail.2006.08.211 17174230
    [Google Scholar]
  62. TsaiE.J. KassD.A. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics.Pharmacol. Ther.2009122321623810.1016/j.pharmthera.2009.02.009 19306895
    [Google Scholar]
  63. KukrejaR.C. SalloumF.N. DasA. Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection.J. Am. Coll. Cardiol.201259221921192710.1016/j.jacc.2011.09.086 22624832
    [Google Scholar]
  64. NikolaidisL.A. DoverspikeA. HentoszT. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines.J. Pharmacol. Exp. Ther.2005312130330810.1124/jpet.104.073890 15356213
    [Google Scholar]
  65. CantiniG. MannucciE. LuconiM. Perspectives in GLP-1 research: New targets, new receptors.Trends Endocrinol. Metab.201627642743810.1016/j.tem.2016.03.017 27091492
    [Google Scholar]
  66. CampbellJ.E. DruckerD.J. Pharmacology, physiology, and mechanisms of incretin hormone action.Cell Metab.201317681983710.1016/j.cmet.2013.04.008 23684623
    [Google Scholar]
  67. IkezawaY. YamataniK. OhnumaH. DaimonM. ManakaH. SasakiH. Glucagon-like peptide-1 inhibits glucagon-induced glycogenolysis in perivenous hepatocytes specifically.Regul. Pept.20031111-320721010.1016/S0167‑0115(02)00287‑2 12609770
    [Google Scholar]
  68. DingX. SaxenaN.K. LinS. GuptaN. AnaniaF.A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis inob/ob mice.Hepatology200643117318110.1002/hep.21006 16374859
    [Google Scholar]
  69. RussellA.P. WadaS. VerganiL. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis.Neurobiol. Dis.20134910711710.1016/j.nbd.2012.08.015 22975021
    [Google Scholar]
  70. HeQ. ShaS. SunL. ZhangJ. DongM. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.Biochem. Biophys. Res. Commun.2016476419620310.1016/j.bbrc.2016.05.086 27208776
    [Google Scholar]
  71. RedondoA. TrigoM.V. AcitoresA. ValverdeI. Villanueva-PeñacarrilloM.L. Cell signalling of the GLP-1 action in rat liver.Mol. Cell. Endocrinol.20032041-2435010.1016/S0303‑7207(03)00146‑1 12850280
    [Google Scholar]
  72. BaeC. SongJ. The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain.Int. J. Mol. Sci.20171811249310.3390/ijms18112493 29165354
    [Google Scholar]
  73. KatsuradaK. YadaT. Neural effects of gut‐ and brain‐derived glucagon‐like peptide‐1 and its receptor agonist.J. Diabetes Investig.20167S1Suppl. 1646910.1111/jdi.12464 27186358
    [Google Scholar]
  74. SeoS. JuS. ChungH. LeeD. ParkS. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats.Endocr. J.200855586787410.1507/endocrj.K08E‑091 18506089
    [Google Scholar]
  75. HoltM.K. TrappS. The physiological role of the brain GLP-1 system in stress.Cogent Biol.201621122908610.1080/23312025.2016.1229086 27722184
    [Google Scholar]
  76. HölscherC. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases.J. Endocrinol.20142211T31T4110.1530/JOE‑13‑0221 23999914
    [Google Scholar]
  77. PanagakiT. MichaelM. HölscherC. Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells.Sci. Rep.2017711615810.1038/s41598‑017‑16488‑x 29170452
    [Google Scholar]
  78. CabouC. BurcelinR. GLP-1, the gut-brain, and brain-periphery axes.Rev. Diabet. Stud.20118341843110.1900/RDS.2011.8.418 22262078
    [Google Scholar]
  79. PangZ.P. SüdhofT.C. Cell biology of Ca2+-triggered exocytosis.Curr. Opin. Cell Biol.201022449650510.1016/j.ceb.2010.05.001 20561775
    [Google Scholar]
  80. GolpichM. AminiE. HemmatiF. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson’s disease.Pharmacol. Res.201597162610.1016/j.phrs.2015.03.010 25829335
    [Google Scholar]
  81. ChenS. AnF. YinL. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation.Neuroscience201425613714610.1016/j.neuroscience.2013.10.038 24183963
    [Google Scholar]
  82. KohlerL. FooteJ. KelleyC. Selenium and Type 2 Diabetes: Systematic review.Nutrients20181012192410.3390/nu10121924 30563119
    [Google Scholar]
  83. StrangesS. MarshallJ.R. NatarajanR. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial.Ann. Intern. Med.2007147421722310.7326/0003‑4819‑147‑4‑200708210‑00175 17620655
    [Google Scholar]
  84. VincetiM. FilippiniT. RothmanK.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis.Eur. J. Epidemiol.201833978981010.1007/s10654‑018‑0422‑8 29974401
    [Google Scholar]
  85. WangX. YangT. WeiJ. LeiG. ZengC. Association between serum selenium level and type 2 diabetes mellitus: A non-linear dose–response meta-analysis of observational studies.Nutr. J.20151514810.1186/s12937‑016‑0169‑6 27142520
    [Google Scholar]
  86. RaymanM.P. StrangesS. Epidemiology of selenium and type 2 diabetes: Can we make sense of it?Free Radic. Biol. Med.2013651557156410.1016/j.freeradbiomed.2013.04.003 23597503
    [Google Scholar]
  87. BarakatG.M. MoustafaM.E. BikhaziA.B. Effects of selenium and exendin-4 on glucagon-like peptide-1 receptor, IRS-1, and Raf-1 in the liver of diabetic rats.Biochem. Genet.20125011-1292293510.1007/s10528‑012‑9532‑2 22983684
    [Google Scholar]
  88. BarakatG. MoustafaM.E. KhalifehI. HodrojM.H. BikhaziA. RizkS. Effects of exendin-4 and selenium on the expression of GLP-1R, IRS-1, and preproinsulin in the pancreas of diabetic rats.J. Physiol. Biochem.201673338739410.1007/s13105‑017‑0565‑1 28589533
    [Google Scholar]
  89. EzakiO. The insulin-like effects of selenate in rat adipocytes.J. Biol. Chem.199026521124112810.1016/S0021‑9258(19)40166‑X 2153102
    [Google Scholar]
  90. ParkK. RimmE.B. SiscovickD.S. Toenail selenium and incidence of type 2 diabetes in U.S. men and women.Diabetes Care20123571544155110.2337/dc11‑2136 22619078
    [Google Scholar]
  91. SteinbrennerH. HotzeA.L. SpeckmannB. Localization and regulation of pancreatic selenoprotein P.J. Mol. Endocrinol.2013501314210.1530/JME‑12‑0105 23125459
    [Google Scholar]
  92. FradejasN. Del Carmen Serrano-PÉREZ M, Tranque P, Calvo S. Selenoprotein S expression in reactive astrocytes following brain injury.Glia201159695997210.1002/glia.21168 21456042
    [Google Scholar]
  93. ForbesJ.M. CooperM.E. Mechanisms of diabetic complications.Physiol. Rev.201393113718810.1152/physrev.00045.2011 23303908
    [Google Scholar]
  94. GaoY. WalderK. SunderlandT. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells.Diabetes200352492993410.2337/diabetes.52.4.929 12663463
    [Google Scholar]
  95. ZouC. QiuQ. ChenH. DouL. LiangJ. Hepatoprotective effects of selenium during diabetes in rats.Hum. Exp. Toxicol.201635211412310.1177/0960327115579207 25820154
    [Google Scholar]
  96. ChenH. QiuQ. ZouC. DouL. LiangJ. Regulation of hepatic carbohydrate metabolism by Selenium during diabetes.Chem. Biol. Interact.20152321610.1016/j.cbi.2015.02.017 25779343
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998287178240403055901
Loading
/content/journals/cdr/10.2174/0115733998287178240403055901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test